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ABSTRACT: Ultrahigh-resolution Fourier transform mass spectrometry (FTMS) has revealed 14 

unprecedented detail of natural complex mixtures such as dissolved organic matter (DOM) on a molecular 15 

formula level, but we lack approaches to access the underlying structural complexity. We here explore the 16 

hypothesis that every DOM precursor is potentially linked with all emerging product ions in FTMS2 17 

experiments. The resulting mass difference (Δm) matrix is deconvoluted to isolate individual precursor Δm 18 

profiles and matched with structural information, which was derived from 42 Δm features from 14 in-house 19 

reference compounds and a global set of 11477 Δm features with assigned structure specificities, using a 20 

dataset of ~18000 unique structures. We show that Δm matching is highly sensitive in predicting potential 21 

precursor identities in terms of molecular and structural composition. Additionally, the approach identified 22 

unresolved precursors and missing elements in molecular formula annotation (P, Cl, F). Our study provides 23 

first results how Δm matching improves structural domains in Van Krevelen space, but simultaneously 24 

demonstrates the wide overlap between the structural domains. We show that this effect is likely driven by 25 

chemodiversity and offers an explanation for the observed ubiquitous presence of molecules in the center 26 



 

of the Van Krevelen space. Our promising first results suggest that Δm matching can unfold the structural 27 

information encrypted in DOM and assess the quality of FTMS-derived molecular formulas of complex 28 

mixtures in general.  29 

Synopsis: We present an approach to deconvolute and explore the structural composition of co-30 

fragmented mixtures of organic molecules in environmental media. 31 

Keywords: Natural organic matter, NOM, DI-ESI-MS/MS, FTMS, Orbitrap, tandem mass spectrometry, 32 

MS/MS, deconvolution  33 
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1. INTRODUCTION 36 

Complex mixtures are key study objects in environmental and industrial applications, but their analysis 37 

remains challenging.1–4 One of the most complex mixtures in natural ecosystems is dissolved organic matter 38 

(DOM).5,6 DOM is a central intermediate of ecosystem metabolism and mirrors molecular imprints of 39 

interactions with its abiotic and biotic environment7–9, which form the basis for processes such as carbon 40 

sequestration and nutrient recycling.10,11 Despite significant advances in ultrahigh-resolution mass 41 

spectrometry (FTMS)2,4 and nuclear magnetic resonance spectroscopy12, scientists still struggle to decode 42 

this information on the molecular level13–17, and novel approaches to identify distinct structures are required 43 

to translate molecular-level information into improved process understanding. 44 

Open and living systems promote the formation of ultra-complex mixtures of thousands to millions of 45 

individual constituents18,19 that mirror large environmental gradients.20–22As a consequence, DOM poses 46 

significant challenges to separation, isolation, and structure elucidation. Direct infusion (DI) FTMS 47 

techniques have become indispensable tools for the molecular-level analysis of DOM as they reveal 48 

unprecedented detail of molecular formulas using the exact mass (MS1 data, m/z) even without prior 49 

separation.23 However, FTMS techniques are selective and do not resolve all structural detail observed at 50 



 

the exact mass in DOM, as the presence of isobars and isomers hinders the identification of particular 51 

structures from these molecular formulas.19,23–25 Additionally, current structural databases cover only a small 52 

fraction of molecular formulas encountered, and typically lead to annotation rates < 5%.18,26,27 53 

One way to obtain structure information on isomers and isobars is through collision-induced dissociation 54 

(CID) in fragmentation experiments (MS2, or multistage MSn).27–29 The relatively wide isolation window (~ 55 

1 Da) of mass filters applied for precursor selection commonly hinders the isolation and subsequent 56 

fragmentation of single exact masses, leading to mixed "chimeric" MS2 spectra of co-fragmented 57 

precursors.30 Even though some authors have achieved isolation of single masses or improved description 58 

of chimeric tandem MS data, most studies have pointed out that fragmentation patterns were rather universal 59 

across DOM samples.18,19,31–35 Most of these studies, however, focused on the major product ion peaks 60 

(fragments), which usually make up only 60 – 70 % of the total product ion abundance, and thus disregard 61 

many low-abundance signals that may be more suitable to detect structural differences.19,31 62 

The major product ions encountered in tandem mass spectra of DOM relate to sequential neutral losses of 63 

common small building blocks, mainly CO2, H2O, or CO units.14,33 A mass difference between a precursor 64 

and a product ion in an MS2 spectrum is herein called "delta mass" and referred to as Δm (plural Δm's). 65 

Many Δm's such as CO2 or H2O are commonly observed and are thus deemed non-indicative for the 66 

identification of structural units.18,28,31,33,36 In contrast, other studies found recurring low m/z product ions 67 

(e.g., at m/z 95, 97, 109, 111, 123, 125, 137, 139, 151, and 153) that were interpreted as a limited set of core 68 

structural units substituted with a set of functional groups, yet in different amounts and configurational types 69 

that would lead to highly diverse mixtures.37–44 From a stochastic standpoint, the occurrence of common 70 

neutral losses may not be surprising; for example, many structures contain hydroxyl groups that could yield 71 

H2O losses, and CO2 could originate from ubiquitous carboxyl groups.45 In contrast, the occurrence of two 72 

molecules sharing a larger substructure would be less probable, and thus less easily detected as a major 73 

peak. Signatures of DOM's structural diversity could thus prevail in the high number of low-abundance 74 

fragments usually detected below m/z 200-300, as opposed to the higher abundance of fragments connected 75 



 

to losses of small substructures such as CO2 or H2O. Given the large number of estimated isomers and 76 

isobars underlying usual DOM data18,19,31,32,39,45–48, we here build upon the hypothesis that every co-77 

fragmented precursor potentially contributes to every emerging product ion signal. We interpret the resulting 78 

chimeric MS2 data as a structural fingerprint that can be deconvoluted to obtain individual precursor Δm 79 

matching profiles. The analysis of Δm's that link precursor and product ions, in contrast to indicative product 80 

ions (fragments) alone, is independent of the masses of the unknown precursors and known reference 81 

compounds in databases of annotated Δm features. Although this approach will sacrifice the identification 82 

of true knowns, it allows for the identification of potential structural analogs via indicative Δm’s and is 83 

suited best when annotation rates are as low as in the case of DOM, i.e., when most compounds are yet 84 

unknown.18,26,27 85 

Despite the unknown identity of most of the molecules present in DOM, its potential sources can be 86 

constrained reasonably well. Plants produce most of the organic matter that sustains heterotrophic food webs 87 

in natural ecosystems. Plant metabolites such as polyphenols and polyaromatic structures thus represent a 88 

major source of DOM. Therefore, an early decomposition phase likely exists when the imprint of 89 

soluble/solubilized plant metabolites is still detectable by MS2 experiments using current FTMS technology. 90 

For example, lignin-related compounds show indicative methoxyl and methyl radical losses18,49,50; 91 

glycosides indicate the loss of a sugar unit51,52and hydrolyzable tannins are expected to lose galloyl units.52 92 

Even related compounds such as flavon-3-ols and flavan-3-ols could potentially be distinguished by their 93 

indicative retro-cyclization products.51,53 Mass differences related to atoms such as N, S, P, Cl, Br, I and F 94 

could also help to identify unknown organic nutrient species or disinfection byproducts, thereby widening 95 

the applicability of the approach.1,54 Lastly, indicative Δm fingerprints could provide constraints to putative 96 

compound group annotations derived from molecular formula data alone (Van Krevelen diagrams), or allow 97 

for a more precise annotation.55–57 98 

We hypothesized that DOM from swamps and topsoil, in close contact to plant inputs and active microbial 99 

communities, would reflect recognizable plant-related source imprints that can be revealed by Orbitrap 100 



 

tandem mass spectrometry. Specifically, we explored links between precursor Δm matching profiles and 101 

precursor characteristics such as nominal mass, mass defect, initial ion abundance, fragmentation sensitivity, 102 

oxygen-to hydrogen ratio (O/C), heteroatom content, and structure suggestions. These properties are in part 103 

predictable from the assigned molecular formula, and thus allow for an evaluation of the approach ("proof-104 

of-concept") while also revealing potential non-assigned molecules of special interest (e.g., P-, Cl-, Br-, I- 105 

and F-containing molecular formulas). Lastly, we hypothesized that indicative Δm features of plant phenols, 106 

e.g., lignin- and tannin-related losses, would match their yet unknown structural analogs in DOM and that 107 

these patterns would reflect commonly applied structural domain distributions.56,58 108 

2. EXPERIMENTAL SECTION 109 

A detailed experimental procedure is provided in the Supplemental Information of this article (Note S-110 

1). In short, we chose a set of 14 aromatic reference compounds as representative plant metabolites in DOM 111 

(Figure S-1, Table S-1) and a forest topsoil pore water isolate59 and Suwannee River Natural Organic 112 

Matter (SRNOM)60 as exemplary DOM samples. All reference and sample solutions were directly infused 113 

into the ESI (electrospray) source of an Orbitrap Elite (Thermo Fisher Scientific, Bremen) at negative 114 

ionization mode (Table S-2) and fragmented by collision-induced dissociation (CID, MS2). We chose four 115 

nominal masses within the average mass range typically observed in terrestrial DOM samples (m/z 200 – 116 

500) for fragmentation (m/z 241, 301, 361, and 417, herein referred to as isolated precursor ion mixtures, 117 

“IPIMs”) as a first set of data to test the approach.61 Soil DOM was analyzed at three normalized collision 118 

energy (NCE) levels (15, 20, and 25%). MS3 spectra of selected key product ions (aglycons of flavonoids 119 

and demethylated dimethoxy-methyl-benzoquinone) were acquired as well at NCE 20 or 25. After 120 

recalibration with known (Table S-3) or predicted product ions (losses of CO2, H2O, etc.), all major product 121 

ions were annotated with a molecular formula in reference compounds (Figure S-2, Table S-4, Table S-5) 122 

and DOM. Formula annotation was conducted with a Matlab routine recently incorporated into an open 123 

FTMS data processing pipeline.62  124 



 

For MS2 data analysis, we generated Δm matrices of every pairwise combination of precursor and 125 

product ions (“Δm fingerprints”). Every value in this matrix is referred to as a Δm feature or simply Δm. We 126 

compared the unknown Δm features in DOM to three lists of known Δm features:  127 

a) 54 Δm features ubiquitously found in DOM (Table S-6),  128 

b) 55 Δm features from the set of 14 reference compounds (Table S-7), and  129 

c) 11477 Δm features from a negative ESI MS2 library with 249916 reference spectra of 17994 unique 130 

molecular structures annotated by SIRIUS63 (list available in the supporting datasets). Reference spectra 131 

were collected from from GNPS, MassBank, MoNA, and NIST.64,65 132 

The detection of a known Δm feature in DOM is herein called “Δm matching”, and detected Δm features 133 

are called Δm matches. Matching was conducted at a mass tolerance of ± 0.0002 Da (2 ppm at 200 Da). The 134 

array of Δm matches of a single precursor is called the Δm matching profile, and all precursor profiles of an 135 

IPIM form the subset of matched Δm’s of the Δm matrix introduced above. The decomposition of the MS2 136 

spectrum into a Δm matrix and therefore, individual Δm matching profiles is what we define as the 137 

deconvolution step in this study. Δm’s of the literature- and reference-compound derived lists showed some 138 

overlap and were largely part of the SIRIUS list as well (see details in SI). The specificity of any Δm feature 139 

in the SIRIUS list was checked by their association to compound classes as defined by ClassyFire.66 The 140 

top 15 significantly associated classes were then obtained for each Δm feature in list c) and included into 141 

analyses using the reference-compound derived list (list b) as well.  142 

We assessed the probability of false positive matches and accounted for molecular formula constraints 143 

(numbers of elements in the formula), ion abundance and measures of fragmentation sensitivity to validate 144 

our approach. The matching data was combined for each NCE level and transformed into a binary format. 145 

We classified Δm matching profiles of DOM precursors and reference compounds by two-way hierarchical 146 

clustering using Ward's method and Euclidean distance, as well as  Principal Components Analysis (PCA) 147 

in PAST (v3.10).67 We visualized numbers of individual Δm matches and Δm cluster matches in Van 148 

Krevelen space to analyze patterns in Δm matching frequency (“structural domains”). We chose the 149 

structural domains reprinted in the 2014 review by Minor et al. for reference, because this represents the 150 



 

general level of detail and type of classes distinguished in recent DOM studies (Figure S-3).58,68–70 In a 151 

separate analysis, lignin-like and N- and S-containing formulas were also classified with a more general 152 

Van Krevelen scheme besides the reference one.71 153 

Finally, we assessed the agreement between structures predicted by Δm matching and those suggested 154 

in natural product structural databases. We combined structure suggestions from different databases, 155 

including Dictionary of Natural Products72, KNApSAcK73, Metacyc74, KEGG75, and HMDB76 as well as 156 

their expanded in-silico annotations based on predicted enzymatic transformations in the MINEs database.77 157 

Although the MINEs database covers 198 generalized chemical reaction rules it may not include all potential 158 

environmental reactions because those are not necessarily only driven by enzymes. The InChi-Key of 159 

structures was used to exclude stereoisomers and classify suggested structures into compound classes by 160 

ClassyFire.66  161 

3. RESULTS AND DISCUSSION 162 

3.1. Tandem MS fragmentation of reference compounds and construction of Δm lists. The 14 163 

aromatic reference compounds (Figures S-1, S-2 and S-3) yielded 42 new Δm features (i.e., not covered in 164 

the list of common Δm’s, Table S-6) but also eight that were described in DOM. These eight Δm features 165 

(namely: H2O, 18.0106; CO, 27.9949; C2H4, 28.0313; C2H2O, 42.0106; CO2, 43.9898; CH2O3, 62.0004; 166 

C2O3, 71.9847; and C3O5, 115.9746) were kept in the list to compare DOM and reference compounds (Table 167 

S-7). Besides precursor formulas #2 (Hydroxy-cinnamic acid, or p-coumaric acid; C9H8O3, 164.0473), #3 168 

(Gallic acid; C7H6O5, 170.0215) and #5 (m-Guaiacol; C7H8O2, 124.0524), which were found among the 42 169 

Δm’s as potential structural equivalents, five Δm’s of potential substructures likely to be found in DOM 170 

were added to the list, namely the ones of precursors #1 (Vanillic acid; C8H8O4, 168.04226), #4 (Creosol, 171 

C8H10O2, 138.0681), #8 (Ellagic acid; C14H6O8, 302.0063) and #10 (Catechin; C15H14O6, 290.0790), and the 172 

neutral aglycon of compounds #12 and #13 (flavonol core of Spiraeoside and Isoquercitin; C15H10O7, 173 

302.0427). More details on reference compound fragmentation are given in the SI (Note S-2). 174 

3.2. Fragmentation behavior of soil DOM. DOM precursors were isolated and fragmented to obtain 175 

Δm data (Figure S-4). To find the best collision energy to fragment DOM, we analyzed soil DOM at three 176 



 

NCE levels (15, 20 and 25). All IPIMs showed similar fragmentation properties (Note S-3, Table S-8). 177 

Highest numbers of product ions were found at the highest NCE (Figure S-5). Product ion spectra did not 178 

indicate abrupt structural changes upon increasing fragmentation energy, showing no separation of 179 

isomers/isobars but a continuous increase in fragmentation across all precursors. Based on the above results, 180 

NCE of 25 was chosen to fragment SRNOM as a second DOM sample for comparison. 181 

 182 

Figure 1. Links between selected DOM precursor properties (upper panels, initial ion abundance at NCE 0; mid panels, 183 
half-life normalized collision energy (NCE) at which ion abundance has dropped by 50%; lower panels, matches of 184 
delta masses (Δm’s) of measured precursor and product ion masses (delta masses, Δm) with a list of 11477 known Δm 185 
features from SIRIUS) and each precursor’s (a, b, c) O/C ratio or (d, e, f) mass defect. O/C ratios can only be shown 186 
for precursors with an annotated molecular formula. Additional data from reference compounds (red diamonds, see 187 
also Figure S-3) and SRNOM (orange crosses) is shown in mid and lower panels, respectively. Statistical data was 188 
derived from linear fits; asterisks (***) denote p-value < 0.001. 189 

Despite common differences between precursor ion abundance and O/C ratio or mass defect (Figure 1a, 190 

d), we found a significant positive link between both metrics and fragmentation sensitivity independent of 191 

nominal mass, ranging from half-life NCE (i.e., the NCE level causing 50% decrease in ion abundance) of 192 

10 – 35 under our instrumental settings (calculated from linear fits). Remarkably, this trend was not observed 193 

in reference compounds (Figure 1b, e). Such a discrepancy has been observed also by Zark et al. for the 194 

common CO2 loss, and was interpreted as a result of intrinsic averaging.31,45 In contrast, Dit Foque et al. 195 

described potential separation of less complex isomer mixtures by ramped fragmentation.29 Bearing the 196 



 

limitation in mind that we only analyzed four IPIMs here, our results support the intrinsic averaging 197 

hypothesis and indicate that fragmentation sensitivity may be an additional property shaped by DOM 198 

complexity.18,20,45 It also supports our assumption of a high number of isomers and isobars “hidden” beneath 199 

each precursor molecular formula, which also increases the probability to detect meaningful links between 200 

precursor and product ions. A minor group of oxygen-poor formulas was non-responsive (Note S-3). 201 

Matching to the list of all SIRIUS Δm’s showed no significant relation to O/C ratio but to mass defect 202 

(Figure 1c, f). In contrast to mass defect, initial ion abundance showed no link to fragmentation sensitivity 203 

but was significantly correlated to higher numbers of Δm matches (r = 0.41, R² = 0.17, n = 157, p < 0.001; 204 

see also Tables S-9, S-10, S-11, S-12, and Figure S-6). DOM precursors with an average O/C ratio matched 205 

more often than low O/C, fragmentation-resistant precursors (Figure 1c; Figure S-7, Note S-3)18,19,35 or 206 

high O/C, easily fragmented precursors (Figure 1b). These observations together show that fragmentation 207 

sensitivity and Δm matching seem to be independent DOM precursor properties and that Δm matching could 208 

be driven by ion abundance. SRNOM and the soil water sample shared many molecular formulas (n=107; 209 

84% of soil DOM and 74% of SRNOM formulas) which accounted for most of the precursor ion abundance 210 

at NCE 25 (96,5% and 97.2%, respectively). Despite this high similarity, SRNOM precursors showed higher 211 

numbers of Δm matches (Figure 1c, f) which could indicate that the same molecular formula is more 212 

chemodiverse, i.e. has more underlying structural formulas, in SRNOM compared to soil DOM (further 213 

discussion in section 3.5).  214 



 

 215 

 216 

Figure 2. Δm matching in chemical space for soil (porewater) DOM (panels a – f) and SRNOM (panels g – l). 217 

Exemplary reference compound structures with marked indicative Δm units are shown in lower panels (m – q). Grey 218 

boxes refer to anticipated structural domains (Figure S-3).64 Panels a – l show precursors with an annotated molecular 219 

formula by their atomic H/C and O/C ratios (Van Krevelen plot; soil DOM, n = 127; SRNOM, n = 144); grey boxes 220 

indicate representative structural domains that are commonly used (see Figure S-3 for details). Dot size encodes the 221 

number of matches to non-indicative (a – c, g – i) vs. indicative Δm's (d – f, j - l); see legends in every plot. Colored 222 

boxes in indicative VK plots mark the expected structural region of formulas that would yield the respective Δm, and 223 

colors refer to the structural motifs marked in panels m - q. Calculations based on Δm data are presented in more detail 224 



 

in Table S-13. Highlighted red open diamonds in panels e and k indicate loss of up to three gallic acid equivalents 225 

(size not drawn to scale). 226 

3.3. Evaluation of the Δm matching approach. We used the matching data of molecular formulas in 227 

DOM for a proof-of-concept evaluation of our Δm matching approach. Specifically, we aimed to test the 228 

hypothesis that all precursors are potentially linked to all product ions in chimeric MS2 spectra of 229 

ultracomplex DOM. Our analysis was congruent with previous observations, showing ubiquitous losses of 230 

non-indicative oxygen-containing functionalities (Table S-6) while also revealing more detail (Figure S-231 

4c, Table S-7). Details are given in the Supporting Information (Note S-4); in short, we found expected 232 

trends in losses of CO2, CO, and CH2 in both samples (Figure 2a – c, g – i, Table S-13). The predicted 233 

heteroatom content (O, N, S) of assigned molecular formulas and a widened tolerance window were used 234 

for further analysis of the uncovered structural information. Random Δm matching would be expected if the 235 

calculated Δm values were affected by low resolution, low sensitivity, or artifacts such as reactions in the 236 

instrument (e.g., between the collision and Orbitrap cell78). Instead, we found that 1) precursors with low 237 

ion abundance matched to less Δm features (Figure S-6), 2) non-fragmented precursors matched to less or 238 

no Δm’s (Figure S-7), and 3) identity of Δm matches agreed with molecular formula prediction (e.g., loss 239 

of S-containing Δm’s from S-containing precursors; ≤ 3 CO2 losses from precursors containing seven O, 240 

etc.; Figures S-8 and S-9). Our evaluation also shows that Δm matching not only helps in recalibration79 241 

but also serves to check formula annotation routines, as it revealed unresolved precursor compositions 242 

interfering especially with CHOS precursors (related to Cl, P and F). This means 1) that these atoms should 243 

be included for better coverage of elemental composition (i.e., prioritization) in our specific sample context 244 

and that 2) higher resolution power may be required to resolve S-, Cl-, P-, or F-containing precursor 245 

compositions.1 In summary, Δm matching revealed an inherently structured biogeochemical signal of 246 

precursors that seem to fragment individually and was highly sensitive in detecting precursor-product ion 247 

links. This suggests that chimeric DOM data can be deconvoluted to reveal differences in molecular 248 

composition not visible from MS1 inspection.23,80 It should be stressed that these results will need further 249 

evaluation due to the small number of DOM precursors, m/z values and samples analyzed here (159 in soil 250 



 

DOM, 221 in SRNOM), and that deconvolution should be further tested with better-characterized mixtures, 251 

including, e.g., structural analogs, artificial mixtures or standard additions (spiking).14,19,27,42,81 252 

3.4. Structural domains emerge from clustering with reference compound Δm’s. DOM precursors 253 

from both samples were compared based on Δm matching as an indicator of structural information (Table 254 

S-7, see section 3.1). We grouped DOM precursors, reference compounds and Δm features by two-way 255 

hierarchical clustering (Table S-14). In the following, precursor clusters will be referred to by letter (A - H) 256 

and Δm clusters by number (1 – 7; Table S-15). Based on the specificity of SIRIUS Δm features (Table S-257 

14) and clustering with 14 reference compounds we defined five of the Δm clusters found herein as being 258 

structure-specific (Table S-15, some shown in Figure 3d, e, j and k; for details, see also Table S-13). 259 

Δm features C4H8O4 (120.0423 Da, equivalent to tetrose loss) and C6H10O5 (162.0528 Da, equivalent to 260 

hexose loss), both members of cluster 2, were found to be specific for alcohols and polyols, carbohydrates, 261 

and carbohydrate conjugates, as well as ethers (Table S-14). Reference compounds containing a polyol 262 

(quinic acid in #7) or a sugar (glucose in #12 and #13, mannose in #14) contributed Δm’s to this cluster 263 

(Table S-15).51,52 Δm equivalents of these losses matched to 18 soil DOM and 24 SRNOM precursors in the 264 

central Van Krevelen plot despite the absence of “carbohydrate-like” precursors (lilac square in Figure 2d, 265 

j and o, q). The anticipated shift towards higher O/C and H/C ratios was nonetheless apparent in both 266 

samples, especially compared to precursors associated with clusters 3, 4 and 7 (Figure 2e, f and k, l).  267 

Δm features of clusters 3 and 4, partly specific to phenylpropanoid and benzenoid structures, were 268 

contributed by flavan-3-ols (#10, #11) and aglycones of flavon-3-ols (#12 and #13) and those containing 269 

cinnamic, coumaric or gallic acid units (#7, #9, #11).28,33,52 Precursors that matched to clusters 3 and 4 (soil 270 

DOM: n = 27 and n=12; SRNOM: n = 29, n = 21) were found in the “lignin-like” domain (orange square in 271 

Figure 2e, k; orange circles in panels o, p, q). These C- or H-rich Δm's (e.g., C8H10O2 or C7H4O4) are likely 272 

no combinations of common O-rich losses (CO, H2O, or CO2) due to their low O/C and O/H ratios, but this 273 

requires further testing with model mixtures. Aliphatic chains prevail as O-poor substructures in substituted 274 

cyclic core structures and could contribute.82,83 Similar to detection of polyol-equivalent Δm matches outside 275 

the expected carbohydrate domain, gallate-equivalent losses were not matched to precursors in the 276 



 

anticipated “tannic” domain (red diamonds and turquoise square in Figure 2e, k; turquoise circle in panel 277 

p).  278 

Among the most prominent features was the methyl radical loss35,49,50 which matched to oxygen-poor 279 

DOM precursors and was one of three Δm features in cluster 7 (soil DOM: n = 18, average O/C = 0.33, 280 

SRNOM: n = 25, average O/C = 0.32, Figure 2f, l). The distribution of CH3
●-yielding precursors was 281 

paralleled by CH2 (soil DOM: r = 0.60, R² = 0.35, n = 127, p < 0.001; SRNOM: r = 0.63, R² = 0.39, n = 282 

144, p < 0.001) and CO losses (r = 0.55, R² = 0.30, n = 127, p < 0.001; r = 0.58, R² = 0.34, n = 144, p < 283 

0.001) and implied structural similarities (Figure 2f, l), e.g., condensed structures with aliphatic, lactone, 284 

or quinone moieties.34 CO and CH3
● were both indicative of benzenoid structures in the SIRIUS-annotated 285 

Δm data (Table S-14). The methyl radical loss is an expected diagnostic Δm of methoxylated aromatic rings 286 

such as present in lignin (orange square in Figure 2f, l; orange circles in panels m, n; see Note S-5), but 287 

was also matched to DOM precursors not classified as “lignin-like”.18,31,35,49 The Δm features CH3
●, CO and 288 

C2H4 were also linked to CH4 vs. O series. These describe a regularity in DOM data explained by increments 289 

of 0.0364 Da, and are formally annotated as an exchange of CH4 for O (Figure S-10).37,38 Concurrent losses 290 

of CO and C2H4 explained the presence of CH4 vs. O increments on the product ion level and were paralleled 291 

by losses of CH3
●. This finding could also explain the ubiquitous presence of CH4 vs O series in non-292 

fragmented DOM; for example, concurrent β-oxidation and de-carbonylation could be enzymatic analogues 293 

of the patterns seen in MS2 data.26  294 

Matching to Δm features derived from a small set of reference compounds revealed emerging clusters 295 

of precursor and Δm feature families that may prove more indicative if constrained with further DOM and 296 

reference compound data.14 Anticipated structural domains were apparent but showed clear overlap, which 297 

means that the same precursor was part of more than one Δm-predicted structural domain. An extended 298 

analysis using the set of compound class-associated SIRIUS Δm features showed similar trends (Figure S-299 

11, compare Figure 2). These findings must however be taken with caution for four reasons: 300 



 

1) SIRIUS Δm features were not obtained on the same instrument and thus may include features that, 301 

although correlated with certain compound classes, may not appear in DOM under the same 302 

instrumental settings.  303 

2) SIRIUS Δm features may be biased towards certain classes of compounds, as is our reference set of 304 

14 aromatic compounds. Here, we only considered negative ESI mode data which is commonly 305 

employed for DOM analysis, and thus, adding positive ESI or other ionizations would extend the 306 

range of Δm features and structural classes covered and likely decrease bias.14,16,23,84 The same 307 

applies to other fragmentation techniques than CID. 308 

3) Product ion abundance was disregarded in our analysis, but could be used to weigh probabilities of 309 

potential precursor-product ion links in future, potentially in combination with fragmentation energy 310 

gradients (fragmentation tree analysis)85, moving m/z isolation windows, or variations in ion 311 

accumulation times that influence MS1 ion abundance.86  312 

4) Despite a seemingly improved separation of extreme classes (high H/C ratios in fatty acids, high 313 

O/C ratios in carbohydrates, etc.), potential overlap in domain boundaries remained considerable 314 

(Figure S-11). 315 

Categorization of precursors into multiple Δm-defined structural domains was also reflected by large 316 

differences in Δm matching between members of the same a-priori defined structural domains or classes 317 

(i.e., only based on molecular formula). Twenty-seven precursors shown in Figure 3 were classified as 318 

“lignin-like” formulas and were part of seven precursor clusters (B – H; Table S-16), thereby showing clear 319 

differences in potential structural composition. Likewise, CHNO and CHOS precursors matched with many 320 

of the S- and N-containing SIRIUS Δm features (spanning 3 – 78 S- and 4 – 251 N-containing Δm’s in soil 321 

DOM and 0 – 154/ 0 – 350 in SRNOM; Tables S-17, S-18, S-19 and S-20). These represented on average 322 

79 ± 19% (63 ± 31% in SRNOM) of all Δm matches per CHOS precursor or 91 ± 7% (79 ± 28%) of all 323 

CHNO precursor matches (detailed analysis, see Note S-6). Many Δm features were also associated to 324 

compound classes, revealing potential structural detail (Table S-21). For example, CHNO precursor 325 

matching indicated the absence of nitrate esters, but indicated the presence of reduced forms of N partly 326 



 

explained in the literature87,88, including specific Δm’s related to aralkylamines, amino acids, 327 

carboximidamides, and dicarboximides/ urea-containing compounds. S-containing Δm matches indicated 328 

the potential presence of sulfonic, thiol, thioether or aromatic S precursors.84 Taken together, our results 329 

show a wide potential diversity of N and S compounds in DOM that contradicts with earlier reports of 330 

mainly aromatic N and sulfonic S.34,89,90 As most of these studies analyzed marine DOM, the detection of 331 

potentially more diverse sets of CHOS and CHNO precursors could relate to the terrestrial, less degraded 332 

DOM analyzed here.16,91–93 Further tests with N- and S-containing reference compounds and DOM samples 333 

are warranted to reveal the hidden diversity and identity of dissolved organic nitrogen and sulfur and confirm 334 

potential structures, e.g., by NMR. 335 

All in all, our results show that it may be possible to refine Van Krevelen domains by deconvoluted MS2 336 

data, and that complementary precursor information could be used to assess false or biased Δm-based class 337 

assignments (e.g., elemental composition, DBE, ionization, fragmentation sensitivity, ion mobility, polarity 338 

index, etc.).13,56 Fluorescence or NMR spectroscopy could add valuable information if DOM would be 339 

fractionated before MS2 data acquisition.21,94  340 

Data-dependent and data-independent acquisition (DDA, DIA) techniques could be used to cover the 341 

whole mass range of precursors in DOM mass spectra in future, and are widely employed in LC-MS of 342 

complex mixtures.16,27,95,96 For example, Ludwig et al. presented a DIA scheme (SWATH-MS) that employs 343 

one precursor scan and 32 isolation windows of 25 Da width, covering 800 Da within 3.3 seconds; similar 344 

schemes are likely transferable to acquire full mass range data of directly-injected DOM.97 Kurek et al. 345 

recently presented such data, covering product ions generated from similar isolation window (m/z 392 – 346 

408).16 Smaller isolation windows as used herein were also employed by Leyva et al. to discern 347 

fragmentation pathways and structural families in DOM (mass range m/z 261 – 477)14; this approach could 348 

be extended to include the diversity of Δm features shown here. Together, this shows that practicable tandem 349 

MS acquisition strategies are in reach and will enable deeper analyses of Δm features in DOM soon. 350 

3.5. Drivers of differences in Δm matching between soil DOM and SRNOM. Although matching 351 

among the two samples was largely consistent, slight differences were apparent from Van Krevelen 352 



 

distributions (Figure 2). We therefore tested the separation of precursor clusters by ordination (Figure 3). 353 

Precursor clusters were clearly separated on PC1 and PC2 which together held about 47% of variation. Most 354 

considered precursors were shared among samples (64%, 38 out of 59), only a small number was sample-355 

specific (SRNOM = 14, Soil DOM = 7). Sample-specific precursors were found in clusters A (linked to 356 

carboxylic acids), B (phenols, polyols) and C (benzenoids, Table S-15), the remaining clusters D – H were 357 

dominated by the shared precursors. Out of the 38 shared precursors, 30 (79%) grouped in the same 358 

precursor cluster despite a general trend to higher numbers of matches in SRNOM, but eight grouped 359 

differently (bold precursors in Figure 3a). These differences in matching could be related to different 360 

chemistries, i.e., different isomeric/ isobaric composition.84 For example, based on the correlation of 361 

precursor properties (Figure 3b), the cluster “switch” in C11H14O6 was largely explained by higher ion 362 

abundance and Δm matches in SRNOM, while in C23H22O4, the effect was partly linked to higher 363 

fragmentation resistance in SRNOM. Unfortunately, we only have data on initial ion abundance and 364 

fragmentation sensitivity from the soil DOM isolate; other precursor properties, however, showed very 365 

similar trends in both samples (Figure 3b). 366 



 

 367 

 368 

Figure 3. Separation of DOM precursors based on Δm matching. a) Principal Components analysis of all precursors 369 
with more than one match to indicative Δm features of the 14 reference compounds (i.e., Δm features shown in Table 370 
S-7 that are not part of Table S-6, see section 3.1). Colors of dots distinguish precursors from both samples and 371 
reference compounds (see legend). Precursors detected in both samples are connected by dotted black lines. Precursor 372 
clusters (A – H) are marked by envelops and letters (compare Tables S-14 and S-15). Eight shared precursors that 373 
switched precursor clusters are highlighted by bold molecular formula (C12H14O9, A in soil DOM→H in SRNOM; 374 
C19H26O3, B→C; C26H26O5 and C23H22O4, B→D; C17H14O9, G→E; C19H22O7 and C22H26O8, H→E; C11H14O6, H→G). 375 
b) Correlations of selected precursor properties with scores of PC axes (only DOM precursors with assigned molecular 376 
formula included in the correlation). PC axes 3 and 4 are shown in addition. Correlations are indicated for all precursors 377 
(n=94) and those detected in each sample (Column “Sets”). For each combination (PC = x, property = y), Pearson’s r 378 
and significance are given (0.05 ≥ p > 0.01, “*”; 0.01 ≥ p > 0.001, “**”; p ≤ 0.001, “***”). Negative/ positive 379 
correlation is indicated also by color (blue, red); non-significant correlations are shown in lighter color or no color if 380 
no direction dominated. Matches, matches against the global list of Δm features; Structures, number of hits in natural 381 
product and in-silico databases. 382 

Similar clustering and Δm-predicted structural classes (Figure S-11) in shared precursors could indicate 383 

a conserved structural composition. Likewise, Kurek et al. observed high similarity in APPI-ionized and 384 

IMPRD-fragmented DOM samples, but observed clear differences in CHOS fragmentation.16 High 385 



 

similarities between DOM samples would be in line with stoichiometric principles (i.e., due to a large share 386 

in precursors between DOM samples) and could suggest that DOM processing diversifies, but also 387 

“randomizes” the molecular composition of each precursor (“universal” signal).31,98,99 High congruence of 388 

fragmentation patterns (and thus, Δm matching) among DOM precursors has also been interpreted as a sign 389 

of similarly substituted but slightly differing core structures.35,37 The clusters devised here were small due 390 

to the relatively small number of precursors and m/z values analyzed, and thus may not detect significant 391 

differences between samples yet. However, even with our small set of precursors, the clustering by Δm 392 

matching showed conserved differences in fragmentation between precursor clusters, and in part, even the 393 

same precursor in different samples. The fact that this could relate to differences in ion abundance (and 394 

therefore, possibly also ionization efficiency) or fragmentation sensitivity is intriguing and should be 395 

investigated across a wider range of DOM chemotypes using improved classification approaches as applied 396 

here (see also section 3.4).14 397 

3.6. Ion abundance is linked to Δm matching frequency and structural diversity. Ion abundance was 398 

the most important driver for Δm matching in both samples and highest in the structural domain usually 399 

assigned to ubiquitous lignin structures or carboxyl-rich aromatic molecules.59,83 This domain also parallels 400 

with a maximum in potential underlying chemodiversity30,100, which could explain why these signals are 401 

ubiquitously found and especially dominant in reworked DOM.92,101 Δm matching showed potential to reveal 402 

this underlying chemodiversity effect and was therefore compared to numbers of structure suggestions and 403 

Δm-predicted compound classes per precursor (Figure 4). Numbers of Δm matches were significantly and 404 

positively related to the number of structure suggestions in absolute terms and for specific compound classes 405 

(Table S-22). The correlation between Δm-predicted and suggested compound classes was surprisingly 406 

similar in both samples and significant for almost all benzenoid-type (benzopyrans, methoxybenzenes, 407 

anisoles, phenols, etc.) and most phenylpropanoid-type structures (flavonoids, linear 1,3-diarylpropanoids). 408 

Among the organic acids, only vinylogous acids stood out (i.e., containing carboxylic acid groups with 409 

insertions of C=C bond(s)). Significant correlations were also found for pyrans, acryloyl compounds, 410 

carbohydrates, aryl ketones and alkyl aryl ethers (fatty acids and analogues only in SRNOM).  411 



 

 412 

Figure 4. Agreement between chemodiversity estimates based on molecular formula (structure suggestions) and 413 

precursor-product ion links (Δm matches). Panels a, b) Correlations between numbers of SIRIUS Δm matches vs. 414 

structure suggestions (note log scale, incl. in-silico hits); a) soil DOM, b) SRNOM.  Panels c, d) Number of SIRIUS 415 

Δm matches in Van Krevelen space (scales are similar but legends show different dot sizes); c) soil DOM, d) SRNOM; 416 

grey boxes refer to domains defined in Figure S-3. Panels e, f) Number of predicted classes per precursor based on 417 

SIRIUS Δm matches (color scale similar in both panels). Structural classes are associated to SIRIUS-annotated Δm 418 

features through correlation analysis of host structures and their Δm features (classification based on Classyfire); e) 419 

soil DOM, f) SRNOM. 420 

The positive link between ion abundance and numbers of Δm matches on the one hand and predicted 421 

and suggested structures on the other indicates that ion abundance may be linked to the number of structural 422 

isomers and isobars per molecular formula in FTMS spectra of DOM and explains why Δm-defined 423 

structural domains showed strong overlap in this study. It also provides additional support to our assumption 424 

that all precursors potentially contribute to all product ions in DOM: The patterns revealed through Δm 425 

matching were largely congruent with the independent estimate of structural composition by natural product 426 

databases. The fact that only some classes of compounds (mainly benzenoids and phenylpropanoids) 427 

showed significant correlations could point to bias towards plant natural products in the databases employed 428 

here; this means that the inclusion of other structure databases and the additional assignment of Δm’s not 429 



 

only to their host structures but also to host organisms (e.g., in GNPS65) could reveal further clues about the 430 

potential sources of molecular formulas in DOM.  431 

We propose that the number of Δm matches could be interpreted as a novel, relatively easily accessible 432 

measure to account for a precursor’s underlying potential structural diversity. Such information could help 433 

to better understand mechanisms of DOM formation and persistence in the environment. Our results 434 

encourage further studies on the Δm matching behavior of synthetic mixtures of known structures and across 435 

DOM chemotypes, and the improved bioinformatic exploitation of chimeric (LC-) FTMSn data of complex 436 

organic mixtures.14,102–104 We acknowledge that natural product and in-silico databases are far from being 437 

complete, same as the database of annotated Δm matches we used here, despite its large coverage of ~18000 438 

unique structures and ~11500 Δm’s. For example, precursors with low mass defects showed exceptionally 439 

few structural hits, indicating bias in natural product databases (Figure S-12).18 These structures were easily 440 

fragmented and yielded few Δm matches in our analysis; N- and S-containing precursors were double as 441 

likely to show no suggestion compared to CHO precursors. This shows that DOM contains unique molecular 442 

structures to be identified in future. 443 

4. IMPLICATIONS 444 

Tandem MS data of complex samples such as dissolved organic matter (DOM) is impeded by the co-445 

fragmentation of precursors with similar nominal mass, and further complicated by the contribution of 446 

potential isomers and isobars of a precursor. We employed an approach that analyzes the pairwise mass 447 

differences between all precursor and product ions as a whole (Δm matrix). Using a very limited set of 448 

precursor features from two samples, we found potential signs of structural imprints related to benzenoids, 449 

phenylpropanoids, carbohydrates, sulfonic acids, thiols, thioethers and amino acids, amongst others. The 450 

successful matching of indicative Δm features and precursor clustering suggests a remaining – and 451 

recognizable – source imprint of primary or recycled plant remains in DOM. Tests with more DOM samples 452 

and artificial/ treated mixtures (e.g., DOM with spiked known compounds, or DOM degraded by specific 453 

enzymes) are required to test the assumptions employed here and to improve classifications of DOM 454 

precursors by Δm clusters. Our first results indicate that FTMS2 data may be useful to differentiate molecular 455 



 

composition on the molecular formula level, and that ion abundance and fragmentation sensitivity are two 456 

key variables that explain differences in MS2 data within and among samples. This is intriguing because a 457 

shared molecular formula could harbor a completely different set of structures but must be assessed with 458 

larger sets of DOM data which would improve detection of such differences. Generally, our findings support 459 

the view that Van Krevelen domains are associated with indicative mass losses that relate to stoichiometric 460 

differences between compound classes. The most abundant precursors however showed a mixed MS2 signal 461 

that caused boundary overlap of these Δm-defined domains (Figure 4e, f). While this finding is in line with 462 

known patterns of structural diversity and partly explains the ubiquitous presence of abundant DOM signals, 463 

it introduces a new paradigm to the interpretation of DOM FTMS data by assigning unknown precursors to 464 

multiple structural categories instead of just one. Further evaluation of both natural and spiked/ treated 465 

complex mixtures, constantly growing MS databases, and comprehensive decomplexation methods (LC-466 

MS, IMS) will together provide fundamental insights into the deconvolution of chimeric spectra from 467 

complex samples, and ultimately show the potential to unfold the hidden molecular diversity and identity 468 

of DOM. 469 
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