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Introduction 

A reaction mechanism can be understood as a collection of 

chemical paths that connect the reactant with a product via 

relevant molecules, also referred to as reaction intermediates. 

Finding such a collection of molecules and paths is what is called 

exploration of chemical space, and can take place digitally by 

manually changing the molecular structure, based on chemical 

intuition, and performing subsequent quantum-chemical 

calculations. Such calculations perform bonding transformations 

by distorting bonds and bond angles in molecules that represent a 

reactant or a minimum in the potential energy surface.1–3 This can 

be done to locate other minima and saddle-points of the potential 

energy surface (PES) describing the reaction.4–8The saddle-points 

connect the reactant minimum with other minima that represent 

possible products or intermediates on the same potential energy 

surface. Each saddle-point corresponds to an elementary reaction 

step, and the transition state for this step, and its properties 

determine the probability of reaction. Although quantum-chemical 

calculations allow us to understand the relevance of a molecule (or 

of the chemical path the molecule belongs to) based on energetic 

criteria, finding relevant paths and performing the calculations 

requires human expertise and can be computationally expensive.  

There are alternative methods that also allow bond 

transformations without relying on expensive quantum-chemical 

calculations,9–20 such as adjacency matrix transformations. 14,21–23 

These graph-based transformations can explore large regions of 

chemical space by adding or subtracting integer values to 

adjacency matrices. These adjacency matrices can represent 

molecular species such as a reactant minimum, and the matrix 

resulting from the transformation can represent intermediates or 

a product minimum on the PES. However, as such an approach 

does not involve quantum-chemical calculations, saddle-points 

cannot be found, so  important information regarding the 

reactivity of the chemical species, and therefore the relevance of 

the chemical paths, is not included. Besides, chemical space is still 

very large so even while using adjacency matrices, exploring it 

completely for a given supramolecular system (normally the 

reactant) is challenging, especially when considering systems with 

a large number of atoms.24–26 Therefore, calculating a reaction 

network that shows every connected minimum for the given 

system becomes normally an unfeasible task. This problem, 

together with the computational time and human expertise that 

finding saddle-points requires, has motivated several groups to 

develop automatic data-driven algorithms. 27–41 These algorithms 

attempt to narrow the chemical space to explore in such a way that 

only important intermediates and transition states located 

between the reactant and a given product are considered. 

The following provides a non-exhaustive overview of efficient 

automated  chemical space exploration methods that have been 

shaping the landscape to date:  
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Chemical space exploration methods based on graph theory are 1) 

the ACE-Reaction14,42 developed by W. Y. Kim et al., which creates 

a chemical network by applying bond-addition and bond-breaking 

matrix transformations from randomly initialized matrices, to later 

computing relevant transition states; or 2) the Automatic Proposal 

of Multistep Reaction Mechanisms approach proposed by 

Habershon et al.21 that uses reaction class transformation matrices 

to specifically look for a product. While the first relies on stochastic 

procedures that can lead to a combinatory explosion, the second 

relies on a limited pre-defined database and cannot be applied to 

those reaction families for which data is not available.  

Efficient algorithms based on pure ab initio quantum-chemical 

calculations are 1) The Zstruct2 code from the Zimmerman 

Group43,44, that combines the single-ended GSM reaction 

pathfinder45,46 with bond-addition or bond-breaking vectors that 

describe elementary reactions, and that has been applied to 

transition metal-catalyzed reactions and polymerization;47–51 and 

2) the Nanoreactor tool developed by Martínez-Núñez et al. that 

performs fast high-temperature and pressure ab-initio molecular 

dynamics to find minima,38,52 and that has successfully been 

applied in reactions such as acetylene polymerization, in which 

chains of more than 70 atoms were grown.53 Computational times 

needed for ab initio calculations are nonetheless larger than the 

ones derived from a graph theory approach when generating a 

reaction network. 

 

To summarizing, when describing chemical reactions, methods 

that rely on pure ab initio quantum chemical calculations can 

efficiently find transition states, but these are usually limited to 

reactions in which reactants and products are connected by a small 

number of elementary steps. Otherwise, they will require a large 

amount of computational time. There are many situations in which 

the number of elementary steps is large. Some examples of such 

reactions are the metabolic reactions, such as the glycolysis that 

can be described in 10 elementary steps with systems up to 25 

atoms. Although promising, current algorithms still lead to a 

combinatorial explosion due to the large number of possible 

reactions that can be described in the reaction network, making it 

unfeasible to later study every single elementary step with 

expensive ab initio quantum chemical calculations.    

This is why, in this publication, we focus on tackling the general 

problem related to the size of the chemical space by first 

decreasing the amount of time that network generation demands, 

to later combine ab initio quantum calculations in a fashion way. 

Therefore, our approach also relies on chemical exploration with 

graph-theoretical techniques to 1) quickly find chemical species 

(nodes in the network) and generate connections between them 

that represent elementary transformations from a graph-

theoretical perspective (edges in the network), and 2) fully 

automate transition state search for every couple of connected 

nodes in the network. The first step is carried out by defining 

molecular graph transformations that represent elementary 

reactions in a graph-theoretical approach. Such transformations 

act upon functional groups in molecules whose Lewis structure 

satisfies the octet rule. These molecules are represented in terms 

of bond order matrices, which are related to adjacency matrices 

but also contain information about bond orders. The second step 

is performed using the double-ended GSM reaction pathfinder for 

different conformers in combination with an automated multi-step 

reaction detector, with refinement and intrinsic reaction 

coordinate (IRC) validation of transition states. 

The methodology followed will be explained in the Methods 

section. It has been structured into two parts. The first one 

englobes the reaction network generation. This part will begin with 

the definition of the chemical transformation of bond order 

matrices, followed by the reaction network generation procedure 

and reduction of the network. The second part englobes the 

quantum-chemical calculations. This part contains the entire 

quantum flowchart: from the generation of conformers to the 

validation of transition states. After the Methods section, we will 

show the results obtained by applying our method to five chemical 

systems. We will conclude with future applications and next steps 

in the development of chemical explorations. 

 

Methods  

Reaction Network Generation  

Bond Order Matrix Transformation 

Supramolecular systems formed by one or more molecules can be 

represented in terms of connectivity graphs. These are square 

matrices N x N, where N is the number of atoms in the system. The 

off-diagonal elements Ijk can take the values 1 or 0 depending on 

whether or not the jth and kth atoms are bonded to each other. This 

matrix representation of connectivity is often referred to as the 

adjacency matrix of the system or the atomic matrix). 

To describe a chemical transformation, one needs to specify an 

operation upon the adjacency matrix C0 that converts it into the 

matrix for another species. This can be done by defining a 

transformation matrix T0, most of whose elements are equal to 

zero, with a smaller number of off-diagonal elements 

corresponding to changes in connectivity. In previous studies, 

these non-zero elements have been set randomly (with some 

minor constraints),14,42 or by using templates, to be either −1 or 1.21 

Summing T0 and C0 gives C1, which may or may not map onto a 

supramolecular species that corresponds to a valid Lewis 

Structure. Upon repeatedly carrying out the same process, thereby 



 

generating successive families of Tn and Cn matrices, one can 

perform an exhaustive exploration of all possible species for the 

given atomic composition, but this exhaustive exploration also 

leads to a combinatory explosion in the total number of possible 

adjacency matrices, which increases very steeply as the number of 

atoms increases.  

To describe the bond order of molecules, a transformation in the 

adjacency matrix that takes into account valence rules must be 

performed. The resultant matrix is called a bond order matrix. 

These are also N x N square matrices but the off-diagonal bjk 

elements now take integer values that give the bond order 

associated with atoms j and k (0 represents no bond,  1 represents 

a single bond, 2 represents a double bond, etc.). 

Our approach removes the idea of working in the entire adjacency 

matrix space because of its large dimensionality to avoid a 

combinatory explosion. Instead, we directly work in the chemical 

space corresponding to structures following the octet rule. 

Restriction to this space can be enforced when performing a 

transformation over a bond order matrix b0 of a given 

supramolecule, by using the following approach: 

We first select two bonds in the molecule which will be broken: 

bondjk and bondj’k’, from which we get the pairs of indices j and k; 

and j’ and k’ which correspond to linked atoms respectively, that 

denote the three or four atoms involved in the reaction step (three 

is the minimum number of atoms that is frequently involved in an 

elementary transformation). Two different product bonding 

combinations can take place by shuffling the indices involved in 

bonds while respecting valence rules: one can create either 1) 

bondjj’ and bondkk’ or 2) bondjk’ and bondkj’, leading to two new bond 

order matrices. This is done for every pair of bonds in the molecule. 

This sort of two-bonds-breaking-two-bonds-forming matrix 

transformation applied over a bond order matrix of a molecule that 

satisfies the octet rule corresponds to an elementary 

transformation from a graph-theoretical perspective (and it, 

therefore, generates a supramolecule that also satisfies the octet 

rule). We believe that this approach is equivalent to using the 

combination of addition and dissociation reaction classes as in  

Habershon et al.’s work.21 While the present transformations are 

unable to create ionic species (whose formation requires a 

transformation in which a different number of bonds are broken 

and formed for a given atom: two-bonds-breaking-one-bond-

forming, one-bond-breaking-two-bonds-forming, etc.), the use of 

such more specific bond transformations does have the effect of 

highly reducing the size of the chemical space that needs to be 

explored.  

The three described approaches are illustrated in Figure 1, which 

shows how (a) Kim’s method14 and (b) Habershon’s method21 (red 

background) describe bond-breaking and bond formation applied 

over adjacency matrices, relying in the first case on exhaustive 

random matrix generation and the second case on reaction class 

heuristics. Both methods later require a second algorithm that 

transforms the adjacency matrix into a possible bond order matrix 

(shown with a green background). Because of the large size of the 

adjacency matrix space, most generated matrices do not map onto 

a valid bond order matrix, while application of a two-bonds-

breaking-two-bonds-forming transformation to a valid bond order 

matrix as shown in (c) (blue background) is guaranteed to lead to a 

bond order matrix that fulfils the octet rule, without requiring 

additional valence rules.  

 

Figure 1. Three methods for defining chemical reactions with 
matrix transformations, as illustrated for the four-atom cyanic acid 
– isocyanic acid system. (a) Definition of a randomly generated N x 
N reaction matrix applied over the cyanic acid adjacency matrix. (b) 
Definition of a sequence of 2 x 2 reaction classes applied over the 
cyanic acid adjacency Matrix. (c) Definition of the Two-Bonds-
Breaking-Two-Bonds-Forming Reaction Matrix applied over the 
cyanic acid Bond Order Matrix.  

 

Exploration of chemical space with two-bonds-breaking-two-

bonds-forming processes 

Given this property of two-bonds-breaking-two-bonds-forming 

matrix transformations, and the drastically reduced size of 

chemical space for bond-order matrices that satisfy the octet rule, 

a combinatory explosion is less severe and we find our procedure 

can survey the entire available non-ionic chemical space without 

needing to rely on stochastic procedures. 

Nonetheless, the chemical space is still very large. To reduce the 

number of possible combinations in a chemically intuitive way, a 

simple database with functional groups can be automatically 

generated, and some of these groups can be held fixed during the 

procedure so that the number of bonds that are allowed to 

transform is also drastically reduced. This implies a reduction in the 

bond order dimensionality from N x N to M x M where atoms in the 

reduced matrix representation are treated as a group of non-

separable atoms that belong to detected functional groups. These 

atoms are also referred to as active atoms. This way, two-bonds-

breaking-two-bonds-forming transformations applied over the so 

defined active atoms represent in a chemical sense functional 

group transformations. Figure 2 shows an example of functional 

group detection and posterior matrix reduction to its active atoms 

representation applied to methanolamine. 
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Figure 2. Functional groups detection of methanolamine and 
matrix reduction. 

In the same way, a second database was developed and used to 

prune unwanted molecules from the chemical space to be 

explored. For example, for reactions of typical organic compounds, 

with their large number of hydrogen atoms, stochastic exploration 

of bond order matrices has a high probability of generating species 

that include molecular hydrogen (whose formation is not 

energetically favorable compared to organic reactions). Bond-

order matrix transformations leading to these species can be 

removed from possible steps, leading to a significant reduction in 

the size of space that needs to be explored. More details of these 

databases can be found in the supporting information (SI). 

Once a set {b}1 is created from breac we already know that every 

molecule in {b}1 is connected to breac by an two-bonds-breaking-

two-bonds-forming transformation, so we include those 

connections in the chemical network provided that the molecular 

mechanics energy of the new species is not prohibitively high. 

Recursively repeating the whole process using the new species in 

{b}m+1 as starting points, we can generate our chemical network. 

Previous methods that work in the adjacency matrix space need a 

collection of adjacency matrix transformations to represent a 

single elementary reaction, a second algorithm that transforms 

adjacency matrices into bond order matrices, and a third that 

connects bond order matrices to form a reaction network 14,21,42. 

Our method skips these three steps by creating the network on the 

fly. This brings the next advantages compared to previous 

methods: 

1. A more concise and simpler implementation of the 

method 

2. Since the method works in a reduced version of the 

space, every possible combination is considered in such 

space  
3. Avoidance of non-chemical intermediates generation, 

with the corresponding time reduction of exploration 

4. Direct connection of all intermediates found 

As a consequence, the chemical space is drastically reduced to a 
more meaningful region. Figure 3 provides a qualitative depiction 
of reaction networks generated with different methods. 

 

Figure 3. Reaction networks are generated with different 
algorithms. (Left) Reaction network generated in a stochastic 
way: node transformations are defined as random reaction 
matrices acting on adjacency matrices. (Right) Reaction network 
generated by performing two-bonds-breaking-two-bonds-forming 
reaction matrix transformations that act over the bond order 
matrix space. 

Growth of the reaction network 

 

The reaction network can be understood from a graph-theoretical 

perspective. Different chemical species represent nodes in the 

network. These are connected by edges representing  elementary 

reactions, loosely defined. The method here described shows  two 

ways of exploring the chemical space or making the reaction 

network grow: branched growth and layered growth. 

In branched growth, the network is initialized with the set {𝐛}0  

containing just the reactant bond order matrix  𝐛𝑟𝑒𝑎𝑐 . A set of 

expansion cycles on the sets {𝐛}𝑛 then follow, in which a random 

element 𝐛𝐣 from {𝐛}𝑛 is acted upon by the transformation matrix 

{ℛ}𝑖  yielding a set of  new elements {ℛ𝑖𝐛𝑗} that belong to {𝐛}𝑛+1.  

Repeating the process creates a branched structure: 

 

iter = 0:    {𝐛}0 = {𝐛𝑟𝑒𝑎𝑐}  

iter = 1:    {𝐛}1 = {𝐛𝑟𝑒𝑎𝑐} ∪ {ℛ𝑖𝐛𝒓𝒆𝒂𝒄} 

iter = 2:    {𝐛}2 = {𝐛}1 ∪ {ℛ𝑖𝐛j | (𝐛j ∈ {𝒃}𝟏) for some j} 

… 

iter = 𝑁:    {𝐛}𝑁 = {𝐛}𝑁−1 ∪ {ℛ𝑖𝐛j | (𝐛j ∈ {𝒃}𝑵−𝟏) for some j} 

 

 

In layered growth, having created a set {𝐛}1  from 𝐛𝑟𝑒𝑎𝑐  that 

represents the set of nodes connected by one elementary 

transformation from the reactant, every element in {𝐛}1 is 

transformed before starting to generate a second ‘layer’ of 

elements {𝐛}2 by transforming members of {𝐛}1. Once every 

element in {𝐛}1 has been transformed, the network contains the 

set of edges that represent the first and second layers of 

elementary reactions from the reactant. The process is repeated 

for more iteration cycles until the desired product is found or after 

one has generated a given number 𝑁 of growth layers. This way, 

the reaction network grows by layers, every layer i representing 
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the set of species connected by n elementary reactions (or more 

precisely two-bonds-breaking-two-bonds-forming 

transformations) to the reactant. For simplicity, we will refer to the 

layers that describe elementary reactions from reactant as 

“elementary layers from the reactant”. 

The procedure is the same as in branched growth but applies 

transformation matrices for all j instead of some j at any iteration 

cycle. 

 

While we believe that the branched growth strategy is useful to 

generate a database of molecules and transition states when a 

specific product is not required, the layered growth strategy allows 

us to reduce considerably the time of calculation when information 

about a product is provided: if reactant and product are connected 

by several elementary reactions, working layer by layer ensures 

that the algorithm does not exceed the needed number of 

elementary reactions. Therefore, the layered growth strategy is 

especially useful for large chemical spaces in which a single node 

connects to dozens of them and branching leads to a combinatory 

explosion. 

 

 

Network Reduction: 

Once the chemical space has been explored and reactant and 

product are connected, the number of nodes in the network can 

still be very high depending on the number of atoms and the 

number of elementary layers relative to the reactant that has been 

explored. Since expensive calculations of transition states are later 

performed, it can be desirable to reduce the network to just 

consider a more relevant fraction of nodes. Several algorithms are 

implemented to achieve this: Breadth-first search (BFS),54 

combined with a network reduction strategy, and Dij stra’s 

algorithm.55 

In the BFS approach, the first step is to calculate the chemical 

distance (minimum number of edges that connect two given 

nodes) between the reactant R and the product P, this is 𝐷𝑅,𝑃 ;  

then the matrix D containing the chemical distances between each 

pair of nodes in the network is computed. 

We then apply the next inequalities to generate a reduced 

network: 

δ𝑖 = {
0     if   𝐷𝑖,𝑅 + 𝐷𝑖,𝑃 ≥ 𝐷𝑅,𝑃 + 𝑑𝑖𝑛𝑝𝑢𝑡

1    otherwise
 

 
If δ𝑖 = 1, node i is included in the reduced network. With the 

smallest possible value of 𝑑𝑖𝑛𝑝𝑢𝑡 = 0 (default value), this criterion 

means that only the nodes situated along a pathway leading from 

reactant and product with a minimal number of edges DR,P are kept 

in the reduced network. Larger values of 𝑑𝑖𝑛𝑝𝑢𝑡  lead to including 

nodes that lie outside these minimum-edge pathways. This 

inequality has also been previously used in previous work.14,42 One 

advantage of this definition is that it does not assume the validity 

of the heuristic “principle of minimum chemical distance”     D , 

whereby the minimum energy path is considered to be one whose 

number of nodes is the lowest. This is only assumed in case that 

𝑑𝑖𝑛𝑝𝑢𝑡 = 0. For larger values of this parameter, we are also 

considering paths that connect reactant and product through a 

larger number of nodes. The control over the degree of reduction 

of the network provided by choosing the parameter 

𝑑𝑖𝑛𝑝𝑢𝑡  becomes especially useful when several products are 

generated in a reaction, and someone is interested in knowing how 

many such species are possible. 

Nonetheless, this strategy applied over networks with hundreds or 

thousands of nodes can still provide very large reduced networks. 

For these scenarios, Dij stra’s algorithm55 can be used over the 

already reduced matrix. This algorithm will only extract paths that 

follow the PMCD. However, this only becomes useful when 

someone is looking for specific energy barriers since this principle 

has been proven false numerous times when applying quantum 

chemistry calculations. 

The database of functional groups can also serve as a strategy for 

reducing the network: if the user is interested in a specific 

reactivity, by only considering functional groups that describe it, a 

more guided exploration can take place with the consequent 

reduction in the network size. This nonetheless requires some 

basic chemical expertise, and in case the database does not contain 

all relevant functional groups can lead to incorrect mechanisms. 

We believe that this is the first reduction strategy based on 

chemical reactivity. 

To maximize optimal network generation, we will see in the Results 

section that the layered growth strategy and functional groups 

databases have been used for every system under study. 

Exploration of the PES 

Conformer generation 

Once a network is created, transition states are calculated for 

every two connected nodes 𝐢, 𝐣 in the reaction network. To do this, 

a 3D geometrical representation of 𝐢, 𝐣 must first be chosen. Such 

an arrangement of atoms and molecules with specific coordinates 

in 3D space, thereby involving spatial interactions between all 

atoms in the system, even those that are not connected through 

the chemical bonding network, is what we refer to as a conformer. 

Generating coordinates for a conformer requires taking into 

account preferred bonding structures as well as minimizing sterical 

repulsion forces between groups within one molecule or between 

groups that are part of different molecules. To do this, one usually 

must start from randomly initialized atom coordinates slightly 

constrained to empirical bond and angle values. This however does 

not ensure that the minimized reactant and product conformers 

are connected by the minimum energy path. To maximize the 

probability of finding the minimum energy path in which the 

transition state is located, sets of conformers {𝐢}, {𝐣} are generated. 



The next steps are followed using the 3rd version of the ETKDG 

algorithm as implemented in the RDKit toolset56:  

 

1. Depending on the number of atoms, hundreds or thousands 

of conformers were randomly generated for a given species 

that represents the reactant of the reaction 𝐢, 𝐣 in the network.  

2.  utina’s clusterization is performed over the list of 

conformers. The criteria to follow during the clusterization 

procedure is the maximization of the RMSD. This way, a set of 

conformers {𝐢} is extracted from the total number of initially 

generated conformers. The elements of {𝐢} are 

representatives of the cluster (also referred to as centroids), 

and the RMSD is maximum between them. 

3. Given a conformer 𝐢 from {𝐢} that represents the reactant R, a 

conformer 𝐣 that represents the product P is created by 

breaking and forming the appropriate bonds in conformer 𝐢 

and then optimizing the energy of the resulting structure of 

the species of connectivity corresponding to j at the molecular 

mechanics level of theory. By generating conformer 𝐣 from 

conformer 𝐢 we ensure that atom labeling in both conformers 

is constant. This is an important condition to be fulfilled when 

later applying the GSM. 

 

Quantum Calculations 

Once a chemical network is created, we compute the activation 

energy for every reaction described by two connected nodes. The 

activation energy is related to the rate constant for the associated 

step, which in turn can be used to estimate a weight associated 

with the corresponding edge in the network. For this purpose, we 

can find the minimum energy path that connects a reactant with a 

product by evaluating weights along different paths. 

Nonetheless, caution must be used when interpreting the edges in 

the chemical network – which are elementary transformations 

from a graph-theoretical perspective – as elementary steps in a 

quantum-chemical sense. In fact, such transformations may not be 

elementary in the quantum-chemical sense, such that one may 

instead find a non-elementary reaction path involving multiple 

maxima and with intermediate formation of new chemical species 

that had not been predicted when applying graph theory 

techniques. For such cases, it is important to identify the collection 

of elementary steps that lead to the minimum activation energy, 

which can be done by analyzing the energy profiles derived from 

quantum calculations.  

 

Activation energies are computed by finding saddle points on the 

potential energy surface, which we will refer to here as transition 

states. Due to the computational cost that is involved when finding 

the structure of transition states, a strategy of mixing different 

levels of theory is described below. 

 

Given the conformers 𝐢, 𝒋 from {𝐢, 𝐣} : 

1. Structural optimization of 𝐢 and 𝐣 is performed using an 

efficient semiempirical GFN2-xTB level of theory;57 

2. The Growing String Method (GSM) is used to find the TS 

connecting 𝐢 and 𝐣, again using the faster GFN2-xTB level of 

theory; 

3. The generated energy path is analyzed to check if the energy 

profile corresponds or not to an elementary reaction, being 

categorized as elementary if only one maximum connecting 

two minima that represent different chemical species is 

found. This can be done by first automatically identifying 

minima based on the energy gradient, then converting their 

atom coordinates to SMILES format with Pybel58, and finally 

comparing the SMILES of every two consecutive minima. If it 

is the case that the energy profile describes an elementary 

reaction, one proceeds to the next step; if not, one returns to 

step 1 but selects a different conformer pair from {𝐢, 𝐣}.  

4. A single energy point calculation is performed at the structure 

of the transition state on the semiempirical computed GSM 

path using a higher level of theory, namely the DFT functional 

B3LYP59, leading to the energy E.  

Repeating steps 1, 2 and 3 for the different elements of {𝐢, 𝐣} leads 

to a set of transition state energies {𝑬𝒊𝒋
𝑻𝑺} of the involved species i 

and j. The transition state with the lowest energy 𝑬𝒍𝒐𝒘𝒆𝒔𝒕
𝑻𝑺  from this 

set {𝑬𝒊𝒋
𝑻𝑺} is then refined and validated by performing a new 

structural optimization, but this time at a higher level of theory 

(here, this higher level of theory was the DFT B3LYP59 method with 

the 6-31G(d, p) basis set and Grimme’s dispersion correction terms 

D3 with Becke-Jones (BJ) damping.60 This is done with an in-house 

software named SubautoTS61 that moves the geometry closer to 

the saddle-point on the potential energy surface with a driven 

Monte Carlo algorithm, and posterior validation by evaluating the 

intrinsic reaction coordinate. 

 

Results and Discussion 

 

Reaction network generation with graph theory 

To validate our method’s performance, five molecular systems as 

presented in Figure 4 were studied.  Canonical SMILES input 

format62 that represents the reactant and the product is provided. 

Systems differ in their complexity regarding the number of atoms, 

atom types, and the maximum number of elementary reactions 

that are needed to connect the reactant with a product. 



 

 

Figure 4. Studied systems 

 

Table 1. Chemical systems studied with their corresponding: SMILES, network sizes, number of atoms, number of 

elementary reactions, and CPU time required for the network generation with the layered growth method 

System Number 

of atoms 

Number of 

elementary 

reactions 

between R 

and P 

Network size Reduced 

network size 

with BFS 

𝒅𝒊𝒏𝒑𝒖𝒕 = 𝟏 

Reduced 

Network 

size with 

Dijkstra 

CPU time 

(hours:minutes:seconds) 

1 8 2 5 5 3 00:00:03 

2 20 2 26 9 3 00:00:21 

3 21 2 35 11 3 00:00:51 

4 26 2 197 37 3 00:08:12 

5 24 3 1185 189 4 02:57:50 

 Table 1 shows how the computational time needed for network 

generation increases with the number of nodes in the network 

(network size) when the layered growth method, the complete 

database of functional groups, and the database of non-desired 

molecules (databases provided in the SI) are applied. The network 

size increases with the number of atoms and the number of 

elementary reactions that connect reactant and product in the 

system. By comparing the network size between systems 4 and 5 

we show that the number of nodes especially grows with the 

number of elementary reactions. We also find that network 
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reduction with the BFS approach54 can be performed without 

thereby eliminating important reaction paths between reactant 

and products provided that 𝑑𝑖𝑛𝑝𝑢𝑡  is high enough. However, for 

chemical systems of larger size (such as the present system 5), even 

after reduction with the BFS approach, the reduced networks still 

contain a large number of reactions to be evaluated with the 

subsequent quantum chemistry calculations. To avoid this 

problem, a second reduction can be performed with Dijkstra’s 

algorithm.55 In a reaction network, a path with the minimum 

number of nodes does not necessarily coincide with the minimum 

energy path, and although Dijkstra’s algorithm reduces the 

network size to only keep those paths that connect reactant and 

product through the minimum number of nodes, it can lead to 

neglect of the minimum energy path connecting the reactant with 

a product. Related to this issue, by definition, the use of a catalyst 

is known to decrease the overall energy barrier of a reaction, but it 

usually does this by introducing additional elementary steps, for 

example, reactions between the reactant and a catalyst, to the 

process. Hence a reaction path involving a catalyst will almost 

inevitably take a larger number of elementary steps to go from 

reactants to products than a catalyst-free pathway that fulfils the 

PMCD. In fact, even without explicitly adding extra molecules that 

work as catalysts, minimum energy pathways from reactant to 

product may not satisfy the PMCD. To illustrate this, we show an 

example of the reaction from methanolamine to 

methylhydroxylamine, NCO → CNO, found in system 1, illustrated 

in Figure 5. 

  

Figure 5. (A), energy profile for the elementary reaction NCO → 
CNO; (B), energy profile for a pathway leading from NCO to CNO 
with multiple elementary steps. 

Subfigure (A) in Figure 5 shows an energy profile for which the 

reaction occurs in one elementary step, with an activation energy 

of about 0.20 Eh. Subfigure (B) in  Figure 5 shows a different energy 

profile, in which the overall transformations take place in a non-

elementary way. Two intermediates connect reactant and product: 

NCO →  N[CH].O → C=N.O → CNO. Intermediate C=N.O also exists 

in the generated network while intermediate N[CH].O does not 

appear because this aminocarbene species cannot be formed with 

a “two-bonds-breaking-two-bonds-forming” transformation since 

it does not fulfill the octet rule. The activation energy needed to 

make the non-elementary reaction happen is about 0.14 Eh. 

Figure 5, therefore, shows that the path with the lowest number 

of intermediates or nodes does not necessarily coincide with the 

minimum energy path. This is why we do not recommend 

extracting the shortest paths by using the Dijkstra algorithm55 

when the intention is to calculate activation energies. Kim et al.42 

have previously suggested to combining Dij stra’s algorithm with 



 

Yen’s algorithm.63 This would allow considering reaction paths with 

a larger number of nodes in case the minimum energy path does 

not correspond with a path with the minimum number of nodes. 

Nonetheless, such information cannot be known a priori. Instead, 

quantum-chemical calculations must be applied to elucidate the 

correspondence between the number of nodes and the minimum 

energy path. In the last instance, this means that paths with a 

larger number of nodes should be explored from the very 

beginning with expensive quantum calculations to increase the 

probability of finding the minimum energy path. We conclude that 

although BFS and Yen’s algorithm can both overestimate and 

underestimate the reaction network, they are still less aggressive 

than Dijkstra’s algorithm when trying to keep the minimum energy 

path with an unknown number of nodes in the network, and that 

the problem of reduction of the chemical network cannot be 

decoupled from the process of calculation of the activation energy 

using quantum chemistry. 

Figures of reaction networks are located in SI section. 

 

Network reduction via functional groups detection: 

For system 5, we have also provided a shorter version of the 

database, which has been reduced to the minimum expression that 

allows the product formation from the reactant. The complete 

database, as well as its reduced version, are located in SI. Table 2 

shows the number of nodes and CPU time obtained when working 

with the complete database and its adapted reduced version for 

system 5. 

Table 2.  Network size and CPU time derived from 

system 5 when applying the complete database of 

functional groups and a reduced version of it for systems 

5. 

Database 
Network 

Size 

Reduced 

network 

size with 

BFS 

CPU time 

(hh:mm:ss) 

 

Complete 1185 189 02:57:50 

Reduced 1033 103 02:39:56 

 

By looking at the network size, we can see that the total number of 

nodes in the network decreases from 1185 to 1033. We also see 

that the reduced network size with BFS decreases from 189 to 103. 

We can also see a decrease in computational time from 02:57:50 

to 02:39:56. We have been able to reduce the network size by 45%, 

which can make the posterior transition state search more 

feasible. This alternative however requires user knowledge about 

the interesting reactivity of the system under study, and although 

we can now consider paths beyond the PMCD we can miss 

important ones by limiting reactivity. 

To conclude with the application of graph theory to network 

generation and network reduction, we can ensure that our method 

will provide a reaction network that does not miss any possible 

connectivity (at the moment with the caveat that only neutral 

species that fulfil the octet rule are located) while reducing 

computational time. Network reduction procedures such as 

functional group databases, BFS, or the Dijkstra algorithm may 

affect the results, so it is important to lead future movements to 

the development of new reduction strategies. 

 

Transition State calculations with Quantum Chemistry 

Table 3 shows the percentage of success of finding transition states 

for the different reactions in the different chemical systems. When 

the GSM method suggested that a given step was not an 

elementary reaction, the transition state search was not carried 

out, and therefore for these steps, the algorithm was not 

considered as having failed. Transition states for system 4 were 

calculated in the reduced network generated with BFS which 

contains 32 reactions, and not for the three reactions shown in the 

picture after applying Dijkstra algorithm. 

Table 3. Method performance for the 5 systems. The 

average percentage of success was 91%. By executing 

Pysisyphus GSM calculation with a level of theory of 

DFT-B3LYP59 and the basis set 6-31G(d, p) for those 

systems that failed, the percentage of success 

increases to 94%. 

System 1 2 3 4 5 

Number of 

Reactions 
5 10 12 54 3 

TS found 3 5 4 16 3 

TS not found 0 0 1 2 0 

Non-

elementary 

Reaction 

2 5 7 36 0 



Percentage of 

Success 
100% 100% 80% 89% 100% 

 

We first see that only a small fraction of reactions correspond to 

elementary reactions as a result of a large number of non-

elementary reactions described by ionic or carbene-like 

intermediates (which are not included with the two-bonds-

breaking-two-bonds forming transformation). Nonetheless, our 

method will always ensure that if a non-elementary reaction can 

be decomposed into elementary reactions of neutral 

intermediates, such intermediates will appear as nodes in the 

original network. Important intermediates will also remain after a 

reduction with the BFS algorithm if the input chemical distance 

parameter dinput and the functional group database have been 

properly set. For the cases that ionic or other non-octet species 

exist as intermediates of those alternative elementary multistep 

paths, a possible reaction path that connects reactant and product 

for that specific non-elementary reaction may not exist. This is why 

the user must be sure that our method is applied to reaction 

systems that take place under non-ionic formation conditions. 

Table 4 shows the CPU times of the different steps performed 

along the  different steps of our method.

 

 

 

 

By looking at the times needed for Network Generation in Table 4, 

we can see the level of performance of our method. We also see 

that the generation of different conformer orientations for 

systems with a large number of atoms becomes the bottleneck at 

least within the steps prior to the search for transition states. This 

step involves the 3D molecular coordinate generation, a  utina’s 

clusterization over hundreds or thousands of stabilized conformers 

with molecular mechanics, and a GFN2-xTB geometry 

optimization. 

We proceed to analyze the results based on their classification as 

non-elementary (row 5 in Table 3: Non-elementary reaction) and 

elementary (rows 3 and 4 in Table 3: TS found and TS not found ). 

 

Non-elementary reaction classification: 

Reactions that fall into the group of non-elementary reactions 

were those whose lowest activation energy value came from a 

non-elementary reaction path. Increasing the number of energy 

paths to be considered for a specific reaction (this input parameter 

was set to 6 in our calculations) allows a more accurate 

classification, as well as increases the success possibilities of 

finding a transition state. When a reaction is labeled as non-

elementary, no further calculations took place since intermediates 

that connect reactant and product by elementary reactions are 

expected to be described in the reaction network. 

42 out of 50 non-elementary reactions were labeled as non-

elementary because energy paths with more than one transition 

state proved to have a lower activation energy than those with a 

single transition state for that specific reaction, or because every 

reaction path contained more than one transition state. For the 

other 8 reactions, the method failed to find a suitable energy path 

that connects the reactant with the product when applying the 

GSM with the GFN2-xTB level of theory. For each of these 8 

reactions, the same calculation was repeated for the 6 different 

reactant conformers, this time again using the GSM but with the 

DFT-B3LYP59 level of theory. Results showed that none of the 

resultant energy profiles provided a valid transition state (there 

was more than one imaginary frequency or simply the calculation 

crashed). This can be due to several possibilities: lack of a reactant 

Table 4. CPU times for the different steps. 

System 
Network 

Generation 

Time 

Conformer 

Orientations 

Generation 

GSM GFN2-

xTB Median 

GSM 

GFN2-xTB 

Highest 

Value 

SubautoTS 

DFT-B3LYP 

Median 

SubautoTS 

Highest 

Value 

TOTAL 

1 00:00:03 00:02:37 00:04:07 00:08:48 00:08:31 00:19:41 00:31:15 

2 00:00:21 01:01:28 00:09:46 00:16:19 01:27:13 01:59:13 03:17:53 

3 00:00:51 02:25:51 00:08:41 00:11:00 08:13:16 13:53:11 16:31:35 

4 00:08:12 07:44:58 01:00:59 01:39:00 07:30:23 09:24:38 19:13:12 



 

or product stability, lack of a transition state, or lack of an energy 

path that connects the reactant and the product at those levels of 

theory. In these scenarios, increasing the level of theory or the 

number of initial relative orientations of the reactant with respect 

to the product could bring better results. We nonetheless labeled 

those scenarios as non-elementary since the highest level of theory 

we considered (DFT-B3LYP) did not find a valid reaction path that 

connects reactant and product by an elementary process.  

 

Elementary reaction classification: 

Our method found 31 transition states out of the 34 reactions 

classified as elementary. Every transition state was successfully 

validated with an intrinsic reaction coordinate that linked it to the 

expected reactant and product structures.  When the GSM at the 

GNF2-xTB level with posterior refinement with SubautoTS at the 

DFT (B3LYP) level of theory failed, the GSM reaction path was 

recalculated with the Pysisyphus software,64 which can apply the 

GSM algorithm with a range of different levels of theory – here we 

used the same B3LYP-DFT approach as used above. We could see 

that for one out of the three systems that failed, Pysisyphus was 

able to directly find the transition state at the highest level of 

theory that we considered (DFT -B3LYP). For such a calculation, we 

reuse the input orientations of reactant and product that showed 

the best performance when finding the lowest energy barrier with 

the GSM with the lower GFN2-xTB level of theory. This way, we 

take advantage of previous results to increase the probability of 

rapidly finding a transition state at the higher level of theory. 

Regarding the two remaining failed calculations 

(Cc1ccccc1NC(=O)C → Cc1ccccc1N1OC1Cl  and 

CC(=O)O.CCCNC(C)=O → CC(=O)O.CCCC1(C)NO1 from systems 3 

and 4 respectively), both of them include as reactant or product a 

species containing a three-membered ring NCO, which can be 

difficult to describe with our chosen levels of theory. Again, higher 

levels of theory will allow checking if the corresponding reaction 

path actually exists, or if it turns out to be non-elementary by 

allowing more reaction paths to be explored. 

There were also transition state calculations that were successful 

when using our transition state searching procedure (GMS_GFN2-

xTB + SubautoTS_DFT-B3LYP) and that failed when directly 

applying GSM with the higher level of theory DFT-B3LYP as 

implemented in Pysisyphus. Such results, as well as computational 

times, are shown in the SI, where we can see that our strategy of 

mixing levels of theory by (1) obtaining a suitable elementary 

reaction path with the lowest activation energy with the growing 

string method at a low level of theory, and (2) refining the 

transition state with SubautoTS with the higher DFT-B3LYP level of 

theory outperforms in computational time the growing string 

method when it is directly applied at the higher level of theory DFT-

B3LYP as it is implemented in Pysisyphus. We also show that 

SubautoTS found the correct transition state in every single 

scenario except in three. From those, Pysisyphus found the correct 

TS structure in system 4 - elementary reaction r40; on the other 

hand, DFT-B3LYP as it is implemented in Pysisyphus found 

problems when trying to describe 14 out of 29 elementary 

reactions that were well described by our method. In the third 

column (GSM GFN2-xTB + SubautoTS DFT-B3LYP) we consider GSM 

GFN2-xTB computational time, while we have not added this time 

to the fourth column (Pysisyphus GSM DFT-B3LYP) although we 

believe it benefits from the input that is provided. Nonetheless, it 

is also possible that a valid molecular orientation in the GFN2-xTB 

level of theory harms results when working at the GSM DFT-B3LYP 

level of theory. 

 

Conclusions 

The novel method proposed in this paper is able to automatically 

generate reaction networks, in which different chemical species 

are connected according to elementary reactions by using graph 

theory. Quantum-chemical calculations are then used to locate TSs 

for every pair of connected nodes in the network. This results in 

the chemical exploration of potential energy surfaces. The main 

aspects to be highlighted are: 

1) During the network generation phase, by directly 

working in the bond order space (which fully maps the 

chemical space) we obtain faster chemical exploration 

than in previous work.14,21,42 We have also implemented 

a database with functional groups that guides the 

chemical exploration to selectively extract relevant paths 

based on reactivity, with the correspondent reduction in 

the time of exploration. A second database allows the 

obviation of paths that contain non-desired molecules 

based e.g. on toxicity or known thermodynamic 

inaccessibility under the temperature/pressure 

conditions, thereby avoiding slowing down the 

calculations for these species.  

 

2) During the transition state search phase, a quantum-

chemical calculation pipeline is used to efficiently find 

reliable transitions states at high levels of theory in an 

unsupervised manner. This is done by starting from a 

lower level of theory during the expensive phase of 

reaction path optimization with the growing string 

method, and later refining the structure and energy at a 

higher level of theory. 

 



We have tested the performance of our method by studying 

chemical systems of different sizes regarding the number of atoms 

and elementary reactions from reactant to product. For the 

systems under study (up to 26 atoms and 3 elementary reactions 

connecting reactant with product), the presented method shows 

success of 91.70%. Although this success rate is high for the 

automation of such a complicated task, and reaction networks with 

hundreds of transitions states can now be calculated in our 

computational center in less than a week, the size of the chemical 

space generated as a function of the system under study illustrates 

the main challenges: we have shown that small variations in the 

number of elementary reactions can have important repercussions 

regarding the large number of reactions to appear in the network. 

We have also shown that the reduction of large chemical networks 

becomes mandatory to avoid unnecessary and expensive quantum 

calculations. Current network reduction methods can nonetheless 

lead to the removal of energetically favorable reaction paths, and 

we believe that future work should adopt reduction techniques 

that rely on energetic information derived from fast quantum 

calculations. These limitations encouraged us to develop the 

present method, which speeds the computation of network 

generation and quantum calculations while ensuring high quality 

and reliable transition state results. At the same time, our method 

proves to be flexible by allowing users to customize several easily-

understood global parameters. We also believe, that with the 

growth in computational power to be expected in the next years, 

transition state calculations will become faster to perform. This will 

enable us to extend our method so that it can also identify 

important ionic species. Although our method has been fully-

automated once the calculation is sent, some knowledge such as 

interesting functional groups to be considered may be expected for 

its optimal functioning. We expect future versions to also 

automatically identify relevant functional groups. 

Computational details 

Regarding the reaction network generation, all simulations used a 

python-based code in combination with calls to C++ functions from 

the RDKit cheminformatics library.56 Network parameters were set 

so that the growth of the networ  happens with the “layered 

growth” functionality; active atoms were detected according to 

the database shown in Table S1 in SI for calculations 1,2,3,5. For 

the second calculation of system 5, the reduced database shown in 

Table S2 in the SI was used instead; nodes in the reaction networks 

that contained non-desired molecules listed in Table S3 in SI were 

neglected in every system; a reduction of the reaction network 

with the BFS algorithm was used in all five systems; a second 

reduction of the network with the Dijkstra algorithm was 

performed in systems 4 and 5; the number of orientations in 

reactant and product for every reaction was limited to 6.  

Regarding the quantum calculations: 

For the GSM calculation we used the tight-binding GFN2-xTB 

method developed by Grimme57 with D4-ATM dispersion 

correction terms for the lower level of theory calculations; and the 

DFT B3LYP functional with the 6-31G(d,p) basis set and the D4 

dispersion correction terms for the higher level of theory 

calculations, implemented in Pysisyphus and Turbomole. 64,65  The 

GSM setup was always double-ended, with a path containing 25 

nodes including endpoints when using GFN2-xTB and 18 nodes 

when using DFT-B3LYP, which grows from both endpoints with a 

node spacing of 5.0. A maximum of 200 iterations was allowed, 

with a maximum number of 30 optimization steps per growth step 

in GFN2-xTB, and 20 optimization steps per growth step in DFT 

B3LYP. The RMS force criteria on the TS node for string 

convergence was set to 0.0005 Eh a0
-1 with a permitted maximum 

value of the perpendicular gradient set to 0.1  Eh a0
-1 for the 

addition of new nodes. Finally, reduction of the optimization step 

was not allowed; having intermediate detection values higher than 

2.0 kcal mol-1 while bond-breaking was allowed.  

The geometry optimization of transition state structures obtained 

from the GSM with the GFN-xTB2 took place by applying the DFT-

B3LYP functional with the 6-31G(d,p) basis set and the D4 

dispersion correction terms  with Turbomole.65 

Refinement of transition states took place by also applying the 

DFT-B3LYP functional with the 6-31G(d,p) basis set implemented in 

Turbomole65 and the Grimme dispersion correction terms D3 with 

Becke-Jones (BJ) damping, together with an in-house optimization 

algorithm based on Monte Carlo optimization. The frozen bonds in 

the initial optimization were the four active bonds involved in the 

“two-bonds-breaking-two-bonds-forming” transformation, which 

are the ones later distorted in the Monte Carlo transition state 

search.  

A comparison of computational time between our method and the 

Pysisyphus setup is shown in Table 4 in SI. 

All simulations were performed in  o estro’s computer cluster 

installations. The CPUs are Intel Xeon Gold at 3.3 GHz. All used 

nodes have 96 GB of memory. No parallelization was performed. 
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Graphical abstract 

 

A strategy for automatically exploring chemical space is presented. The method efficiently combines 

graph theory and quantum-chemical techniques to reduce the required human expertise and 

computational time for finding minima and saddle points in a potential energy surface. This is done 

by applying graph elementary transformations over automatically detected functional groups in 

molecules. Transition states in the resulted reaction network are then automatically found at a low 

level of theory to be later more accurately described at a higher level. 
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