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Abstract

In this work, we demonstrate the superior exploration capabilities of the population-

based methods over the sequential one-parameter parabolic interpolation (SOPPI) ap-

proach to optimise ReaxFF force field parameters. Evolutionary algorithms (EAs) are

heuristic-based approaches using a population of concurrent models in the search space

to evolve towards the global best through stochastic operations. The parallelisation of

EAs scales almost linearly, and no differentiable objective function is required. These

methods were tested for their search performance and convergence behaviour on differ-

ent multi-dimensional, multimodal benchmark functions. The developed KVIK (Ice-

landic for: dynamic, in motion) optimisation framework features an extended training
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routine designed to parameterise solid-state systems efficiently. The optimisation rou-

tine was applied to train a reactive force field potential for metallic lithium and sodium

and their interaction parameters. The KVIK-optimised ReaxFF potential function

parameter set reproduces relative energy results from the density functional theory

(DFT) reference data set within the standard deviation range established using the

error estimation routine provided by the BEEF-vdW density functional. Finally, ther-

modynamically and kinetically driven surface growth phenomena on metallic Li- and

Na-electrodes were investigated using coupled ReaxFF/Monte Carlo (MC) approaches.

1 Introduction

Quantum mechanical methods such as Hartree-Fock (HF), configuration interaction (CI),

coupled cluster (CC) or density functional theory (DFT) are powerful tools to study the

electronic properties of molecular structures or solid-state systems. However, due to their

high computational cost, these methods are still limited to short simulation times and small

systems with a few hundred atoms. The bond order based reactive force field (ReaxFF)1–4

approach overcomes these limitations and enables large scale (up to 100.000 atoms) and long-

term (several nanoseconds) fully reactive simulations for complex systems. The accuracy of

the force field potential depends heavily on the scope and quality of the chosen training

and validation set. Within the force field development process, many physical and empirical

parameters (in some cases hundreds) have to be fitted to higher-level theoretical or experi-

mental reference data. Pre-existing correlations between the parameters and discontinuities

in the error function further aggravate the optimisation task.5 Identifying the local optima

of this multimodal optimisation problem is a substantial challenge and, in most cases, only

feasible with a deep chemical understanding of the underlying formalism.

The sequential one-parameter parabolic interpolation (SOPPI) method has been used as

one of the first techniques for the development of ReaxFF force fields.6 Here, the total error

is calculated for three different values of a selected parameter to derive the optimal value
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using a parabolic fit. However, with an increasing set of parameters, the required number of

one-parameter optimisation steps to achieve overall convergence increases dramatically, as

only a small portion of the search space is accessible. Also, it requires a reasonable initial

guess and a well-considered choice of the order for the parameters to be optimised in each

step to obtain an accurate solution.7

In recent years, different non-deterministic global optimisation strategies such as Monte Carlo

methods,8–10 genetic algorithms,5,11–14 stochastic optimisation techniques10,15,16 or machine

learning-based approaches14,17–20 have been adopted to enhance the optimisation perfor-

mance.

An important class of global optimisation methods are evolutionary algorithms (EAs), which

are inspired by the natural evolution of species and show excellent convergence rates. Here, a

population of concurrent models are used, which evolve towards better models by stochastic

processes. The simultaneous evaluation of the independent models enables a high level of

parallelisation for these algorithms resulting in a significant reduction in computing time.

The particle swarm optimisation (PSO) belongs to the class of evolutionary algorithms and

was introduced by Kennedy and Eberhart in 1995.21 This approach mimics the behaviour

of bird flocks and fish schooling to guide the particles in finding the global optimal solutions

in complex multi-dimensional model parameter spaces.

The differential evolution (DE) algorithm is a population-based algorithm introduced by

Storn and Price in 1997.22 This EA uses mutation as a search mechanism and uses the se-

lection operation to direct the search of the potential regions of the model parameter space.

Both algorithms do not require a differentiable optimisation problem and are characterised

by their robustness, simplicity, strong ability to find globally optimal solutions for highly non-

linear and nonconvex problems, and the small number of necessary tuning parameters.23,24

In this way, these methods come to be ideal candidates to be used for the parametrisation

of ReaxFF potentials.

This work is divided into two parts: In the first part, we propose a new procedure for optimis-
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ing reactive force fields using evolutionary algorithms. The different algorithms are tested

and evaluated on representative benchmark functions. Further, we extended the classical

training by important solid-state properties such as bulk moduli, vibrational frequencies, or

diffusion barriers to better describe the system’s surface properties.

The second part applies the KVIK optimisation routine to parametrise a reactive force field

for metallic electrode materials. Here, a significant challenge arises in accurately reproducing

the subtle energy differences between the diffusion processes. Our parameterised ReaxFF

potential function for Li-Li, Na-Na, and Li-Na interactions demonstrate an excellent agree-

ment with ab initio based DFT calculations. It must be emphasised that even the subtle

energy differences are reproduced accurately, which constitutes a significant challenge for

these systems. Finally, the generated force field is used for grand canonical and kinetic

Monte Carlo simulations to study the initial growth phenomena on metallic electrode ma-

terials. First, thermodynamically controlled growth phenomena on Li and Na nanoparticles

were investigated using a ReaxFF/grand canonical Monte Carlo (GCMC) approach. Then,

the influence of kinetics on the surface growth of Li(100) and Na(100) was studied within

the framework of kinetic Monte Carlo (kMC) simulations.

Part I: Development and implementation of the KVIK

approach

2 Theoretical background

2.1 Evolutionary algorithms

Evolutionary algorithms are inspired by natural groups or swarm behaviour of animals and

feature excellent convergence rates. These algorithms utilise a population of competing mod-

els that evolve into better models through stochastic processes.
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In this work, we tested and validated different optimisation routines, namely particle swarm

optimisation (PSO),21 competitive particle swarm optimisation (CPSO),25 differential evolu-

tion (DE),22,26 covariance matrix adaptation - evolution strategy (CMA-ES),27–29 and linear

variant of covariance matrix adaptation (VD-CMA).30 An overview of the algorithms used

for the force field optimisation is given below.

2.1.1 Particle Swarm Optimisation

Kennedy and Eberhart introduced the particle swarm optimisation routine in 1995, which

mimics the behaviour of bird flocks and fish schooling.21 The underlying optimisation routine

can be described in terms of three simple behavioural patterns:31

(i) Separation – Avoiding crowded local flockmates

(ii) Alignment – Moving towards the average direction of the local flockmates

(iii) Cohesion – Moving towards the average position of local flockmates

This swarm intelligence-based EA is characterised by its robustness, simplicity and fast

convergence rate.

At the beginning of the optimisation, a swarm of multiple particles is generated in the model

parameter space. The initial particle positions can be defined a priori or be determined

by a (uniform) random distribution. Next, the fitness values of the individual particles are

computed before updating the individual and global best values. Finally, the velocities v

and positions x of the respective particles will be updated as follows:

vki = ωvk−1i + φpr
k
p

(
xp,i − xk−1i

)
+ φgr

k
g

(
xg − xk−1i

)
(1)

xki = xk−1i + vki (2)
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where vki is the velocity vector of particle i at iteration k, ω is an inertia weight, xp,i is

the personal best position of the particle i, xg is the global best position of the swarm, rkp and

rkg are uniform random number vectors, φp and φg are acceleration parameters, respectively.

The inertial weighting was not included in the original formulation of the velocity equation

and was first introduced by Shi and Eberhart in 1998.32,33 Their form of Eq. (1) later be-

came accepted as the new ’standard’ for the PSO. Due to the resulting dynamic adjustment

of the particle velocities, it refines the search in the direct vicinity of the minimum. Thus,

an optimisation of the convergence speed as well as an enhancement of the final solution is

achieved.

In the first part of the velocity update formula (Eq. (1)), the particle’s previous velocity

is taken into account. Here, the particle performs an inertial motion depending on its own

velocity and the inertial weight parameter ω. The second part is related to the distance

between the particle’s personal best position xp,i and its current location xk−1i . This “cogni-

tive“ element represents the particle’s own thinking based on its individual experience and

is controlled by the cognitive acceleration factor φp (or cognitive learning factor). The third

part forms the “social“ element and depends on the distance between the global best posi-

tion xg and the current particle location xk−1i . Each particle’s movement is affected by the

previous experience of the swarm. In this way, knowledge transfer and cooperation between

the respective swarm members emerge. The impact of the collective can be controlled via

the social acceleration factor φg (or social learning factor).34

The overall performance of the PSO can be controlled by the chosen control parameters.

Based on Clerc’s constriction method,35 Eberhart and Shi identified ω = 0.7298 and φp =

φg = 1.49618 as a reliable set of parameters to obtain well-converged solutions.33 The choice

of the swarm size and the maximum number of iterations depends strongly on the complexity

of the optimisation problem and the available computing resources. In general, a larger pop-

ulation size increases the success rate but raises the number of misfit function evaluations.25

PSOs can be numerically implemented as synchronous or asynchronous algorithms. While
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in the synchronous case, the global best is determined after the end of each iteration, xg

is updated after each misfit evaluation in the asynchronous setup. Asynchronous optimi-

sation increases the diversity of the swarm, whereas synchronous PSO includes more infor-

mation from the previous iteration.36–38 Various studies showed superior performance of the

asynchronous PSO;36,39–41 however, the increased need for communication complicates the

parallelisation of the algorithm considerably.42,43

2.1.2 Competitive Particle Swarm Optimisation

The traditional PSO is characterised by its robustness, simplicity and the small number

of required tuning parameters. However, premature convergence and stagnation at a local

extreme are more likely to occur for more complex model parameter spaces.25,34 To address

this issue, Luu et al.25 have developed the CPSO. Here, the traditional PSO algorithm is

used, but the diversity of the swarm is increased by resetting the “worst“ particles. While

the preserved “best“ particles are sampling for the minimum in the vicinity of the current

best position, the newly generated particles are exploring the model parameter space for a

potential better minimum. Once a better minimum is found, the swarm will be assembled

around the new global best value. Resetting part of the population is called “competition“

and will only be initiated when a premature convergence of the optimisation is found. Here

the maximum radius of the swarm δk at iteration k determines the premature convergence

and is defined as:

δk = max
1≤i≤s

(
‖xki − xg‖
‖xmax − xmin‖

)
(3)

A “competition“ is triggered when the swarm’s maximum radius δk is smaller than the

user-defined threshold ε:

δk < ε =
log (1 + 0.003s)

max (0.2, log [0.01kmax])
. (4)
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The expression for the threshold ε is purely empirical and depends on the swarm size s

and the maximum number of iterations kmax. In order to determine the fraction of particles

to reset at a given iteration k, a logistic function σ(k) is introduced as

σ(k) =
1

1 + exp
(

1
0.09

[
k

kmax
− γ + 0.5

]) , γ ∈ [0, 2] . (5)

In this way, the proportion of particles to reset decreases with the number of iterations

and thus maintain the convergence property of a PSO. The introduced competitivity pa-

rameter γ can control the position of the inflexion point. In general, the choice of the

competitivity parameter depends on the optimisation problem, although γ = 1 has proven

to be a reasonable initial guess in most cases. For γ = 0, the classical PSO behaviour is

preserved, as no particles are reset at any iteration.

Compared to the classical PSO, the CPSO provides a better convergence rate, improved sam-

pling of the model parameter space and thus offers a robust uncertainty quantification.25

2.1.3 Differential Evolution

The DE algorithm is a population-based optimisation method introduced by Storn and Price

in 1997.22 The optimisation procedure can be divided into three parts, namely mutation,

crossover, and selection.24,44

For the investigation of the model parameter space, NP D-dimensional parameter vectors

for each generation G are used:

xi,G, i = 1, .., NP (6)

Also, three types of parameter vectors are required for the DE algorithm: target vector,

mutation vector and trail vector. At the beginning of the optimisation, the parameter vectors

within the model parameter space, which holds the possible solution candidates, are initiated.

The initial population is generated by a uniform random distribution of individuals in the
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model parameter space or built from a preliminary solution with added random deviations.22

The current solution of the optimisation problem becomes the target vector.

In the mutation step, a mutation vector vi,G+1 is generated1 for each of the NP target vectors

xi,G following

vi,G+1 = xr1,G + F (xr2,G − xr3,G) , F ∈ [0, 2], r1, r2, r3 ∈ {1, .., NP} , (7)

where r1, r2, r3 are random indices and F is a scaling factor for the differential variation.

Next, a crossover operation is done to increase the diversity of the perturbed parameter

vectors. Thus, a trail vector ui,G+1 is constructed by mixing the mutation vector vi,G+1 and

the target vector xi,G
46 following

ui,G+1 = (u1i,G+1,u2i,G+1, ..,uDi,G+1) (8)

uji,G+1 =


vji,G+1 if Rj ≤ CR

xji,G if Rj > CR

, j = 1, .., D (9)

where Rj is a uniform random real number between [0,1], and CR is the crossover constant

(CR ∈ [0, 1]).

In the selection step, the fitness values of the trail vector ui,G+1 and the target vector xi,G are

compared. If the trail vector has a smaller cost function, ui,G+1 will be defined as the new

target vector xi,G+1 of generation G+ 1; otherwise, the old target vector will be retained.

The steps mutation, crossover, and selection are executed successively in an iterative manner

until the respective termination criterion is reached.

1Different strategies have been developed for generating the mutation vector.45 In Eq. (7), the formulation
of Storn and Price22 (rand1bin strategy) is given. Further strategies are summarised in Appendix C.4.
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2.2 Transition state tools

Identifying the minimum energy path (MEP) and the associated transition state is essential

for investigating reaction mechanisms and diffusion properties. For the parametrisation of

reactive force fields, these findings are vital data for the training and validation of the poten-

tial for an accurate description of the reaction kinetics and the potential energy landscape.

Based on the Transition State tools for VASP (VTST) by Henkelman and Jónsson,47 we

have implemented various methods and tools to explore the MEP of the system within the

ReaxFF application of the Amsterdam Modeling Suite.48

(i) nudged elastic band (NEB) method:49–52

- climbing image nudged elastic band (CI-NEB) method49

- Nudged Elastic Band method with the removal of translational and rotational

degrees of freedom (NEB-TR)52

(ii) Dimer method,53–55 Lanczos method56,57

(iii) Force-based optimisers with constraints:

- Fast inertial relaxation engine (FIRE)51,58

- Polak-Ribière conjugate gradient (CG)51,59,60

- Limited-memory Broyen-Fletcher-Goldfarb-Shanno (L-BFGS)51,61

- Steepest descents (SD)51

- Quick-Min (QM)51

(iv) Vibration analysis62,63

The implementation is available as of Amsterdam Modeling Suite 2018 and later.48 In-

structions on how to use the transition state tools within the ReaxFF implementation are

given in Appendix A.
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In the following, we summarise the theoretical background for the applied methods within

the scope of this work. Additional information can be found in the listed literature.

2.2.1 Climbing Image Nudged Elastic Band Method

The CI-NEB approach is a chain-of-states based method designed to locate the MEP between

two stable system states on a potential energy landscape.49,50 Here, an elastic band consisting

of N + 1 images describes the reaction pathway, keeping the initial and final states fixed.

The respective system configurations [R0,R1, ...,RN ] are separated by a spring constant to

guarantee the continuity of the pathway. In order to find the MEP, the N − 1 intermediate

images are adjusted by a force-based optimisation algorithm. The total force FNEB
i acting

on the image i is defined through a force projection scheme consisting of the potential forces

acting perpendicular to the band F⊥i and the spring forces along the band F
S‖
i , following

FNEB
i = F⊥i + F

S‖
i (10)

with

F⊥i =−∇V (Ri) +∇V (Ri)τ̂ iτ̂ i (11)

F
S‖
i =k (|Ri+1 −Ri| − |Ri −Ri−1|) τ̂ i . (12)

where k is a spring constant, and τ̂ i = τ i/ |τ i| a normalised up-winding tangent. De-

pending on the potential energy V of the adjacent images, the tangent is defined by

τ i =


Ri+1 −Ri if Vi+1 > Vi > Vi−1

Ri −Ri−1 if Vi+1 < Vi < Vi−1

. (13)

If image i is at an extrema along the path (i.e. Vi+1 > Vi < Vi−1 or Vi+1 < Vi > Vi−1), τ i

is given by
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τ i =


(Ri+1 −Ri) ∆V max

i + (Ri −Ri−1) ∆V min
i if Vi+1 > Vi−1

(Ri+1 −Ri) ∆V min
i + (Ri −Ri−1) ∆V max

i if Vi+1 < Vi−1

, (14)

where

∆V max
i = max (|Vi+1 − Vi| , |Vi−1 − Vi|) (15)

∆V min
i = min (|Vi+1 − Vi| , |Vi−1 − Vi|) . (16)

Extending the NEB method by the climbing image approach enables rigorous convergence

to a saddle point without compromising the MEP. For this purpose, the image along the

path with the highest potential energy is designated as climbing image l, and the resulting

force is adjusted by

FCI
l = Fl − 2 · Flτ̂ lτ̂ l . (17)

Due to the reformulation of the force projection scheme in Eq. (17), the image l undergoes

no spring forces and climbs by a reflection in the forces along the tangent to the saddle point

of the MEP.51

2.2.2 Vibration analysis

The vibrational properties of a system can be studied within the framework of the harmonic

oscillator approximation. Based on the resulting vibrational modes, one can confirm tran-

sition states or calculate pre-exponential factors to determine reaction rates following the

transition state theory.

In this work, we used the finite difference approximation of the Hessian matrix for the vi-

bration analysis of an interacting atomic system.63 For a set of N atoms and their atomic

positions as a single vector R = (R1, R2, ..., R3N), the potential energy function can be ex-
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pressed by a Taylor expansion of the atomic potential energy values around the reference

geometry at R0 = (R1,0, R2,0, ..., R3N,0) following

V = V0 +
3N∑
i

∂V

∂Ri

∣∣∣∣∣
0

(Ri −Ri,0) +
1

2

3N∑
i

3N∑
j

∂2V

∂Ri∂Rj

∣∣∣∣
0

(Ri −Ri,0) (Rj −Rj,0) + ... . (18)

If the system is situated in an energetic minimum or at a saddle point, the first derivation

in Eq. (18) becomes zero. Further, we can define V0 = 0, since this term arbitrarily shifts

the total potential energy. Thus, Eq. (18) can be reformulated into a second-order Taylor

polynomial as

V =
1

2

∑
i,j

∆RiHij∆Rj =
1

2
∆RᵀH∆R (19)

where

Hij =
∂2V

∂Ri∂Rj

∣∣∣∣
0

= −∂Fj
∂Ri

. (20)

forms a 3N×3N matrix and is known as the Hessian matrix. The elements of the Hessian

can be estimated by a finite difference approximation as follows:

Hij =
∂2V

∂Ri∂Rj

∣∣∣∣
0

≈ V (δxi, δxj)− 2V0 + V (−δxi,−δxj)
δxiδxj

+O(δxiδxj) (21)

Here, V (δxi, δxj) was used as a shorthand notation to denote the energy of the atoms

when only the specified coordinates are non-zero.64

The force Fj along the atomic coordinate axis j is related to Newton’s equation of motion

as

Fj = − ∂V
∂Rj

= Mj
d2∆Rj

dt2
, (22)
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where Mj is the atomic mass along the j th coordinate. In the more concise matrix

notation, Eq. (22) yields

−H∆R = M
d2∆R

dt2
. (23)

Herein, the constructed Hessian H is real and symmetric and has a complete set of 3N

eigenvectors e1, ..., e3N . Moreover, M denotes the diagonal matrix of the atomic masses.

We can solve the equation of motion (23) by a linear combination of the normal modes

Rk(t) = ak exp(−iωkt), which take the form:63

HRk = ω2
kMRk (24)

The vibrational frequencies and mass-weighted vibrational modes can be determined

from the solution of the eigenvalue equation Ae = λe with the mass-weighted Hessian

A = M−1/2HM−1/2. We can calculate the 3N vibrational frequencies ν from the obtained

eigenvalues λ as

νi =

√
λi

2π
. (25)

Subsequently, the zero-point energy EZPE can be determined from the sum of the calcu-

lated normal mode frequencies following

EZPE =
3N∑
i=1

hνi
2

, (26)

where h is the Planck constant.

2.2.3 Force-based optimisers

Polak-Ribière conjugate gradient (CG) – The CG optimiser is a local optimisation algorithm

that performs a line search along a conjugate search direction.51,59,60
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At the beginning of the optimisation routine, the initial search direction d0 along the initial

force F0 is defined following

d0 = F0 . (27)

Applying the step size λ and the current conjugate search direction dj, the new atomic

positions Rj+1 of iteration j + 1 are calculated as

Rj+1 = Rj + λdj . (28)

In the following iterative steps, the new conjugate search direction dj+1 is calculated from

the current negative gradient Fj+1 and the search direction dj of the j th iteration as follows

dj+1 = Fj+1 + γPRdj , (29)

where

γPR =
Fj+1 · (Fj+1 − Fj)

|Fj|2
(30)

All steps from Eq. (29) and (30) are repeated iteratively until the specified termination

criterion is met.

Fast inertial relaxation engine (FIRE) – The FIRE optimiser is a simple local atomic

structure optimisation algorithm based on classical molecular dynamics (MD) with adaptive

time steps and a modified velocity formulation.58 It is characterised by its robustness, versa-

tility and overall performance. For the propagation of the optimisation trajectory, either a

classical velocity Verlet algorithm can be utilised, or an Euler integration can be performed.

Initially, a time step ∆t and a velocity damping constant α = αstart are provided as well as

the velocity vector v is set to zero.
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In an MD step, forces and velocities are determined for a given set of atomic positions R

following

v =
(
v · F̂

)
F̂ (31)

F = −∇V (R) . (32)

Next, the force P is calculated according to

P = F · v , (33)

and a new velocity vector is generated from the existing velocity and force vector following

v→ (1− α) v + α · F̂ |v| . (34)

Lastly, the time step ∆t and the velocity damping constant α are dynamically adjusted.

If the force P > 0 and the number of steps since P was negative is greater than Nmin (number

of iterations before a and dt are updated), the values are adapted as follows:

∆t→ min(∆t · finc,∆tmax) (35)

α = α · fα . (36)

In the case of P ≤ 0, the velocity is set to v=0, and the parameters are modified according

to
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∆t→ ∆t · fdec (37)

α = αstart , (38)

where ∆tmax is the maximum dynamical time step and finc and fdec are factors to increase

and decrease the time step ∆t.

Starting with the MD step, the described steps are repeated iteratively until the termination

criterion is reached. In general, a robust and stable optimisation behaviour has been found

using Nmin = 5, finc = 1.1, fdec = 0.5, αstart = 0.1, and fα = 0.99 as initial parameters.58

Limited-memory Broyen-Fletcher-Goldfarb-Shanno (L-BFGS) – The L-BFGS optimiser

is a quasi-Newton method utilising the inverse Hessian H−1 of the system to optimise the

atomic structure. However, the determination of the complete second derivative matrix can

be computationally expensive compared to the calculation of the gradient. Therefore, in the

limited-memory quasi-Newton methods, only a few vectors of size n are saved instead of the

dense n × n matrices.65 Starting from a diagonal matrix, the Hessian is constructed using

the curvature information from the most recent iterations. Further information regarding

the construction of the matrices can be found in Ref.61 and.65

In the next step of the optimisation procedure, the new atomic positions Rj+1 of iteration

j + 1 are determined based on the system’s approximated inverse Hessian matrix H−1j .

Using the L-BFGS(line) method, the search direction dj is determined by

dj = FjH
−1
j , (39)

and the new coordinates are calculated following

Rj+1 = Rj + λdj . (40)
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Alternatively, the L-BFGS(Hess) method can be used to obtain Rj+1 directly using the

inverse Hessian as follows:

Rj+1 = Rj + FjH
−1
j . (41)

Only one force call per iteration is needed in the latter, as the finite difference step to cal-

culate the step size λ is omitted. However, a poor initial guess of H−1 for the LBFGS(Hess)

approach can lead to oscillations or arbitrary behaviour and thus retard convergence sub-

stantially.51

3 Benchmark Function Experiments

For a deeper understanding of the performance and behaviour of the different evolutionary

algorithms, we evaluated their performance and behaviour against mathematical benchmark

functions. For our performance test of the evolutionary algorithms, we have selected the

functions Ackley, Alpine N.1, Rastrigin, Rosenbrock, Schwefel and Xin-She Yang N.466 to

capture a wide variety of functional properties. This set of benchmark functions has been

chosen based on their complexity, continuity, modality and convexity. Their functional form

and properties are summarised in Appendix B.

All benchmark function experiments were performed with a total population size of 50

and a maximum iteration number of 10000. If the difference between fitness and target

value was less than 1× 10−8, the calculation was considered converged. An ensemble of 100

search runs was generated to enhance the statistical significance of the result. For all CPSO

calculations, the parameters γ = 1, φp = φg = 1.49618, and ω = 0.7298 were used. A

mutation constant of F = 0.5 and a crossover constant of CR = 0.9 were taken in the case

of the DE algorithm. The ’best1bin’ differential evolution strategy (compare with Eq. (7))

was applied, following
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vi,G+1 = xbest,G + F (xr1,G − xr2,G) , F ∈ [0, 2], r1, r2 ∈ {1, .., NP} , (42)

where xbest,G is the best vector found at generation G, and r1, r2 (r1 6= r2) are random

indices. A synchronous update scheme was used for both CPSO and DE, i.e. the best

solution vector was constantly updated within a single generation.

For the CMA-ES optimisation procedure, 50 % of the total population were defined as par-

ents, and an initial standard deviation of σ = 0.1 was chosen. The generated output from

the evolutionary algorithms was compared with the data of the sequential one-parameter

parabolic interpolation (SOPPI) approach. In the latter, a step size of ± 10 % of the pa-

rameter range was adopted for the parabolic fit. In all methods, constraints were applied to

keep the parameter search space within the specified boundaries.

Table 1 summarises the obtained results of CPSO, DE, CMA-ES, and SOPPI for different

d-dimensional parameter spaces. Further, supplementary data for classical PSO, VD-CMA

algorithm, additional benchmark functions, and findings for different parameter settings are

provided in Appendix C.

The Ackley function67,68 is a continuous, non-convex, and multimodal function with a

global minimum at f(0, ..., 0) = 0. It is characterised by a relatively flat area with numerous

local minima surrounding the global minimum in the centre. While the CPSO and CMA-ES

algorithms identified the global minimum for different dimensional spaces with great statis-

tical accuracy, DE and SOPPI tended to get trapped in local minima.

In the case of the DE approach, altering the differential evolution strategy can overcome

this issue (see Appendix C - Table 22). The rand1bin and rand2bin strategies utilise ran-

dom parent vectors in the generation of the mutation vector. This improves the exploration

capability of the algorithm but may slow down convergence. Further, the rand2bin strategy

introduces an additional difference vector, which enhances the perturbation. For the strate-

gies best1bin and best2bin, the best solutions of the parent population are used to generate

the mutation vector, which allows faster convergence to the optimal solution, but bears the
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Table 1: Global performance of the evaluated evolutionary algorithms (CPSO, DE, CMA-
ES, SOPPI) for different d-dimensional benchmark functions. The calculations were carried
out using a total population of 50, with 10000 maximum iterations. All values (mean ±
standard deviation) were determined using an ensemble of 100 calculations per system. For
all test functions, the global minimum is 0, except Xin-She Yang N.4 with a value of −d.

Function d CPSO DE CMA-ES SOPPI

Ackley

2 0.00± 0.00 0.00± 0.00 3.38± 7.46 6.55± 9.34
4 0.00± 0.00 0.04± 0.26 3.16± 7.24 3.97± 7.95
8 0.00± 0.00 1.32± 1.39 1.58± 5.34 4.58± 8.39

16 0.00± 0.00 4.10± 1.95 0.59± 3.36 3.19± 7.31
32 0.00± 0.00 10.04± 1.97 0.00± 0.00 1.20± 4.74

Alpine
N.1

2 0.00± 0.00 0.00± 0.00 0.00± 0.00 1.06± 0.82
4 0.00± 0.00 0.00± 0.00 0.00± 0.00 2.46± 1.35
8 0.00± 0.00 0.00± 0.00 0.00± 0.00 5.71± 1.86

16 0.00± 0.00 0.01± 0.06 0.00± 0.00 11.49± 2.92
32 0.00± 0.00 0.05± 0.41 0.03± 0.23 23.96± 4.20

Rastrigin

2 0.00± 0.00 0.20± 0.40 2.19± 5.01 13.89± 5.24
4 0.00± 0.00 2.12± 1.96 3.46± 6.26 33.41± 6.33
8 0.02± 0.14 9.59± 4.12 3.43± 3.65 75.31± 8.96

16 0.30± 1.71 29.30± 9.28 7.20± 8.32 167.38± 12.70
32 11.58± 12.55 69.70± 18.01 17.04± 3.58 356.11± 17.04

Rosenbrock

2 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.35± 0.35
4 0.07± 0.52 0.74± 1.48 0.00± 0.00 2.79± 0.27
8 0.28± 1.02 0.88± 1.65 0.00± 0.00 6.83± 0.07

16 2.16± 16.57 0.84± 1.62 0.00± 0.00 14.81± 0.06
32 1.24± 2.00 1.40± 1.90 0.04± 0.40 30.75± 0.05

Schwefel

2 0.00± 0.00 36.72± 61.99 278.31± 157.66 100.86± 91.65
4 23.69± 47.38 148.25± 118.23 577.05± 239.85 208.31± 136.81
8 309.12± 143.01 685.19± 255.66 1321.71± 345.02 452.17± 227.30

16 753.40± 258.27 2142.52± 448.43 2832.63± 511.23 929.01± 321.70
32 1838.26± 366.55 5758.91± 638.37 5780.52± 695.61 1998.98± 458.99

Xin-She
Yang
N.4

2 −1.99± 0.01 −1.99± 0.01 −0.92± 0.87 −0.31± 0.32
4 −3.93± 0.18 −3.36± 1.00 −2.31± 1.71 −0.13± 0.16
8 −7.39± 1.39 −6.34± 2.30 −7.11± 1.59 −0.04± 0.09

16 −10.40± 3.93 −10.37± 4.56 −12.33± 3.82 −0.00± 0.03
32 −23.46± 7.39 −22.36± 7.46 −20.20± 7.07 −0.00± 0.00
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risk of getting stuck in a local minimum in the case of multimodal functions.69 As shown in

Table 22, applying the rand1bin or rand2bin differential evolution strategy yields a robust

identification of the global solution of Ackley’s function. The performance of the SOPPI

approach can be improved by decreasing the step size gradually during the optimisation pro-

cess. In our case, an initial step length of δ = 0.1 or δ = 0.05 and a reduction of 1 % every

10 iterations (down to a minimum value of δ = 0.005) provided the model’s best solution

consistently (see Appendix C - Table 32).

Alpine N.1 is a non-continuous, non-convex, and multimodal function with one global min-

imum at the margin of the definition range at f(0, ..., 0) = 0. Here, the model parameter

space was designed in the shape of a descending mountain landscape with multiple local

minima in the valleys. Unlike Ackley’s function, Alpine N.1 is not differentiable and pos-

sesses a far lower density of local extrema. The EAs found the global minimum reliably

in this benchmark run, even for high-dimensional parameter spaces. As expected, searches

with SOPPI often ended in local minima. However, using a decreasing step length to find

the best solution of the d-dimensional function improved the performance considerably.

Due to its numerous, regularly distributed local minima and large search space, the widely

used Rastrigin function70,71 have been a severe challenge to many optimisation techniques.

The continuous, non-convex, and highly multimodal function has a global minimum at

f(0, ..., 0) = 0 with multiple surrounding local minima whose function value grows with

increasing distance from the centre. Although the Rastrigin function entails fewer minima

within the defined search space, its overall shape is shallower than Ackley’s function, making

general convergence to the global optimum more severe.

For this single-objective optimisation test function, the diversity of the swarm and the con-

tinuous sampling of the parameter space of the CPSO come into play. The search converges

to the best solution with high statistical confidence, except for the high-dimensional param-

eter spaces, where the swarm tends to get caught in a local minimum. For the latter, the

performance can be improved by enlarging the swarm size or increasing the competitivity
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parameter γ (see Appendix C - Table 18 and 20). Both DE and CMA-ES struggle to reach

the global minimum even for the low dimensional variants of the Rastrigin function. Simi-

larly to Ackley’s function, applying the rand1bin differential evolutionary strategy yields a

significant improvement in the search performance of the DE routine.

Applying a fixed step length (δ = 0.1, δ = 0.05, and δ = 0.01) during the SOPPI opti-

misation runs achieved the worst results of all tested algorithms. However, assuming an

initial step length of δ = 0.1 and a reduction of 1 % every 10 iterations, the variable SOPPI

approach was able to keep up with the performance of CPSO and even outperform it in the

32-dimensional parameter space (see Appendix C - Table 32).

The continuous, non-convex Rosenbrock function72 is unimodal (d ≤ 2) or multimodal

(d > 2), and has a parabolic shape and a flat valley bottom (2-dimensional case). Locating

the valley is facile, but finding the off-centre global minimum at f(1, ..., 1) = 0 is demanding

for many optimisation routines.73,74 For the unimodal variant (d = 2) of the function, the

evolutionary algorithms are able to locate the global minimum of the function correctly.

While the CMA-ES also converges to the optimal solution for the higher-dimensional pa-

rameter spaces, both CPSO and DE have difficulties identifying the global minimum. In

the case of CPSO, altering the swarm size or the competitivity parameter γ provided no

significant improvement. The search results of the DE algorithm can be refined by utilising

the rand1bin and rand2bin strategies. For the Rosenbrock benchmark test, SOPPI achieved

the worst scores. Modifying the parameters of the optimiser showed no remarkable improve-

ment.

The Schwefel benchmark test consists of a continuous, non-convex and multimodal func-

tion with a global best solution at the boundary of the search space with a minimum value

of f(420.9687, ..., 420.9687) = 0. Contrary to Rastrigin’s or Ackley’s function, the Schwefel

function75 is less symmetric and does not provide an overall guiding slope towards the global

minimum. In the search for the global minimum, the CPSO approach demonstrates superior

performance with respect to the other optimisation routines due to its high swarm diversity.
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For the DE algorithm, the exploration capability can be significantly improved by adopting

the rand1bin strategy to generate the mutation vector. This strategy change results in the

overall best performance for Schwefel’s function, as shown in Appendix C - Table 22. For

a fixed step length of δ = 0.1, the optimisation runs with SOPPI perform surprisingly well;

however, the overall results indicate a high parameter sensitivity.

Xin-She Yang N.476,77 is a non-continuous, non-convex and multimodal function with a

global minimum at f(0, ..., 0) = −d. Its properties are similar to Schwefel’s and Rastrigin’s

functions. For the 2-dimensional variant, the centroidal optimum is intersected by a canyon-

like structure with deep funnel-shaped local minima. Hence, converging to the global best

solution is rather difficult without getting trapped in a local minimum.

In this benchmark test, the CPSO achieved the best performance of all tested optimisation

approaches. Altering the optimisation parameters or the swarm size had no significant in-

fluence on the result. For the CMA-ES, a significant improvement was reached through an

increased population size. As in previous tests, the data from the DE algorithm indicated a

great dependence on the chosen differential evolution strategy. The optimisation runs with

SOPPI (δ = 0.10) consistently ended in local minima with function values close to 0. It was

possible to improve the outcome by downsizing or a gradual reduction of the step size but

still failed to reach the performance level of the evolutionary algorithms.

The global optimisation performance of the tested algorithms for the 32-dimensional variant

of Ackley, Rastrigin, Rosenbrock, and Schwefel is given in Fig. 1. The SOPPI approach

proves to be an efficient optimisation method with a fast convergence after only a few al-

gorithm iterations. For multimodal functions, however, we found a strong tendency to get

trapped in a local minimum. Applying a varying step size improved the result notably for

some test functions but revealed a high sensitivity regarding the chosen optimisation set-

tings. While for SOPPI, only three evaluations of the objective function per optimisable

parameter and iteration are required, the number of calls is equal to the population size

of the evolutionary algorithm. However, the latter can be easily parallelised and scales al-
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Figure 1: Global optimisation performance of CPSO (blue), DE (best1bin) (green), DE
(rand1bin) (red), CMA-ES (orange), and SOPPI (purple) in the 32-dimensional parameter
space of Ackley ( upper left), Rosenbrock (upper right), Rastrigin (lower left), and Schwefel
(lower right). For all calculations, 10,000 algorithm iterations were performed, and an en-
semble of 100 searches was generated to enhance the statistical significance of the results.
The population size was set to 50 for all evolutionary algorithms and a step size of δ = 0.1
for the SOPPI method.
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most linearly with the number of cores.78–81 Modern multiprocessor architectures are readily

suited to compensate for the potential higher computational demands of the EAs.

The CPSO proves to be highly robust but requires more iterations on average to reach a

state of convergence. It was possible to obtain reliable results even for smaller swarm sizes.

Also, this method proved to be relatively insensitive to the selected parameters. In the case

of the DE algorithm, the best1bin strategy was able to achieve fast convergence but had a

tendency to get caught in local minima of multimodal functions. Changing the differential

evolutionary strategy from best1bin to rand1bin may increase the number of function evalu-

ations but help to more reliably find the global minimum. For CMA-ES, a vastly improved

result was found after only a few iterations. Still, high-complex benchmark functions such

as Schwefel or Xin-She Yang N.4 bore a high risk of premature convergence.

4 Force field development: optimisation and validation

A training set based on quantum mechanical or experimental data is needed to optimise

and validate a reactive force field. The classical ReaxFF training set is organised in five

segments: Atomic charges, forces, cell parameters, energy differences, and heat of formation.

These values are compared to the calculated results for the current ReaxFF parameter set

j, and the associated error function φReaxFF
j is determined as

φReaxFF
j =

n∑
i=1

[
xRef
i − xReaxFF

j,i

σi

]2
, (43)

where xRef
i is the reference value, xReaxFF

j,i is the computed value, and σi is the weight

value of the optimisation target i.

While the classical training set is well suited for the training of molecules, there are some

restrictions on integrating surface properties. Depending on the ReaxFF parameter set, the

lattice constant of the bulk phases may vary with respect to the reference data. Yet, the

minimum lattice constant change is not taken into account for the surface structures within
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the training set. In this way, the introduced lattice strain can influence fundamental surface

quantities82 and thus may distort the error function. Moreover, due to the lack of constraint

options, the description of metastable or unstable surface sites is limited. In a classical

training set, the images of a minimum energy path or the data of a potential energy scan

are typically included in the form of a single point calculation or by applying bond, angle, or

torsion restraints. However, an accurate representation of the potential energy surface (PES)

is crucial for the description of the surface kinetics.

To overcome these limitations, we developed a new training routine for solid-state systems

and their surface properties. A general workflow of the extended training routine is given in

Fig. 2.

For a given set of parameters, we initially optimise the different bulk phases of the system

and compute the respective equation of states (EOS). From these calculations, the minimum

volume V0, the lattice parameters (a0, b0, c0, α0, β0, γ0), the cohesive energy Ecoh, energy

differences ∆E and the bulk modulus B0 are obtained. Next, the different surface structures

are generated based on the minimum lattice parameters of the given parameter set. Apart

from the surface energies γhkl of the different facets, the energetics (adsorption energies Ead,

dimer interaction energies Eint,dimer) of the characteristic adsorption sites and the coverage-

dependent adsorption are analysed. Due to the newly implemented force-based optimiser,

it is possible to fix some degrees of freedom in the system, enabling simple integration of

metastable and unstable surface structures into the training. Following the terrace-step-kink

model,83 we use well-chosen diffusion processes to train the surface kinetics. Their minimum

energy paths and activation energies (Efor
a (forward), Erev

a (reversed)) are computed utilising

NEB calculations. Finally, the vibrational frequencies νi are determined for the initial,

transition, and final state to derive the pre-exponential factors kfor0 and krev0 .

All obtained quantities are referenced against the training set data to calculate the error

value for the given parameter set using the error function defined in Eq. (43). We repeat this

procedure for each new parameter set until an appropriate termination criterion is reached.
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New parameter set

START

Cell optimisation of the bulk cells (lattice constants)
/ Calculate the equation of states (Ecoh, B0, V0)

Generate / Rescale the surface struc-
tures using the optimised lattice constants

Calculate surface energies, adsorption energies,
and dimer interaction energies (γhkl, Ead, Eint,dimer)

Determine diffusion profiles and barriers of se-
lected processes via NEB calculations (Efor

a , Erev
a )

Frequency analysis and determination
of pre-exponential factors (νi, k

for
0 , krev0 )

Evaluate the error function:
∑
i

[
xi,DFT−xi,ReaxFF

σi

]2

Termination condition satisfied ?

STOP

No

Yes

Figure 2: General workflow of the developed ReaxFF training routine for the optimisation
of (metallic) solid-state systems and their surface properties.

Possible criteria are the solution tolerance, the objective function value tolerance or the

maximum algorithm iterations. Our developed force field parametrisation routine supports

the evolutionary algorithms PSO, CPSO, DE, CMA-ES, and VD-CMA of the python library
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for stochastic numerical optimisation.84

The outlined optimisation framework for EA-based parameterisation of ReaxFF reactive

force field potentials is dubbed KVIK (Icelandic for: dynamic, in motion). The training

routine can be extended by user-defined quantities and is fully interoperable with classical

training set files.

Part II: Development and application of a ReaxFF force

field for solid systems

In order to show the applicability to solid systems, in this part the developed KVIK approach

will be utilised to optimise a reactive force field potential for metallic sodium and lithium

and their interaction. For this purpose, the proposed training set will be generated with

the data from our previous work.85,86 Subsequently, a multi-scale model will be applied to

investigate the initial growth processes on the stable surfaces of both metals using kMC

simulations. The required activation energies and pre-exponential factors of the respective

processes will be calculated utilising the developed reactive force field potential. For these

systems, the major challenge in optimising the force field parameters is the subtle energetic

differences between the various diffusion processes. Hence, an accurate description of the

diffusion properties is vital for properly describing the surface growth.

5 Computational details

5.1 DFT calculations

All electronic structure calculations were carried out using the Vienna Ab initio Simulation

Package (VASP).87,88 Electron-core interactions were accounted for by the projector aug-

mented wave (PAW) method89 in the implementation of Kresse and Joubert.90 Exchange-

correlation effects were described by the functional of Perdew, Burke, and Ernzerhof (PBE)
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in the generalised gradient approximation (GGA).91 Respective standard deviations were

computed utilising the Bayesian error estimation functional with van-der-Waals (BEEF-

vdW) exchange-correlation functional.92 Following the scheme of Monkhorst and Pack,93

all total energy calculations were done using a k -point mesh density of 0.15 Å
−1

. A plane-

wave cutoff energy of 340 eV was applied for the expansion of the electron one-particle wave

functions into a plane-wave basis set. The DFT calculations were considered as converged

when the total energy difference was less than 10−5 eV and all forces exceeded a threshold

of 10−3 eV Å
−1

. Images of CI-NEB calculations49,50 were separated by a spring constant of

5.0 eV Å
−2

to guarantee the continuity of the path. Surface properties were modelled within

the supercell approach introducing a vacuum region of at least 20 Å along the z-axis. Well

converged symmetrical slabs with a minimum thickness of 20 Å were used to compute the

respective surface energies. To examine the adsorption and diffusion properties on (100)-,

(110)- and (111)-indexed surface models, 8-, 8- and 13-layer slabs were used, respectively.

The two lowermost layers of the (100) and (110) surface structures and the three lowermost

layers of Na(111) and Li(111) were kept fixed in their respective bulk atomic configuration.

5.2 ReaxFF parameterisation and calculations

In this work, all reactive force field calculations were performed within the ReaxFF imple-

mentation of the Amsterdam Modeling Suite 2021.1.1,2,94 The developed ReaxFF parameter

set for Li-Li, Li-Na, and Na-Na interactions is provided in Appendix D. Geometry optimisa-

tions, NEB calculations, and frequency analyses were performed within the framework of the

Transition State Tools for ReaxFF (see Appendix A). For an efficient calculation of atomic

charges and linear response properties, the atom-condensed Kohn-Sham density functional

theory approximated to second order (ACKS2)4,95 charge equilibration scheme was applied.

Energy minimisation of the atomic coordinates was considered converged when all forces

were smaller than 2× 10−3 eV Å
−1

. For NEB calculations, a spring constant of 5.0 eV Å
−2

and a convergence criterion of 1× 10−2 eV Å
−1

were chosen. A displacement value of 0.01 Å
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with four displacements per spatial direction was used to compute the respective vibrational

modes.

Depending on the selected dimensionality and boundary conditions, the evolutionary algo-

rithms CPSO and DE, as implemented in the stochopy package,84 were adopted for the force

field parameter fitting. The swarm size was adjusted according to the number of parameters

to be optimised. For all CPSO calculations, the parameters γ = 1, φp = φg = 1.49618, and

ω = 0.7298 were chosen. In optimisation runs with the DE algorithm, the ’best2bin’ differ-

ential evolution strategy (see Appendix C.4) was used with a mutation constant of F = 0.5

and a crossover constant of CR = 0.9.

5.3 Grand Canonical Monte Carlo

All grand canonical Monte Carlo (GCMC) simulations were carried out in the AMS-ReaxFF

implementation of the Amsterdam Modeling Suite 2021.1.1,2,94 The chemical potential µ was

referenced to the cohesive energy of the respective metal using a simulation temperature of

300 K. Also, an µVT ensemble was chosen for all GCMC simulations. A minimum distance

of 1.0 Å and a maximum distance of 3.0 Å to the other atoms of the system were set as

boundary conditions for adding an atom. The accessible volume was determined by the

difference between the total and occupied volumes.

5.4 Kinetic Monte Carlo

All kinetic Monte Carlo (kMC) simulations were performed within the ReaxFF implemen-

tation of the Amsterdam Modeling Suite 2021.1.1,2,94 A 100x100 Li(100) and Na(100) slab

was utilised to simulate the initial growth processes applying periodic boundary conditions

in x- and y-directions. In all simulations, the maximum number of iterations was set to

1× 109. The diffusion constants were determined from an ensemble of 20 kMC calculations

to increase the statistical significance of the results.
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6 Results and Discussion

6.1 Training and validation of Li-Li and Na-Na interaction

In the following, the computed ReaxFF data for sodium and lithium are compared with

the DFT-PBE target values. We refer the reader to our previous work85,86 for a detailed

discussion of their bulk and surface properties. Moreover, a side-by-side comparison of known

ReaxFF force fields for Li96–98 is given in Appendix E.

Bulk phases – The ReaxFF force field potential describing the Li-Li and Na-Na inter-

actions was obtained by optimising the relevant empirical force field parameters within the

KVIK optimisation framework. Besides the structural and energetic properties of the rele-

vant bulk phases, the training set also includes their volumetric compression and expansion

characteristics. An overview of the obtained bulk properties is given in Table 2.

Table 2: Calculated (ReaxFF, DFT-PBE) physical constants for the important bulk phases
of sodium and lithium. Lattice constant a0 and c0 are given in Å, cohesive energy values
Ecoh are given in eV atom−1, and bulk moduli B0 are given in GPa. All experimental results
were taken from Ref.99 and the DFT-PBE values are taken from our previous work.85,86 The
determined standard deviation86 from the BEEF-vdW92 calculations are given in brackets.

Sodium Lithium
ReaxFF DFT-PBE Expt. ReaxFF DFT-PBE Expt.

bcc
a0 4.18 4.19 4.21 3.42 3.44 3.45

Ecoh 1.10 1.09 (0.25) 1.13 1.61 1.61 (0.16) 1.67
B0 8.13 7.96 7.73 12.99 13.92 13.90

fcc
a0 5.33 5.29 - 4.33 4.33 -

Ecoh 1.09 1.09 (0.25) - 1.60 1.61 (0.16) -
B0 7.74 7.87 - 14.22 13.86 -

hcp

a0 3.77 3.74 - 3.05 3.06 -
c0 6.15 6.11 - 4.98 5.00 -

Ecoh 1.09 1.09 (0.25) - 1.60 1.61 (0.16) -
B0 6.72 7.91 - 9.94 13.87 -

hR9

a0 3.76 3.72 - 3.07 3.07 -
c0 27.83 27.80 - 22.32 22.33 -

Ecoh 1.09 1.09 (0.25) - 1.60 1.61 (0.16) -
B0 6.73 7.84 - 9.94 13.97 -
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The bulk modulus B0 was determined by a third-order inverse polynomial fit according

to the stabilised Jellium equation of state (SJEOS).100,101 All lattice constants (a0, c0) and

cohesive energy values (Ecoh) were obtained from the individual cell and geometry optimised

structure.

Our parameterised potential function can correctly reproduce the stability sequence of the

respective sodium and lithium bulk phases. Moreover, we found excellent agreement between

the structural and energetic data from DFT-PBE and ReaxFF. For the respective bulk

moduli, minor deviations of a few GPa could be observed; however, their fluctuations are

within the error range of the DFT.86 Although the low-temperature phase hr9 was not

included in the training set, the crystal structure is correctly reproduced by ReaxFF. This

indicates a good transferability of the developed parameter set.

Surface properties – In order to enable a thermodynamically accurate description of crys-

tal growth phenomena, the stabilities of the individual facets have to be predicted properly.

Hence, we considered the surface energy of the low-index surfaces (100), (110), and (111)

in the force field parameter training to ensure accurate description through the potential

function. The surface energies of additional unreconstructed Miller-index surfaces were com-

puted to demonstrate the general applicability of the proposed parameter set to Na and Li

surface structures. In this context, we defined the surface energy γ as the excess surface free

energy per unit area following

γ =
Eslab −N · Ebulk

2 · A
, (44)

where Eslab is the total energy of the slab, Ebulk is the bulk energy per atom, A is the

surface area, and N is the number of atoms per supercell.102 The calculated energy values

of the low-index surfaces for sodium and lithium are given in Table 3.

Our parameterised potential function is capable of determining the stability sequence of

the low-index surfaces for both metals correctly. While for metallic lithium, all values are

within the standard deviation of the DFT data, the surface energies for sodium are slightly
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Table 3: Theoretical (ReaxFF, DFT-PBE) and experimental surface energies for different
surfaces of sodium and lithium. The calculated standard deviation86 of the respective surface
is given in parentheses. Experimental values are from Ref.103 and.104 Surface energies and
standard deviations of the respective low-index surfaces (i.e. (100), (110), and (111)) were
taken from Ref.85 and.86 All values are reported in J m−2.

Sodium Lithium
ReaxFF DFT-PBE Expt. ReaxFF DFT-PBE Expt.

γ100 0.178 0.247 (0.043) - 0.484 0.473 (0.076) -
γ110 0.174 0.246 (0.039) 0.260, 0.261 0.492 0.499 (0.075) 0.522, 0.525
γ111 0.204 0.271 (0.043) - 0.564 0.542 (0.080) -

γ210 0.183 0.250 (0.045) - 0.509 0.514 (0.077) -
γ211 0.191 0.257 (0.042) - 0.540 0.555 (0.079) -
γ221 0.198 0.259 (0.040) - 0.554 0.545 (0.076) -

γ310 0.184 0.249 (0.044) - 0.507 0.517 (0.077) -
γ311 0.191 0.267 (0.047) - 0.526 0.537 (0.079) -
γ320 0.181 0.248 (0.042) - 0.506 0.511 (0.076) -
γ321 0.190 0.250 (0.041) - 0.537 0.545 (0.076) -
γ322 0.200 0.264 (0.043) - 0.556 0.551 (0.080) -
γ331 0.193 0.258 (0.040) - 0.537 0.537 (0.075) -
γ332 0.201 0.268 (0.044) - 0.553 0.538 (0.079) -

downshifted by approximately 0.06 J m−2. Nevertheless, the obtained data for both metal

systems are internally consistent. Evidently, the developed force field can be applied to

a wide range of metallic sodium and lithium surfaces. For both metals, the stabilities of

the stepped surface structures are well reproduced and emphasise the transferability of the

parameter set.

Adsorption properties – Additionally to the bulk and surface structures, the respective

adsorption energy of the atomic species on the different adsorption sites of the low-index

surfaces was used to optimise the Li-Li and Na-Na interactions. We also included the en-

ergy differences between the individual positions to reproduce the surface’s thermodynamics

correctly. The adsorption energy per atom Ead was calculated according to

Ead = Etot − (Eslab + Eatom) , (45)
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where Etot is the total energy of the interacting system, Eslab is the total energy of the

adsorbate-free surface slab, and Eatom is the energy of the free-atom reference. Table 4

summarises the calculated energy values of ReaxFF and DFT-PBE.

Table 4: Calculated adsorption energies (ReaxFF, DFT-PBE) of the atomic species on the
(6×6) (100), (4×6) (110) and (4×4) (111) surfaces of Na and Li. The reported DFT values
were taken from our previous work.85,86 For the calculated DFT-PBE values, the respective
standard deviation calculated with BEEF-vdW92 is given in parentheses. All values are
reported in eV atom−1.

Sodium Lithium
Adsorption side ReaxFF DFT-PBE ReaxFF DFT-PBE

(100)
bridge -0.87 -0.81 (0.26) -1.22 -1.23 (0.15)
hollow -0.98 -0.90 (0.26) -1.31 -1.27 (0.15)
ontop -0.63 -0.59 (0.23) -1.10 -1.07 (0.13)

(110)

hollow -0.92 -0.81 (0.27) -1.31 -1.34 (0.14)
long-bridge -0.93 -0.82 (0.25) -1.32 -1.35 (0.13)

short-bridge -0.90 -0.79 (0.24) -1.30 -1.35 (0.13)
ontop -0.87 -0.78 (0.25) -1.37 -1.39 (0.14)

(111)

bridge -0.92 -0.88 (0.26) -1.39 -1.34 (0.15)
fcc -1.10 -1.11 (0.25) -1.65 -1.61 (0.16)

hcp -0.94 -0.84 (0.26) -1.19 -1.22 (0.15)
ontop -0.61 -0.51 (0.26) -0.97 -0.90 (0.12)

Our parameterised potential function can reproduce the thermodynamic stability se-

quence of the adsorption sites on the respective surfaces for both metal systems. We also

found an excellent agreement between the absolute adsorption energies generated with the

optimised reactive force field and the DFT-PBE target values. The deviations between the

pairs of values are well within the range of the computed standard deviation from DFT. Note

that the adsorption properties of the bridge and ontop positions on Na(111) and Li(111) were

correctly determined by ReaxFF without being included explicitly in the training routine.

Diffusion properties – We introduced selected self-diffusion pathways into the training

routine to reflect the surface kinetics. For this purpose, characteristic processes along ter-

races, steps and kink structures on Na(100) and Li(100) were selected, and their respective

diffusion barriers evaluated. Also, the symmetry of the images in the reaction profile of sym-

34



metrical processes was linked to the error function to reflect possible noise in the potential

energy surface in the error value.

In this section, the self-diffusion processes on the low-index surfaces are showcased as an ex-

ample. It should be noted that only the hopping and exchange processes on the (100) facets

were included in the respective force field training. All other reaction pathways served to

validate the quality and reliability of the obtained force field parameter set. An overview of

the respective pathways can be found in Fig. 3. The respective ReaxFF activation energies

and their DFT-PBE target values are summarised in Table 5.

Ex.

h2

h1 h0

(a) (100)

lb2 lb0

lb1

(b) Na(110)

ot2 ot0

ot1

(c) Li(110)

Ex.
hcp1

fcc0

fcc1

(d) (111)

Figure 3: Schematic representation of the studied self-diffusion processes on (a) Na(100) and
Li(100), (b) Na(110), (c) Li(110), and (d) Na(111) and Li(111). The most stable adsorption
site of the respective facet was set as the initial state, i.e. hollow (h), longbridge (lb), ontop
(ot) and fcc. Here, a filled circle highlights the starting position, and a framed circle indicates
possible end positions of the diffusion pathways. Atoms participating in the exchange process
are marked with an Ex. label. The calculated forward and reversed activation energies are
given in Table 5.

The obtained ReaxFF activation energies for the hopping processes (h0↔h1, h0↔h2) on

Na(100) and Li(100) are marginally elevated compared to the DFT-PBE values but within

the range of the calculated standard deviations. It was further possible to sufficiently describe

the exchange process h0↔h2 (Ex.) for Li, while for sodium, the process was overestimated by

70 meV. Increasing the weight of the process during the force field training led to a reduction

of the barrier, but the overall description of Na got degraded. Applying the force field to

the (110) surfaces of both metals, ReaxFF could reproduce the reverse stability order of

the adsorption sites. The obtained activation energies for the respective diffusion pathways
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Table 5: Calculated terrace self-diffusion barriers of sodium and lithium on its low-index
surfaces by ReaxFF and DFT-PBE. For the calculated DFT-PBE values, the respective
standard deviation calculated with BEEF-vdW92 is given in parentheses. All forward (for)
and reversed (rev) activation energies Ea are reported in eV.

ReaxFF DFT-PBE
(hkl) Pathway Efor

a Erev
a Efor

a Erev
a

Sodium

(100)
h0↔h1 0.12 0.12 0.09 (0.03) 0.09 (0.03)
h0↔h2 0.35 0.35 0.31 (0.09) 0.31 (0.09)
h0↔h2 (Ex.) 0.13 0.13 0.06 (0.03) 0.06 (0.03)

(110)
lb0↔lb1 0.04 0.04 0.04 (0.07) 0.04 (0.07)
lb0↔lb2 0.06 0.06 0.03 (0.04) 0.03 (0.04)

(111)
fcc0↔fcc1 (Ex.) 0.10 0.10 0.09 (0.04) 0.09 (0.04)
fcc0↔hcp1 0.20 0.03 0.27 (0.04) 0.00 (0.02)
fcc1↔hcp1 (Ex.) 0.30 0.13 0.29 (0.05) 0.03 (0.05)

Lithium

(100)
h0↔h1 0.09 0.09 0.04 (0.04) 0.04 (0.04)
h0↔h2 0.21 0.21 0.20 (0.07) 0.20 (0.07)
h0↔h2 (Ex.) 0.14 0.14 0.11 (0.03) 0.11 (0.03)

(110)
ot0↔ot1 0.07 0.07 0.05 (0.03) 0.05 (0.03)
ot0↔ot2 0.05 0.05 0.05 (0.02) 0.05 (0.02)

(111)
fcc0↔fcc1 (Ex.) 0.09 0.09 0.13 (0.02) 0.13 (0.02)
fcc0↔hcp1 0.46 0.00 0.39 (0.07) 0.00 (—–)
fcc1↔hcp1 (Ex.) 0.46 0.00 0.39 (0.07) 0.00 (—–)

yielded an excellent agreement between ReaxFF and DFT-PBE. On Na(111) and Li(111),

the exchange process fcc0↔fcc1 (Ex.) was identified as the dominant diffusion mechanism.

Our parameterised potential function correctly reproduces the priority order of the processes

in both systems with the obtained parameter set. Apart from the preferred exchange process,

the possible pathways on Li(111) from fcc to hcp are described within the error margin of

DFT. For sodium, the forward activation barrier of fcc0↔hcp1 is slightly underestimated.

In contrast, the reverse diffusion barrier of the related exchange process (fcc1↔hcp1 (Ex.))

was found to be 100 meV above the DFT-PBE target value.

6.2 Training and validation of Li-Na interaction

Alkali metal alloy anodes are considered possible candidates for the next-generation battery

system beyond Li-ion batteries. Unlike bare alkali metal electrodes, the formation of den-
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drites is prevented due to the electrostatic shield mechanism.105,106 In a first study, Zhang et

al. presented a dendrite-free metal-oxygen battery featuring a Li-Na alloy anode.107 How-

ever, the electrochemistry of the alloy anode is still poorly understood and further studies

in this area are required.108

For future studies on Li-Na alloys, we developed a parameter set for the description of Li-Na

interactions in addition to the self-interactions of Na and Li. Analogous to metallic lithium

and sodium, the bulk and surface properties of various Li-Na structures were investigated

using DFT-PBE to generate a training set for the force field optimisation.

Bulk properties – The phase diagram for Li-Na systems shows a large immiscibility in

the two metals’ liquid and solid-state at standard conditions.109 Instead, a eutectic alloy is

formed where both alloy components maintain their crystal structures, and the alloy behaves

neither as a solid solution nor as an intermetallic particle.107 Hence, we generated different

theoretical Li-Na alloy bulk phases with different compositions for the force field training of

the Li-Na interaction to include a broad range of different binding structures. Apart from

the lattice constants and angles, the bulk modulus of the respective phase was calculated by

compressing and expanding the lattice. Further, the energy of formation per formula unit

∆fE referenced to the bcc bulk phases of lithium and sodium was determined by

∆fE = ELixNay − x · Ebulk
Li − y · Ebulk

Na , (46)

where ELixNay is the total binding energy of the LixNay alloy phase, and Ebulk
Li , Ebulk

Na are

the cohesive energy of the Li and Na bcc bulk phase, respectively. Table 6 summarises the

calculated structural and physical constants.

Our parameterised potential function correctly reproduces the lattice constants and an-

gles of the respective phases. While the determined cell parameters of LiNa (P 6̄m2) and

Li3Na (Cmcm) match the DFT-PBE target values perfectly, we found a maximum deviation

of 0.04 Å for the remaining bulk structures. As expected, all studied Li-Na alloy bulk struc-

tures yielded positive formation energies, indicating a thermodynamic instability relative to
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Table 6: Calculated structural and physical constants for various bulk Li-Na alloy phases
obtained from ReaxFF and DFT-PBE. The determined standard deviations obtained from
BEEF-vdW92 calculations are given in brackets. Lattice constants a0, b0, c0 are given in Å,
lattice angles α0, β0, γ0 are given in °, energies of formation ∆fE are given in eV, and bulk
moduli B0 are given in GPa. The energy of formation is reported per formula unit and is
referenced to the bcc bulk phases of lithium and sodium (see Table 2).

Space group ReaxFF DFT-PBE

LiNa Pm3̄m

a0, b0, c0 3.82, 3.82, 3.82 3.85, 3.85, 3.85
α0, β0, γ0 90, 90, 90 90, 90, 90

∆fE 0.10 0.11 (0.02)
B0 11.5 10.2

LiNa P 6̄m2

a0, b0, c0 3.46, 3.46, 5.51 3.46, 3.46, 5.51
α0, β0, γ0 90, 90, 120 90, 90, 120

∆fE 0.13 0.11 (0.03)
B0 9.1 10.0

LiNa3 Pm3̄m

a0, b0, c0 5.12, 5.12, 5.12 5.08, 5.08, 5.08
α0, β0, γ0 90, 90, 90 90, 90, 90

∆fE 0.20 0.15 (0.03)
B0 9.2 8.9

Li3Na Cmcm

a0, b0, c0 6.50, 6.50, 5.34 6.50, 6.50, 5.34
α0, β0, γ0 90, 90, 120 90, 90, 120

∆fE 0.18 0.16 (0.03)
B0 11.4 11.6

Li3Na I4/mmm

a0, b0, c0 4.58, 4.58, 4.58 4.60, 4.60, 4.60
α0, β0, γ0 90, 90, 90 90, 90, 90

∆fE 0.18 0.18 (0.03)
B0 13.3 11.7

their pure phases. Here, the differences in the ∆fE values between ReaxFF and DFT-PBE

are within the range of the DFT standard deviation, except for LiNa3 which shows a signif-

icant discrepancy of 0.05 eV. The equation of state of the respective Li-Na alloy phases was

also included in the reactive force field training. As shown by the resulting bulk moduli, the

developed reactive force field can accurately reproduce the lattice expansion and compres-

sion. This allows an accurate description of phase transitions in reactive molecular dynamics

simulations.

Diffusion properties – For further evaluation of the Li-Na parameter set, the diffusion

of a single Na adatom on perfect and imperfect Li(100) surfaces was investigated. This
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allows us to validate the description of both thermodynamically and kinetically controlled

processes via the energy difference in the initial and final states and the computed activation

energies, respectively. A schematic representation of the explored diffusion pathways is given

in Fig. 4. The respective reversed and forward activation energies obtained from ReaxFF

and DFT-PBE are listed in Table 7.
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T1 T0

(a) Terrace
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S0 S1

(b) Step-edge

Ex.
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(c) Kink
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(d) Inner-corner

OC1

OC4

OC2

OC3 OC0
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(e) Outer-corner
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Ex.
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Figure 4: Schematic representation of the studied diffusion processes of a single Na adatom
on Li(100). A filled circle highlights the initial state, and a framed circle indicates possible
final states of the diffusion pathways. Atoms participating in exchange processes are marked
with an ”Ex.” label. The calculated forward and reversed activation energies are given in
Table 7.

The terrace (T) diffusion barriers are in excellent agreement between ReaxFF and DFT-

PBE. We found the hopping process T0↔T1 with an activation energy of 0.05 eV (ReaxFF:

0.08 eV) to be the preferred diffusion pathway on the flat terrace structure. As expected,

incorporating a Na atom into the Li(100) surface is highly unfavourable. Further, the bond

of a single Na adatom at the preferred hollow side is weakened by 0.25 eV (ReaxFF: 0.20 eV)
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Table 7: Calculated terrace diffusion barriers of a single Na adatom on Li(100) obtained
by ReaxFF and DFT-PBE. All forward (for) and reversed (rev) activation energies Ea are
reported in eV.

ReaxFF DFT-PBE
System Pathway Efor

a Erev
a Efor

a Erev
a

Terrace
T0↔T1 0.08 0.08 0.05 0.05
T0↔T2 0.13 0.13 0.13 0.13
T0↔T2 (Ex.) 0.25 0.12 0.26 0.09

Step-edge
S0↔S1 0.06 0.06 0.06 0.06
S0↔S2 0.17 0.06 0.18 0.02

Kink
K0↔K1 0.12 0.05 0.14 0.04
K1↔K3 0.18 0.07 0.22 0.04
K0↔K4 (Ex.) 0.33 0.06 0.37 0.04

Inner-corner
IC0↔IC1 0.14 0.04 0.16 0.03
IC1↔IC2 0.17 0.07 0.21 0.03

Outer-corner

OC0↔OC1 0.13 0.03 0.17 0.02
OC0↔OC2 0.16 0.06 0.17 0.02
OC0↔OC3 0.04 0.06 0.03 0.06
OC0↔OC4 (Ex.) 0.25 0.07 0.25 0.06

ESB
ESB0↔ESB1 0.28 0.15 0.32 0.16
ESB0↔ESB1 (Ex.) 0.38 0.11 0.42 0.17

compared to the adsorption of a Li atom on Li(100). The diffusion barrier for the migration

via the ontop position (T0↔T2) into the adjacent hollow side is slightly reduced relative to

the identical self-diffusion process.

For the step-edge (S) structures, the developed reactive force field can adequately recreate the

different diffusion processes. Here, hardly any activation barrier was found for the diffusing

Na adatom along the step-edge (S0↔S1). Its activation energy of 0.06 eV (ReaxFF: 0.06 eV)

has the same order of magnitude as the favoured terrace hopping mechanism T0↔T1. Also,

the attachment process S2→S0 towards the step-edge is highly preferred over its inverse

counterpart S0→S2. While an energy barrier of 0.18 eV (ReaxFF: 0.17 eV) hinders the de-

tachment of the Na atom, the inverse attachment process is almost barrier-free (DFT-PBE:

Ea= 0.02 eV, ReaxFF: Ea= 0.06 eV).
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Subsequently, we analysed surface structures featuring corners and kinks, i.e. kink-sites (K),

inner-corners (IC), outer-corners (OC). For these diffusion pathways, the determined ReaxFF

activation energies show only marginal deviations of less than 0.05 eV versus the DFT-PBE

target values. The perpendicular detachment of a Na adatom onto the flat terrace (K1→K3,

IC1→IC2, OC0→OC2) exhibited a diffusion barrier of 0.17−0.22 eV (ReaxFF: 0.16−0.18 eV)

in all three systems and is highly unfavourable to their inverse processes (K3→K1, IC2→IC1,

OC2→OC0). Increasing the number of immediate neighbours leads to a thermodynamically

stabilised state. Here, the incorporation of the Na atom into inner-corners and kink-sites

(IC1→IC0, K1→K0) is hardly hindered by activation barriers of less than 0.05 eV (ReaxFF:

0.06 eV). At outer corners, the migration along the step-edge (OC0→OC3) is favoured to

the vertical detachment process OC0→OC2 and the atom’s translation around the corner

(OC0→OC4 and OC0→OC4 (Ex.)). Unlike Li self-diffusion, the barrier for shifting atoms

around the corner via the exchange mechanism OC0→OC4 (Ex.) is more than twice as high

(DFT: 0.25 eV vs 0.11 eV, ReaxFF: 0.25 eV vs 0.14 eV) due to the extensive immiscibility of

both metals.

Besides the two-dimensional intralayer mass transport, we have also studied the interlayer

mass transport across step-edges. An additional energy barrier EES, also known as the

Ehrlich-Schwöbel barrier (ESB), must be exceeded while crossing the step-edge. The addi-

tional energy contribution results from the under-coordination of the diffusing species during

the step-down migration. Here, the step-down diffusion via atom hopping (ESB0↔ESB1) and

the push-out mechanism (ESB0↔ESB1 (Ex.)) were examined. Our parameterised potential

function is capable of correctly reproducing the energetic sequence of the activation energies.

Only minor differences of up to 0.06 eV have been observed between the computed values

from ReaxFF and DFT-PBE. Our study showed that the hopping process ESB0→ESB1 is

preferred to the incorporation of the Na atom into the step-edge via ESB0→ESB1 (Ex.). Due

to the higher atomic coordinates, the initial state ESB0 is thermodynamically more stable

than the final state ESB1 on the upper terrasse.
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6.3 Grand Canonical Monte Carlo

The GCMC approach110,111 is a stochastic method for studying the thermodynamic equi-

librium structures at a given chemical potential µ. A series of Monte Carlo trial moves are

carried out by the GCMC algorithm and accepted or rejected based on the minimum energy

of the trial geometry. Each trial movement entails either the addition (insert), removal (re-

move) or displacement (move) of a particle. The Boltzmann probabilities P for accepting

the respective MC steps are calculated by

P accept
insert = min

[
1,

Vacc
Λ3(N + 1)

exp

(
−Enew − Eold − µres

kBT

)]
, (47)

P accept
remove = min

[
1,
NΛ3

Vacc
exp

(
−Enew − Eold + µres

kBT

)]
, (48)

P accept
move = min

[
1, exp

(
−Enew − Eold

kBT

)]
, (49)

where Λ is the thermal de Broglie wavelength of the exchanged particle, N is the number

of the system’s exchangeable particles before the MC move, Enew − Eold is the total energy

difference before (old) and after (new) the MC move, and µres is the chemical potential of

the particle reservoir.110 From the difference between the total volume V and the occupied

volume Vocc, the accessible volume Vacc is determined following

Vacc = V − Vocc = V −N 4

3
πr3 , (50)

where r is the atomic radius of the given species. The Monte Carlo (MC) algorithm

accepts steps resulting in decreased system energy and moves that increase the energy with

a certain probability. All steps are repeated in an iterative procedure until an appropriate

termination criterion is met.
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6.3.1 Li and Na nanoparticles

The thermodynamically driven surface growth on Li and Na was examined in the framework

of a coupled ReaxFF/GCMC approach. To determine the minimum energy of the respec-

tive structures, we adopted the developed and validated ReaxFF force field potential for

Li and Na. Different nanoparticle shapes (∼1000 atoms) were used as an initial structure

for the GCMC simulation to consider the influence of the various crystal facets and edges.

The equilibrium shape of the particles was generated from a potential-dependent Wulff con-

struction. Particle shapes were generated for reductive conditions (E = −1.50 V/Li and

E = −1.00 V/Na), neutral conditions (E0
Li+/Li = ±0.0 V/Li and E0

Na+/Na = ±0.00 V/Na),

and oxidative conditions (EPZC
Li = +1.53 V/Li and EPZC

Na = +0.94 V/Na). We derived the

required surface energy values for a given electrode potential E from Lippmann’s electro-

capillary curves112 following

γhkl(E) =
−Cs

hkl

2

(
E − EPZC

hkl

)2
+ γPZChkl , (51)

where Cs
hkl is the surface capacitance, EPZC

hkl is the potential of zero charge (PZC), and

γPZChkl is the surface tension at zero-charge of a (hkl) surface. The needed quantities can be

obtained from potential-dependent grand canonical DFT calculations and were adopted from

Hagopian et al.113 An overview of the used data set and the obtained nanoparticle shapes

are given in Table 8 and Fig. 5, respectively.

The equilibrium shape of the zero-charged Na-particle (EPZC
Na ) is composed of eight sur-

faces, i.e. {100} (14.5 %), {110} (45.9 %), {210} (9.8 %), {310} (1.8 %), {311} (0.5 %), {320}

(8.2 %), {321} (18.8 %), and {332} (0.5 %). Similarly, the Li-particle at the potential of zero-

charge (EPZC
Li ) is formed by {100} (21.7 %), {110} (14.8 %), {111} (3.0 %), {210} (19.9 %),

{221} (16.1 %), {311} (5.0 %), {320} (18.7 %), and {332} (0.8 %) planes. At the redox-pair

potential of Na (E0
Na+/Na) and Li (E0

Li+/Li), the resulting nanoparticle is restricted to {100}

(Na: 13.3 %, Li: 25.2 %) and {110} (Na: 86.7 %, Li: 74.8 %) facets. For both metals, a
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Table 8: Theoretical surface energy values γPZChkl , potential of zero charge (PZC) values EPZC
hkl ,

and surface capacitance values Cs
hkl for different (hkl) surfaces of sodium and lithium. All

values have been adapted from Hagopian et al.113 The values for EPZC
hkl , γPZChkl , and Cs

hkl are
given in V per Na and Li, J m−2, and µF cm−2, respectively.

Sodium Lithium
(hkl) EPZC

hkl γPZChkl Cs
hkl EPZC

hkl γPZChkl Cs
hkl

(100) 0.87 0.220 7.56 1.53 0.466 7.50
(110) 1.03 0.211 7.46 1.67 0.492 8.46
(111) 0.78 0.250 7.79 1.24 0.526 7.46

(210) 0.91 0.225 7.24 1.47 0.494 7.66
(211) 0.91 0.238 7.37 1.53 0.535 7.62
(221) 0.88 0.241 7.27 1.25 0.520 7.72

(310) 0.88 0.229 7.53 1.50 0.499 7.34
(311) 0.86 0.238 7.21 1.43 0.520 6.73
(320) 0.95 0.221 7.02 1.49 0.493 7.14
(321) 0.93 0.231 7.53 1.47 0.529 7.91
(322) 0.86 0.244 7.18 1.35 0.536 6.79
(331) 0.91 0.234 7.02 1.26 0.520 7.14
(332) 0.83 0.244 7.53 1.26 0.526 7.40

rhombic dodecahedron consisting of {110} surfaces is found at reductive conditions.

The individual particles were used as an initial structure for the ReaxFF/GCMC calculation.

For the investigation of the surface growth, a chemical potential equivalent to the cohesive

energy of the respective metal at 300 K was assumed. A radial distribution function (RDF)

is used to describe the distance-dependent distribution of the atomic species on the par-

ticle. For this purpose, the distances between the system’s atom pairs are computed and

represented as a volume-normalised density. Fig. 6 shows the radial distribution functions

obtained for the different Na- and Li-particles.

A comparable peak distribution can be found for the radial distribution functions of the

initial zero-charged nanoparticles and the equilibrium structure at the respective redox pair

potential. Both systems show a similar shape and are dominated by {100} and {110} planes.

Deviations can be observed for the rhombic dodecahedron, which is entirely composed of

{110} facets.
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Sodium nanoparticles

EPZC
Na = +0.94 V/Na E0

Na+/Na = ±0.00 V/Na E = −1.00 V/Na

100 110 210 310 311 320 321 332

Lithium nanoparticles

EPZC
Li = +1.53 V/Li E0

Li+/Li = ±0.0 V/Li E = −1.50 V/Li

100 110 111 210 221 311 320 332

Figure 5: Schematic representation of the different Li and Na nanoparticles. The particles
were generated using a potential-dependent Wulff construction for different electrode poten-
tials, i.e. E = −1.50 V/Li and E = −1.00 V/Na (reductive condition), E0

Li/Li+ = ±0.0 V/Li

and E0
Na/Na+ = ±0.00 V/Na, and EPZC

Li = +1.53 V/Li and EPZC
Na = +0.94 V/Na (oxidative

conditions). The potential-dependent surface energies for the Wulff approach were derived
from the grand-canonical DFT calculations of Hagopian et al.113

In the GCMC simulation, metal atoms were successively introduced into the respective sys-

tems. Thereby, a homogeneous surface growth on the individual nanoparticles was observed.

For both metals, the formation of {100} surface facets on the rhombic dodecahedron particles

occurs. After the deposition of 4080 atoms on the respective particles of sodium and lithium,

we obtained nearly identical RDFs for the studied equilibrium structures. The sharp peaks
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Figure 6: Radial distribution functions (RDFs) for the different Li and Na nanoparticles of
the initial GCMC structures (∼1000 atoms) and after the deposition of ∼4080 metal atoms.
The entries in the legend refer to the different particle shapes, as shown in Fig. 5.
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indicate a long-range ordering of the atoms and thus a crystalline structure of the particle.

In the outer region, some diffuse peaks are present, which can be explained by the stochastic

nature of the GCMC approach.

6.4 Kinetic Monte Carlo

Finally, the initial growth processes on Li(100) and Na(100) are investigated utilising kMC

simulations within the developed multi-scale model. kMC is a stochastic method for large-

scale simulations to describe the evolution of a system over time. The system’s dynamics are

described by hops on the potential energy surface from one local minimum to a neighbouring

one. In this process, the previously developed and validated reactive force field potential is

used to generate the required rate catalogue. The latter provides the activation energies Ea

and pre-exponential factors k0 to determine the reaction rates of viable diffusion processes.

For a diffusion process i, its reaction rate ki is determined following

ki = k0,i exp

(
−Ea,i

kBT

)
, (52)

where T is the temperature, and kB is the Boltzmann constant. The pre-exponential

factor k0,i is estimated based on the harmonic transition state theory from the vibration

modes at the initial state (IS) and transition state (IS) of process i. This assumption is only

valid as long as the IS does not differ much from the TS. Due to the substantial entropy

reduction at the deposition of a species from the gas phase onto a metal surface, the reaction

rate for non-activated adsorption processes kad is more accurately calculated by

kadn,B(T, p) = S̃n,B(T )
pnAuc√

2πmnkBT
, (53)

where S̃n,B(T ) is the temperature-dependent sticking coefficient of site B, pi is the partial

pressure of species n of mass m, and Auc is the surface unit cell area.114,115 The rate constant

kdesn for the reverse desorption process of a species n from the surface becomes
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kdesn =
kBT

h
exp

(
−Ea,n

kBT

)
, (54)

where h is the Planck constant. In each iteration of the kMC simulation, the calculated

reaction rates ki for the respective diffusion, adsorption and desorption events are summed

up to a total reaction rate ktot, as follows:

ktot =
N∑
i=1

ki . (55)

Based on the random numbers ρ1 ∈ [0, 1], the process q, which meets the condition∑q−1
i=1 ki ≥ ρ1ktot ≥

∑q
i=1 ki, is then extracted and executed. The average escape time of the

selected process is computed based on the random number ρ2 ∈ (0, 1] and the total reaction

rate ktot to propagate the system time t following

t→ t− 1

ktot
ln (ρ2) . (56)

Subsequently, all possible reaction events for the new system configuration are identified

to repeat steps (52) - (56) in an iterative manner until a termination criterion is met.

6.4.1 Diffusion events and lattice construction

Our previous first principles studies85,86 showed that both hopping and exchange processes

need to be considered for a comprehensive description of the diffusion events for Li and

Na surface systems. The analysis of the dimer interaction energies showed an attractive

interaction of the nearest neighbours (NN) with the diffusing adatom but a negligible impact

of the next-nearest neighbours. Here, we have adopted a lattice gas approach to describe

the diffusion events within our in-house kMC implementation. Each grid point is defined by

the translation vector T, following

T = m · x1 + n · x2 , m, n ∈ N+
0 , (57)
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where x1 = x(a0, 0) and x2 = x(0, a0). In the description of the diffusion processes, the NN

are taken into account. The resulting mesh structures for the respective diffusion mechanisms

are given in Fig. 7.
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Figure 7: Schematic representation of the chosen kinetic Monte Carlo lattice for (a) hopping
and (b) exchange processes on Li(100) and Na(100). The initial state (IS) and final state
(FS) highlight the initial and final position of the diffusion pathway, respectively. Atoms
participating in exchange processes are marked with an Ex. label. The neighbour positions
1-10 (hopping) and 1-14 (exchange) can either be empty or occupied and define the surface
structure of the diffusion process.

Nudged Elastic Band calculations were carried out using the developed reactive force

field potential to determine the respective activation energies. From the vibration modes νi

of the initial and transition state, the pre-exponential factor k0 was obtained following

k0 =

3N∏
i

νISi

3N−1∏
i

νTS
i

. (58)

All ReaxFF calculations were performed on an eight-layer 10x10 (100) slab, where the two

lowermost layers have been kept in their bulk structure. The entire outgoing row of atoms

was occupied for each occupied surrounding site when generating the surface structure. In
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total, 210 = 1024 hopping and 214 = 16384 exchange processes are included in our kMC

simulation.

6.4.2 Nucleation and Aggregation

First, adatoms were randomly distributed on the 100×100 (100) surface at different surface

coverages (i.e. 0.5 ML, 0.25 ML, 0.125 ML, and 0.0625 ML) to study nucleation and aggrega-

tion processes on metallic sodium and lithium. All systems were evaluated at 100 K, 200 K,

300 K, and 400 K, respectively. Snapshots from the kMC simulation of the initial growth

and aggregation processes for both metals are given in Fig. 8.

Lithium

(a) (b) (c) (d) (e)

Sodium

(f) (g) (h) (i) (j)

Figure 8: Snapshots of the initial nucleation and aggregation processes on 100×100 Li(100)
(red, (a)-(e)) and 100×100 Na(100) (yellow, (f)-(j)) at 200 K and a surface coverage of
0.125 ML. The initial configuration was generated by a random distribution of adatoms on
the respective surface. Hopping and exchange processes were considered for both systems,
and the number of adatoms was kept fixed during the simulation. (a) Initial structure, (b)
after 2.0× 10−7 s, (c) 1.7× 10−4 s, (d) 3.1 s, (e) 2.5× 101 s, (f) initial structure, (g) after
4.1× 10−7 s, (h) 3.8× 10−3 s, (i) 3.8× 10−2 s, (j) 1.8 s.

Initially, nucleation seeds are formed on the surface of both metals after a few nanosec-

onds. These nuclei gradually form small islands and keep growing continuously. Aggregation
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of islands is observed until only one individual round-shaped island remains on the surface

after a few seconds. The nucleation processes occur within a few nanoseconds at all investi-

gated temperatures due to the low terraced diffusion barrier; however, the growth rate of the

islands is highly temperature-dependent. While terrace self-diffusion and migration along

step-edges are almost barrier-free on both surfaces,85,86 the detachment barrier of an adatom

perpendicular to the step is hindered by increased activation energies. Any temperature

increase improves the probability of processes with higher diffusion barriers.

6.4.3 Diffusion coefficients

The mean square displacement (MSD) of the respective adatoms was tracked throughout the

simulations to characterise the diffusion and growth processes. Taking the obtained MSD,

the system’s diffusion constant D can then be calculated as

D =
〈MSD(t)−MSD0〉

2dt
, (59)

where t is the simulation time, and d is the lattice dimension (d = 2 in this case). The

diffusion coefficient measures the mobility of the particles in a system and is an essential

parameter for simulations on larger scales. An overview of the calculated diffusion constants

and the average mean square displacement for different surface coverages is given in Table 9

and Fig. 9, respectively.

As expected, low temperatures and increased surface coverage reduce the adatom mobil-

ity on the surfaces. At 100 K, migration along step-edges is the primary diffusion process,

accounting for up to 52 % (Li) and 76 % (Na) of all diffusion events. In general, the resulting

diffusion constants for sodium are two orders of magnitude higher than those for lithium.

While the exchange mechanism is almost non-existent for Li at this temperature, about 10 %

of the diffusion events on Na(100) occur via an exchange process. Here, the main events are

migrations of the adatom around outer-corners and kink sites. These differences are also
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Table 9: Calculated average diffusion coefficient for adatoms on Li(100) and Na(100) for
different surface coverages Θ. All values are reported in m2 s−1.

Θ 100 K 200 K 300 K

L
it

h
iu

m

1/2 ML (1.6± 0.8)× 10−21 (4.4± 0.4)× 10−15 (6.5± 2.8)× 10−13

1/2 ML (hop.) (1.7± 0.2)× 10−21 (1.0± 0.3)× 10−15 (2.2± 1.2)× 10−13

1/4 ML (6.8± 1.3)× 10−21 (6.1± 0.2)× 10−15 (2.5± 0.1)× 10−12

1/4 ML (hop.) (6.4± 0.6)× 10−21 (3.7± 0.3)× 10−15 (1.5± 0.0)× 10−12

1/8 ML (1.4± 0.4)× 10−20 (1.0± 0.0)× 10−14 (5.1± 0.2)× 10−12

1/8 ML (hop.) (2.1± 0.4)× 10−20 (8.2± 0.5)× 10−15 (3.8± 0.1)× 10−12

1/16 ML (1.7± 0.8)× 10−20 (1.9± 0.1)× 10−14 (1.1± 0.0)× 10−11

1/16 ML (hop.) (7.0± 2.6)× 10−20 (1.9± 0.1)× 10−14 (8.7± 0.4)× 10−12

S
o
d
iu

m

1/2 ML (8.8± 8.3)× 10−19 (9.3± 2.3)× 10−14 (1.0± 0.1)× 10−11

1/2 ML (hop.) (5.9± 0.7)× 10−19 (1.8± 0.4)× 10−14 (1.9± 0.2)× 10−12

1/4 ML (5.4± 1.3)× 10−19 (2.1± 0.1)× 10−13 (2.8± 0.0)× 10−11

1/4 ML (hop.) (1.3± 0.2)× 10−18 (3.3± 0.4)× 10−14 (4.8± 0.3)× 10−12

1/8 ML (4.6± 2.0)× 10−19 (3.7± 0.1)× 10−13 (6.0± 0.2)× 10−11

1/8 ML (hop.) (1.8± 0.3)× 10−18 (5.2± 0.4)× 10−14 (1.0± 0.0)× 10−11

1/16 ML (3.1± 1.5)× 10−19 (6.9± 0.3)× 10−13 (1.2± 0.1)× 10−10

1/16 ML (hop.) (1.7± 0.3)× 10−18 (9.7± 0.8)× 10−14 (2.2± 0.1)× 10−11

evident in the diffusion constants obtained for simulations with and without an exchange

process (see Table 9). By taking exchange mechanisms into account, higher mobility of the

adatoms can be observed.

At 200 K, the fraction of terrace diffusion rises to 42 % (Na) and 36 % (Li). The higher

temperature facilitates overcoming the kinetic hindrance of detachment processes from in-

dividual adatoms onto the terrace. In this way, individual atoms can be interchanged more

frequently via the terrace between the island structures, leading to accelerated island growth.

Additionally, the share of exchange processes increases up to 10 % and 48 % on Li(100) and

Na(100), respectively. In both metal systems, the exchange mechanism is the preferred pro-

cess for crossing corner structures, enabling the island to reach its equilibrium shape more

swiftly. Smaller surface structures can move across the surface via exchange processes and

aggregate to larger islands. When comparing the diffusion constants of simulations with and

without exchange processes, differences of up to one order of magnitude can be found.

The significance of the exchange mechanism is also evident in Fig. 9. For the same surface
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Figure 9: Averaged mean square displacements of adatoms for different surface coverages
(i.e. 0.5 ML, 0.25 ML, 0.125 ML, and 0.0625 ML) on Li(100) (left) and Na(100) (right) at
300 K. For entries labelled with ”(hop.)”, only hopping processes were considered during the
kMC simulation. In the case of Na(100), the graph of ”1/2 ML” is overlapped by ”1/8 ML
(hop.)”. The corresponding diffusion coefficients are given in Table 9.

coverage at 300 K, the MSD grows significantly faster. Here, according to Eq. (59), the

graph’s slope represents the system’s diffusion coefficient. The impact is even more apparent

for Na than for Li due to the higher proportion of ongoing exchange processes.

7 Conclusions

In this work, we have developed an improved approach to parameterise reactive force fields

for solid-state systems using evolutionary algorithms together with an extended training

routine.

First, different force-based optimisers with constraints, transition state tools, and frequency

analysis were implemented in the stand-alone ReaxFF framework of the Amsterdam Model-
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ing Suite (2018 and later). The introduced methods facilitate the adoption of the obtained

DFT structures and are needed for the extended training routine.

Within the developed KVIK optimisation framework, we provide multiple evolutionary algo-

rithms for the force field optimisation, i.e. PSO, CPSO, DE, CMA-ES, and VD-CMA. In a

benchmark study on mathematical test functions, the performance of the different optimisers

was evaluated and compared with the standard SOPPI procedure. The CPSO proved to be

highly robust and showed superior performance over the standard PSO approach due to an

enhanced diversity of the swarm. While the DE algorithm generally converges reliably and

rather quickly to the global solution, a careful selection of the differential evolution strategy

is needed. The Covariance Matrix Adaptation approaches find a strongly improved result

after only a few optimisation iterations; however, premature convergence has been observed

for highly complex benchmark functions such as Schwefel or Xin-She Yang N.4.

SOPPI proved to be an efficient optimisation approach with fast convergence within only

a few iterations but had a strong tendency to get trapped in a local minimum for multi-

modal functions. Thereby, the optimisation performance was susceptible to the selected step

length. In optimising reactive force fields with the SOPPI approach, a deeper understanding

of the respective parameters and their optimisation range is required. However, it enables

the user to gradually follow and retrace the optimisation process and thus facilitates the

re-optimisation of the parameter set.

In contrast, evolutionary algorithms feature excellent exploration capabilities within the

model parameter space and can be parallelised readily with near-linear scaling. These al-

gorithms demonstrate their robustness in finding good fitting solutions in sampling search

spaces of varying complexity and dimensionality. Also, the concurrent fitting of parameters

provides an enhanced mapping of the existing parameter correlations. The extensive sam-

pling of the model parameter space minimises the risk of getting caught in a local minimum

and limits the influence of the parameter set’s initial guess on the optimisation performance.

Next, we developed an advanced training routine for the optimisation of solid-state systems.
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The system’s respective bulk phases are initially explored using the given parameter set,

and their individual lattice constants, cohesive energies, and bulk moduli are calculated. All

further structures of the training set are adjusted on the fly according to the determined

minimum lattice constant to prevent distortion of the error value through possible lattice

strain effects. Similar to the classical training set, surface and adsorption energies are eval-

uated, and their values are compared to the weighted reference data. Well-selected diffusion

processes on perfect and imperfect surfaces were considered in the training routine to ac-

curately describe the potential energy surface and the surface kinetics through the ReaxFF

potential. The corresponding MEP and activation barriers were obtained from the imple-

mented NEB method. Finally, the vibration modes of the initial, transition and final states

were computed, and the resulting frequencies and pre-exponential factors were evaluated

versus the reference data set.

We then used the developed KVIK optimisation framework to train a reactive force field

potential to describe the Li-Li, Na-Na and Li-Na interactions. The obtained ReaxFF pa-

rameter set can reproduce both systems’ bulk and surface properties almost entirely within

the margin of the calculated DFT standard deviation. We demonstrated that our proposed

optimisation approach enables an efficient and accurate way to train reactive force field po-

tentials in an automated fashion.

Finally, MC simulations were performed to study the initial surface growth phenomena on

metallic Li- and Na surfaces. The thermodynamically driven growth on different Li- and Na-

particles was investigated using a coupled ReaxFF/GCMC approach. Homogeneous surface

growth was observed during the deposition of the respective metallic species on the particle

structures. An analysis of the RDF indicated a crystalline, long-range order of the system’s

atoms.

Subsequently, we have studied the influence of surface kinetics on the metals growth be-

haviour using a ReaxFF/kMC approach. The required activation energies and pre-exponential

factors were computed utilising the developed ReaxFF potential and the implemented tran-
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sition state tools. In the process, the nucleation and aggregation processes on Li(100) and

Na(100) were analysed. By tracking the mean square displacement of the individual adatoms,

we obtained the temperature and surface coverage dependent average diffusion coefficients.

This study further demonstrated the importance of considering the exchange mechanism to

describe growth processes on metallic Na and Li surfaces adequately.
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