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Abstract. Optimization of binding affinities for ligands to their target protein is a primary 

objective in rational drug discovery. Herein we report on a collaborative study that evaluates 

various compounds designed to bind to the SET and MYND domain-containing protein 3 

(SMYD3). SMYD3 is a histone methyltransferase and plays an important role in transcriptional 

regulation in cell proliferation, cell cycle and human carcinogenesis. Experimental 

measurements using the scintillation proximity assay show that the distributions of binding 

free energies from a large number of independent measurements exhibit non-normal properties. 

We use ESMACS (enhanced sampling of molecular dynamics with approximation of continuum 

solvent) and TIES (thermodynamic integration with enhanced sampling) protocols to rank the 

binding free energies and to provide detailed chemical insight into the nature of 

ligand−protein binding. Our results show that the 1-trajectory ESMACS protocol works well 

for the set of ligands studied here. Although one unexplained outlier exists, we obtain excellent 

statistical rankings across the set of compounds from the two protocols. ESMACS and TIES 

are again found to be powerful protocols for the accurate comparison of the binding free 

energies. 

 

1. Introduction 

SMYD3 has been characterized as a versatile lysine methyltransferase, and is associated with 

multiple types of cancer, including colorectal, liver, and breast cancer. A range of histone and 

non-histone protein substrates are lysine N-methylated by methyl transfer from the SAM 

cofactor of SMYD3. Notably, loss of SMYD3 catalytic activity inhibited tumorigenesis in the 

presence of oncogenic Ras1, suggesting that inhibition of SMYD3 in cancers with elevated 

RAS pathway signalling may be a useful therapeutic strategy. However, few SMYD3 inhibitors 

have been reported2. GSK has previously reported a crystal structure of the ternary complex of 

SMYD3, SAH and MEKK2 and a second crystal structure showing GSK2807 binding in the 

SAM pocket3. More recently, the identification and optimisation of a series of isoxazole amides 

as SMYD3 inhibitors was reported4. The ability of computational binding free energy 

calculations to predict the affinity of that series of ligands is presented here. 

 

The last ten years have seen substantial progress in the use of computational chemistry methods 

within both academia and the pharmaceutical industry for quantitative structure-based drug 

discovery, thanks to burgeoning computational power, the increasing number of crystal 

structures, the accuracy of force fields, the improvement of the sampling methods and control 

of errors, alongside the automation and general usability of the approaches. Many 



22 February 2022 

 2 

pharmaceutical companies have adopted free energy predictions as a routine tool to support 

their drug discovery efforts5-6. This progress has been prompted by Schrödinger’s drug 

discovery platform, especially the FEP+ implementation7. There are other packages and 

workflows used in academia and/or industry, which integrate and automate the process of free 

energy calculation, including the steps of planning, set up, simulation, and analyses8-9. 

 

In the last few years, our team at UCL has developed two ensemble-based protocols for free 

energy calculations, termed “enhanced sampling of molecular dynamics with approximation 

of continuum solvent” (ESMACS)8,10 and “thermodynamic integration with enhanced 

sampling” (TIES)8,11. ESMACS is based on the molecular mechanics Poisson-Boltzmann 

surface area method (MMPBSA)12 while TIES centres on thermodynamic integration (TI). 

Although the protocols are built around the standard MMPBSA and TI methodologies, the 

names and abbreviations of these protocols are used to emphasise the central importance of the 

ensemble based nature of the protocols employed8,10,13-16.  The term “ensemble” here refers to 

a set of individual (often called “replica”) simulations conducted for the same physical system, 

starting from different initial conformations13 (and possibly also with varying model 

parameters14). Advances in high-end computing capabilities offer the opportunity to run all of 

the replicas concurrently, ensuring the results can be delivered rapidly, exactly as has been 

done in climate and weather forecasting for the past twenty years. Ensemble approaches lead 

to increased reliability and reproducibility, with tighter control of standard uncertainty for 

nonlinear systems which are chaotic in nature8,17-18. ESMACS and TIES are performed using 

a binding affinity calculator (BAC)19 which is a computational pipeline to automate the 

processes of building, running and marshalling the molecular dynamics simulations, as well as 

collecting and analysing data.  

 

Depending on the usability, reliability, rapidity and throughput, these automated packages 

could find application at various stages of the drug discovery process across the wider 

pharmaceutical industry. In practise, however, the application of computational approaches is 

still dependent on the experience and knowledge of the practitioner. It remains a challenge for 

non-expert users to apply these existing tools to make robust predictions on a timescale that 

can substantially impact drug discovery programmes. For a given approach, the success of 

predictions also varies significantly across different protein targets with different sets of 

compounds. Studies have shown that the initial crystal structures and the existence of multiple 

conformations can have a significant effect on the quality of free energy predictions20-21. Based 

on the experience, knowledge and intuition we have accumulated, we propose the following 

criteria to predict the quality of the calculations: 1) how well the binding site is defined and 

structured; 2) how well a compound fits into the binding pocket; and 3) how many rotamers 

and/or binding poses a compound may manifest.

 

 

Figure 1. Structure of SMYD3, 

complexed with one of the compounds in 

this study. The N-terminal SET domain, 
the MYND domain, the post-SET 

domain and the C-terminal region are 

coloured in orange, yellow, pink and 
white, respectively. The cofactor SAH is 

shown with a bond representation, and 

the ligand (S01) in a ball-and-stick 

model. The Zn2+ ions are shown with 

sphere models and coloured green.
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The purpose of the present study is to evaluate the ability of ESMACS and TIES to estimate 

binding affinities of a set of 22 ligands (Table 1) to the protein target. For the SMYD3 systems 

studied here, the binding site of the protein is well structured (Figure 1), and the binding mode 

for the scaffold of the congeneric compounds (Table 1) is well-defined in the crystal structure. 

It is thus likely, based on our foregoing criteria, that a reasonable prediction can be achieved, 

although the relatively large size of the binding site, the presence of multiple components in 

the structure, and the rotatable bonds at the R2 site of the compounds (Table 1) still pose a 

challenge for the conformational sampling and hence the accuracy and precision of the 

predictions. 

 

2. Material and Methods 

 

The x-ray structure of SMYD3 consists of a co-factor SAH (S-adenosylhomocysteine, a 

reaction product of the methyl group donor SAM (S-adenosyl-L-methionine)), and three zinc 

ions which are important for the folding of the protein (Figure 1).  

2.1. Experiments 

A series of isoxazole amides was chosen to cover a range of binding affinity and chemical 

structure. These include a diversity of lipophilicity, aromaticity and formal charge; the 

variation of formal charge has historically been challenging for free energy predictions. The 

IC50s acquired for the compounds were measured using the scintillation proximity assay (SPA) 

using MEKK2-based peptide as a substrate previously reported4. 

2.2. Computational approach 

Compounds. A set of compounds named SXX were provided by GSK, where XX was a two-

digit number where integers lower than ten were preceded by a 0 (Table 1), with mean values 

of pIC50 from experimental assay. Two of the compounds, S21 and S22, were reported as C01 

and C28 in a previous publication4. All compounds shared the same scaffold (Table 1). The 

compounds were docked into the binding pocket of SMYD3 using Glide22. Modelling was 

carried out on a GSK internal structural precursor to 6P7Z. The rmsd between the structure 

used and 6P7Z is approximately 0.3 Å. The compounds were docked into the structure using 

glide XP with a substructural constraint on the isoxazole-amide-piperidine-sulfone 

substructure (as shown in table 1) using Glide in Maestro 2015-2. 

Model preparation. Preparation and setup of the simulations were implemented using BAC19, 

including parameterization of the compounds, solvation of the complexes, addition of 

counterions to electrostatically neutralize the systems and generation of configurations files for 

the simulations. The Amber package23 was used for the parameterisation of the compounds, 

the set-up of the systems, and the analyses of the results. The Amber ff14SB force field was 

used for the protein, and TIP3P for water molecules. The protonation states were assigned 

using the “reduce” module of AmberTools. Parameters of the ligands were produced using the 

general Amber force field 2 (GAFF2) with Gaussian 16 to optimise compound geometries and 

to determine electrostatic potentials at the Hartree-Fock level with 6-31G** basis functions. 

The restrained electrostatic potential (RESP) module in the AmberTools was used to calculate 

the partial atomic charges for the compounds. All systems were solvated in orthorhombic water 

boxes with a minimum extension from the protein of 14 Å. 
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 Table 1. Compounds investigated in this study. 

 
Compound R1 R2 pIC50 G (kcal/mol) 

S01 Et Me 5.2 -7.14 

S02 Et 
 

5.5 -7.55 

S03 Et -CH(CH3)2 5.0 -6.86 

S04 Et 
 

5.5 -7.55 

S05 Et 
 

5.8 -7.96 

S06 Et 
 

5.1 -7.00 

S07 Et 
 

5.5 -7.55 

S08 
  

< 3.6a > -4.94 

S09 
  

7.2 -9.88 

S10 
 

-CH2-CH2-NH3 6.4 -8.79 

S11 
  

5.4 -7.41 

S12 
 

 
7.0 -9.61 

S13 
  

7.1 -9.75 

S14 
  

6.9 -9.47 

S15 
 

-CH2-CH2-CH2-CH2-NH3 7.6 -10.43 

S16 
 

 

7.0 -9.61 

S17 
 

 

7.8 -10.71 

S18 
  

7.1 -9.75 

S19 

 

6.6 -9.06 

S20 
  

7.6 -10.43 

S21 
 

Me 5.3 -7.28 

S22 
  

8.5 -11.66 

a There was no activity at the highest concentration (250 μM) tested. 
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ESMACS. We used the ESMACS (enhanced sampling of molecular dynamics with 

approximation of continuum solvent)10 protocol for the simulations and analyses. The protocol 

uses replica simulations to obtain reproducible binding affinity predictions with robust 

uncertainty estimates. It is based on the molecular mechanics Poisson-Boltzmann surface area 

(MMPBSA), which is an approximate method for calculating absolute binding affinities from 

molecular dynamics trajectories. It is an endpoint free energy calculation, in which the 

difference in binding free energy, ∆G, is calculated using 

𝛥𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = 𝐺𝑐𝑜𝑚 − 𝐺𝑝𝑟𝑜 − 𝐺𝑙𝑖𝑔    Eq. 1 

where Gi is the free energy of component i which corresponds to either complex (com), protein 

(pro), or ligand (lig), and is calculated from a set of structures from MD simulations. The free 

energies can be broken down into a number of components, including the molecular mechanics 

energy in the gas phase and the solvation free energy. While the former is derived from the 

molecular modelling forcefield used, the latter is estimated as the sum of the electrostatic 

solvation free energy calculated using the Poisson-Boltzmann equation and the nonpolar 

solvation free energy calculated from the solvent accessible surface area. The binding free 

energy is calculated from the difference between calculations performed for the complex, 

ligand and receptor conformations obtained from simulation. The 1-trajectory approach was 

used here, in which conformations of the protein and the ligands were extracted from the 

ligand-protein complex simulations. 

 

TIES. We used thermodynamic integration with enhanced sampling (TIES)11 to calculate the 

relative binding free energies for pairs of compounds. In TIES, an alchemical transformation 

for the mutated entity is used in both aqueous solution and within the ligand-protein complex. 

The free energy changes of the alchemical mutation processes, ∆𝐺𝑎𝑞
𝑎𝑙𝑐ℎ  and ∆𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥

𝑎𝑙𝑐ℎ , are 

calculated by: 

∆𝐺𝑎𝑙𝑐ℎ = ∫ ⟨
𝜕𝑉(𝜆)

𝜕𝜆
⟩
𝜆
𝑑𝜆

1

0

    Eq. 2 

Here λ (0  λ  1) is an alchemical coupling parameter such that λ=0 and λ=1 correspond to 

the initial and final thermodynamic states, and 𝜕𝑉(𝜆) 𝜕𝜆⁄  is the partial derivative of the hybrid 

potential energy V(λ) at an intermediate state . 〈⋯ 〉𝜆  denotes an ensemble average over 

configurations representative of the state . 

 

The binding free energy difference is then calculated from 

∆∆𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = ∆𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥
𝑎𝑙𝑐ℎ − ∆𝐺𝑎𝑞

𝑎𝑙𝑐ℎ    Eq. 3 

Simulations. The binding affinity calculator (BAC)19, an automated workflow tool for free 

energy calculations, was used to prepare and execute ESMACS and TIES simulations. The 

standard protocol10-11,24 was used, in which NAMD25 simulations with 25 and 5 replicas were 

performed for ESMACS and TIES, respectively. Each replica in the ensemble started with 

identical atomic coordinates, with different initial velocities generated independently from a 

Maxwell−Boltzmann distribution. 

 

To avoid the well-known “end-point catastrophe”26, a soft-core potential was used for van der 

Waals (vdW) interactions involving the perturbed atoms. The electrostatic interactions were 

linearly scaled but at a faster rate than the vdW interactions, so that the partial charges were 

removed for the disappearing atoms before they were fully annihilated, and were introduced 

on the appearing atoms after they already partially appeared. 
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The MD package NAMD2.1225 was used throughout the equilibration and production runs of 

all simulations. For each replica in an ensemble, energy minimizations were first performed 

with heavy protein atoms restrained at their initial positions. The initial velocities were then 

generated independently from a Maxwell−Boltzmann distribution at 50 K, and the systems 

were heated up to and kept at 300K within 60 ps. A series of equilibration runs, totalling 2 ns, 

were conducted, while the restraints on heavy atoms were gradually reduced. Finally, 4 ns 

production simulations were run for each replica for all ESMACS and TIES simulations.  

 

The ESMACS simulations for the compounds S01 – S20 were initially conducted using 10-

replica ensembles on the DNAnexus platform (https://www.dnanexus.com/) which provides 

strong cybersecurity. Previous studies10,24,27-29 have stablished a standard ESMACS protocol 

with 25 replicas, and shown that the combination of the simulation length and the size of the 

ensemble provides a trade-off between computational cost and precision. The choice of a 

smaller number here was designed to reduce computational cost on the cloud environment. The 

study was later extended to include two more compounds, C01 and C28 from Su et al.4, 

renamed as S21 and S22, to extend ESMACS to 25 replicas and, more importantly, to perform 

TIES studies on the selected compound pairs. The Blue Waters supercomputer at the National 

Center for Supercomputing Applications (NCSA) in the US was used for the extended 

ESMACS simulations. The SuperMUC supercomputer at Leibniz Supercomputing Centre in 

Germany was used for the TIES simulations. 

 

3. Results 

To assess the accuracy and precision of the method, we evaluated the binding affinities of the 

ligands (Table 1) to SMYD3, and compared the computed results with experimental data. 

ESMACS was used for the full set of the ligands, while TIES was applied to some selected 

pairs of the ligands with the same net charge. 

3.1. Reproducibility of the ESMACS simulations 

It is well-studied that the differences of the initial conditions among individual simulations lead 

to rapid divergence of trajectories13. Many complex systems hence exhibit sensitive 

dependence on initial conditions. The calculated thermodynamic properties from individual 

simulations will therefore inevitably differ. Two sets of ESMACS simulations were performed 

for the complexes SXX (Table 1) independently on Blue Waters and DNAnexus (see the 

Material and Methods section above). Figure 2 shows the variances and correlation of the 

calculated binding free energies from the two sets of simulations. Excellent agreement was 

observed between calculations using two different computational platforms: HPC machine 

Blue Waters and cloud environment DNAnexus, with a highly significant Spearman correlation 

of 0.98. No statistical differences were seen between the two sets of calculated binding free 

energies: 16 out of 20 compounds having identical results, within error bars, and the remaining 

4 within two error bars (Figure 2). The two simulations produce consistent results, with a mean 

signed difference of 0.13 kcal/mol and a mean unsigned difference of 0.63 kcal/mol. Both of 

the calculations have good correlations with the experimental measurement, with correlation 

coefficients of 0.80 and 0.78 for the simulations on Blue Waters and DNAnexus, respectively. 

Because of the smaller number of replicas used in the DNAnexus simulations, the error bars in 

these simulations are ~1.5 times larger than those from Blue Waters simulations. As the two 

simulations produce similar accuracies, only the results from Blue Waters are reported in the 

following analyses. 

 

https://www.dnanexus.com/
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3.2. Correlations between ESMACS calculations and experimental measurements 

The predicted binding free energies from the 1-trajectory approach exhibit a high correlation 

with the experimental data (Figure 3), with a Pearson correlation coefficient of 0.84. In a 

pharmaceutical drug development project, compounds are designed or selected for the same 

protein target. The ranking of the binding affinities is not affected by the energy of the protein 

Gpro (Eq. 1) when the conformational space is sufficiently sampled. Free energies of a protein 

differ in its bound and unbound states. The difference, called the adaptation free energy10, 

provides an indication of the conformational changes of the protein and the energetic costs 

upon binding. Inclusion of adaptation free energies improves the correlations between 

simulations and experimental measurements in some cases10,30-31, and does not have obvious 

effects in other cases32. For the current data set of compounds, the binding site is relatively 

large. No significant strain is induced within protein upon compound binding. The inclusion 

of adaptation free energies of the protein degrades the correlations, with a correlation 

coefficient of 0.70.  

The calculations correctly distinguish the charged compounds from the neutral ones (Figure 3). 

The R2 group (Table 1) locates in a hydrophilic pocket in which negatively charged residues 

GLU192, ASP241 and GLU294 form favourable electrostatic interactions with the positively 

charged R2 group (Figure 4). This makes the binding of charged compounds more favourable 

in general than the electrostatically neutral ones. The two variants at R1 studied here may not 

affect the binding affinities significantly because the ethyl group and the 3-membered ring are 

similar in their hydrophobic properties and their sizes. The two compounds, S01 and S21, 

differing only at the R1 group, have similar binding affinities from both experimental 

measurements and the ESMACS calculations (Figure 3). It should be noted that no activity was 

detected for S08 at the highest concentration (250 μM) in the experiments (Table 1), indicating 

that its binding affinity is likely to be less negative than that presented in Figure 3. This makes 

the point deviating even farther from the regression line. Our TIES calculations also show that 

S08 is an outlier (see details below). 

 
Figure 2. Comparison of calculated binding 
free energies from two independent studies of 

the ligand-SMYD3 models performed on Blue 

Waters (bw, horizontal axis) and DNAnexus 

(DNA, vertical axis). Dashed line shows an 

ideal y=x regression. The standard errors are 

calculated using a bootstrapping method. 

 
Figure 3. Comparison of calculated binding 
free energies and experimental binding affinity 

data from 1-traj ESMACS approach. The dotted 
line shows a linear regression. A correlation 

coefficient of 0.84 is obtained for the entire set 

of compounds. The +1e changed compounds 
are shown in blue, and electrostatically neutral 

ones in black. 
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Figure 4. Electrostatic interactions between the R2 group and the protein. The negatively charged 

residues GLU192, ASP241, GLU294, and positively charged R2 group, along with positively charged 

LYS 329, form favourable electrostatic interactions. 

3.3. TIES results 

Relative binding free energies (∆∆G) are calculated using TIES for selected pairs of the 

compounds. Each compound is paired at least once with other compounds. No compounds are 

paired if they have different net charges, as alchemical methods encounter specific difficulties 

when changes in the net charge arise and charge corrections are required. The results of these 

relative binding free energy calculations are compared with the data derived from experimental 

measurements (Figure 5). 

As the compound S08 may be denoted as an outlier (see details below), the analyses are 

performed separately for the dataset with and without the compound. The overall mean 

unsigned error (MUE) is 1.21 kcal/mol for the entire dataset, and 0.68 kcal/mol when pairs 

involving S08 are excluded. The mean signed errors (MSEs) are 0.62 kcal/mol and -0.06 

kcal/mol for the dataset with and without S08, respectively. Except the pairs with S08, only 

one compound pair, S22–S20, has a predicted ∆∆G value which differs from the experimental 

data by >2 kcal/mol. The main difference between the two compounds are the 3 rotatable bonds 

at R2 (Table 1). The rotation of these rotatable bonds leads to large conformational flexibilities 

in S22, which may need longer simulation time to get reliable prediction.

 
 

 

 

Figure 5. Correlation between TIES-predicted 

relative binding affinities and experimental 

data for a total of 19 compound pairs. The long 
dashed line represents y=x, whereas dashed 

and dotted lines represent 1 kcal/mol and 2 

kcal/mol ranges, respectively. The pairs 

involving S08 are highlighted in blue.  
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3.4. S08 remains an outlier 

Our initial TIES calculations only contained one compound pair involving S08, of which the 

deviation between the calculation and the experimental data is large. As the ESMACS 

simulation also shows it as an outlier, we have paired S08 with 3 other compounds for TIES 

simulations. The results only confirm that there is a systematic deviation in the binding free 

energy for S08 between calculations and experimental measurements. Based on the 4 TIES 

calculations for S08, the average difference between calculations and experimental data is 3.21 

kcal/mol. In another word, the compound S08 needs to have a binding affinity 3.21 kcal/mol 

more negative in the experiments, or 3.21 kcal/mol less negative in the calculations, to make 

them agree with each other. This value is also in a good agreement with the ESMACS 

calculation, with which the data point for S08 can be shifted much closer to the regression line 

(Figure 3). 

The compound S08 consists of a nitrile group of which the nitrogen is highly electronegative. 

Although the negatively charged residues at the R2 pocket are unfavourable for the presentence 

of the nitrile group, the positively charged residue LYS329 and the relatively spacious pocket 

appear to be able to tolerate the group. The detailed analyses of the simulation trajectories do 

not provide more insights. Further searching in the experimental data set has identified another 

compound which is very similar to S08 and shares the same nitrile group at the R2. The 

compound also does not show any activities at the highest concentration tested in the assay 

(data not shown). Although it could be an experimental issue, it is more likely to be a force 

field or possibly sampling issue. As there are no satisfactory explanations for the disagreement 

between the experiments and the calculations, S08 remains as an unexplained outlier. Such 

unexplained outliers are not unusual in drug discovery and development projects. Machine-

learning approaches have been proposed to identify the differences between the calculations 

and the experimental data, and to provide empirical correction terms to the predictions from 

the alchemical approaches but these too depend on assumptions which are rarely articulated 

concerning the way in which the data are distributed33. 

3.5. Non-normal distributions of free energy calculations and measurement 

Normal distributions have been typically assumed in experimental measurements and 

calculations of binding free energies. The assumptions are commonly made for the true 

∆Gbinding for a large number of compounds, for the experimentally determined and 

computationally predicted ∆Gbinding for a given compound, as well as for the relative binding 

free energies ∆∆Gbinding. The normal distributions are characterised by an average  and a 

standard deviation . Although the presence of uncertainties is known to the scientific 

community broadly, they are still “known unknowns”: in many cases we do not know the order 

of magnitude of the various uncertainties, the sources and the consequences of them, not to 

mention how to reduce them. It is important to describe the free energy distributions carefully 

as many statistical analyses are based on it. The most important assumption in regression 

dilution34, for example, is that all the variables under consideration are normally distributed. If 

this is not the case, regression dilution may not be applied. 

The assertion that the calculated binding free energies ∆Gcal or binding free energy differences 

∆∆Gcal follow a normal distribution conflicts with our observation that such data are not in 

general normally distributed8,16,18,29. Newtonian molecular dynamics is inherently nonlinear, 

and this is the underlying reason why the dynamics is chaotic in the technical sense. Not only 

are individual trajectories extremely sensitive to initial conditions, they become increasingly 
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inaccurate as the duration of such a simulation unfolds. They manifest long range correlations 

which are not present in Gaussian statistics. 

In experimental measurement of binding free energies, uncertainties on the order of 0.3 − 0.5 

kcal/mol for ∆Gexp and 0.4 – 0.7 kcal/mol for ∆∆Gexp have been claimed from high-quality 

experimental measurements7. It is, however, very often the case that experimental data are 

reported as single numbers, without quantification of the uncertainties. We have no knowledge 

about the statistics of ∆Gexp or ∆∆Gexp reported, let alone the distribution of these quantities. 

This means that the unknown and unstated error bars may be varying in all manner of ways, so 

claiming that they are normally distributed is not credible. 

There are four compounds in the current project, which have been tested >100 times for their 

activities to SMYD3. One of them is S21 (Figure 6a) which has been computationally 

investigated here. The other three are for more potent compounds that are from a related but 

slightly different series. The relatively large number of tests makes it possible to verify the 

distributions of the experimental data. It should be noted that while compounds a and b do not 

show any drift in the assay over time, compounds c and d (Table 2 and Figure 6) show a small 

amount of time dependency. 

All of the 4 distributions are skewed from a normal distribution, with skewness deviating from 

0. Three of them are highly skewed with positive skewness (Table 2), indicating that the 

distributions have longer tails on the right side than those on the left (Figure 6). The other one 

is moderately skewed with a negative skewness and a longer tail on the left. The excess kurtoses 

are all positive, meaning that compared to a normal distribution, the tails are longer and heavier. 

It should be noted that the experimental data shown in Figure 6 are representative of the 

behaviour of such ligand-protein binding affinity more widely, and that other data remains 

confidential to GSK. Overall, these results imply the presence of non-normal distributions in 

the experimental measurements.  

 
Figure 6. Distributions of experimental pIC50 values shown as histogram and kernel density curve. 4 

compounds from the current project (a-d) are used, which have been tested more than 100 times. A bin 
size of .05 is used. The dashed lines indicate the means of the experimental measurements. 
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Table 2. Statistics of the experimental measurements pIC50 for the compounds with >100 tests. 

compound No. of test Average sd skewness kurtosis 

a 264 5.29 0.10 0.88 1.47 

b 114 7.31 0.12 -0.35 0.23 

c 124 7.47 0.19 2.04 7.56 

d 116 7.09 0.21 2.11 5.30 

 

4. Conclusion 

Using the TIES and ESMACS protocols, we have computed the binding free energies of a 

series of ligands to zinc finger protein SMYD3. Although an unexplained outlier exists, we 

obtain excellent statistical rankings across the set of compounds from the two protocols. 

ESMACS and TIES are again found to be powerful protocols for the accurate comparison of 

the binding free energies. 

We have previously reported the non-normal properties of calculated binding free energies. In 

the current study, we investigate the distributions of experimentally measured free energies, 

and find that the distributions are highly skewed. The practical implications of this discovery 

are important to apprehend. Non-normal distributions imply the occurrence of more ‘outliers’, 

making it essential to perform multiple measurements to pin down average behaviour. It is also 

a call to exercise caution in the use of statistical methods for the comparison of experimental 

data and computational predictions, as the assumption of normal distributions is not generally 

valid.  
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