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Abstract 

Mixed lipid micelles were proposed to facilitate the emergence of life through their documented growth dynamics and 

catalytic properties. Our research predicted that micellar self-reproduction is possible through composition-driven catalyzed 

accretion of lipid molecules in heterogeneous systems, reaching states that allow micellar growth and split while maintaining 

compositional homeostasis. However, experimentally studying catalyzed accretion in mixed micelles is technically 

challenging. Here, we employ atomistic Molecular Dynamics simulations to examine the self-assembly of variegated lipid 

assemblies allowing us to derive entry and exit rates of monomeric lipids into pre-micelles with different compositions. We 

observe considerable selective rate-modifications that are compositionally-driven, and illustrate their underlying 

mechanisms as well as the energy contributions that facilitate these kinetic effects. Lastly, we describe the measured 

potential for compositional homeostasis in our simulated mixed micelles, the basis for micellar self-reproduction, with 

implications for the study of the origin of life. 

 

Introduction 

Lipids, sometimes regarded as amphiphiles or surfactants, are simple amphipathic molecules, possessing a polar 

headgroup and a hydrophobic tail. These molecules can spontaneously aggregate to form structurally-diverse 

assemblies such as micelles and vesicles when present above certain threshold concentrations (e.g. critical 

micelle concentration, CMC). As the primary component of the membranes of all living cells, assemblies of lipids 

and their growth dynamics have been the focus of research for many decades2. This uncovered the technological 

usefulness of lipid assemblies, particularly in the fields of medicine and synthetic chemistry3, 4. It has also offered 

insights on both the thermodynamic attributes of lipid assemblies, such as structural stability and electrostatics, 

and their kinetic parameters, such as their catalytic parameters5, 6. 

Due to their prebiotic availability and spontaneous generation of supramolecular structures, lipids have been 

widely implicated in studies of the origin of life. The traditional view of a protocell particularly invokes a vesicular 

bilayer surrounding an assortment of replicating polymers within its lumen interior7, 8. The proposed role of the 

lipid bilayer in such studies is to sustain the replicating polymers and prevent them from diffusing away. This 

view has elicited a renewed focus on lipid systems in the context of prebiotic chemistry9, 10, usually comprised 

of simple lipids such as fatty acids and alcohols11. Recent accounts5, 12 have suggested that lipids have other 

important functionalities besides acting as barriers between the protocellular inner network and the aqueous 

solution. The lipid membrane must be kinetically tied to the reproduction apparatus of the network, so that it 

will be able to coordinate its own growth and division with the entire cell13, 14. This realization prompts a deeper 

exploration of the reproduction dynamics of non-covalent lipid assemblies as a significant facet of any origin of 

life scenario. 

Going one step further, we have argued in previous works12, 13 that mixed lipid assemblies may have facilitated 

the emergence of life without relying on replicating polymers. To test this Lipid First approach, we have 

developed the Graded Autocatalysis Replication Domain (GARD) chemical kinetics model, which directly 

illustrates how mutually-catalytic interactions among lipids influence the accretion rates of new lipids joining a 

growing assembly. These catalytic exertions may lead to compositional homeostasis, a unique state in which the 

assembly’s composition remains unchanged throughout growth-and-split cycles12. An assembly experiencing 

homeostatic growth, when followed by fission, enables it to undergo successful self-reproduction with 

mutations, a basis for subsequent selection and evolution. The inferences of the GARD model apply mostly to 

micelles than to vesicles, making them better life precursors13. 



According to the GARD model, the mutually-catalytic interactions entail a kinetic influence of the momentary 

composition of a growing assembly on the accretion rates of joining monomers. More explicitly, the model 

assumes that each lipid type may influence the kinetics of any other lipid’s entry into or exit from the micelle. 

Thus the micellar current constituency plays a critical role in determining monomer fluxes, hence the time-

dependent changes of the micelle’s compositional states. It provides a recursive feedback loop, which induces 

deviations from random accretion. Monte Carlo simulations of the GARD model reveal that this guided 

progression allows an approach towards compositional homeostasis and self-reproduction15. 

While lipid-based non-covalent catalysis cases have been presented16-18, and some reports indicate that specific 

lipophiles may act as catalysts for the incorporation of new lipid monomers into vesicles19, 20, limited molecular 

details have been obtained on the precise mechanism and dynamics of accretion into heterogeneous lipid 

assemblies. This involves a challenge to investigate the influence of variegated micellar compositions by 

monitoring picoseconds compositional changes within nanoscopic mixed micelles, so as to be able to track the 

entire accretion trajectory of multiple assemblies. 

However, advanced computational methodologies allow us to overcome some of these difficulties. Molecular 

Dynamics (MD) simulations is an effective and reliable computational tool, extensively validated and broadly 

accepted as an accurate emulation of real chemistry21, 22. Since its invention, MD has matured enough to enable 

high-resolution scrutiny of complex molecular systems that are often inaccessible to experimentation23. This 

makes MD one of the best investigative tool to probe lipid-based kinetic phenomena in systems chemistry and 

protobiology24. Indeed, MD has been used extensively to research micellar systems25-31, deriving both structural 

and dynamical attributes. Though significant attention has been given to the process of self-assembly25, 27, most 

of the work has been conducted with homogeneous systems, largely without compositional variation.  

In this work, we present an atomistic-resolution MD simulation study of the accretion of lipid monomers towards 

mixed micellar assemblies. We simulated binary mixtures of five lipid types in different ratios, observed their 

aggregation, and measured the influence of the micellar composition on the kinetics of monomer entry and exit. 

We report that compositional changes do indeed affect these rates, and to various extents for different lipid 

types, lending credence to the realism of network-like mutually-catalytic interactions among lipids. We describe 

cohesive aggregation profiles for discrete lipid combinations, and calculated the accretion flux of our mixed 

micelles, and determined that some may attain compositional homeostasis in non-random configurations, 

supporting predictions by the GARD model. 

 

Results and discussion 

Varied Lipid Combinations Elicit Discrete Dynamic Profiles of Self-Assembly 

To test the effects of lipid compositions on accretion kinetics, we employed five widely different types of lipids, 

each with a distinct headgroup chemistry, so as to follow distinct self-assembly processes (Figure 1A). The lipids 

include two single-charge lipids (SDS, negative and DDA, positive), two zwitterionic lipids (DPC, positive-negative 

and DAS, negative-positive) and a neutral lipid (LAU). All lipids are reported to spontaneously aggregate to form 

micelles at equilibrium, except for LAU that mainly assembles into vesicles in a pure state32. All five lipids possess 

an identical hydrocarbon tailgroup of twelve carbons, allowing to focus solely on the effects attributed to 

headgroup chemistries. 

For each experiment, we simulated 15 lipid combinations, 5 pure and 10 binary mixtures of the five lipid types 

at high concentrations (~220mM) to facilitate fast accretion. Each run lasted 50ns, and consisted of 54 

monomers randomly distributed in the simulation box, surrounded with explicit water molecules. The lipids 

spontaneously self-assembled into clusters, which grew bigger over time (Figure 1B). As observed before31, 33-35, 

two paths for cluster growth were present. While monomers are available in the environment (mostly during 

the first few nanoseconds), growth is driven primarily by stepwise addition of single-monomers to existing small 

clusters. However, after monomers are practically depleted, the lipid clusters continued to grow mostly through 



fusion events, exhibiting much slower kinetics. Notably, general monomer depletion occurred as even the 

concentration of single monomers in the simulation box is similar to their CMC36-39. 

Following the accretion trajectories of different lipid admixtures, we probed their self-assembly profiles using 

two complementary measures. First, we examined the average non-monomeric cluster sizes along the 

simulations (Figure 1C). We observed that the average cluster size is very sensitive to charge distributions – the 

simulations that reached a single micelle state were those with more neutral net charge (such as pure LAU), 

while those that remained at average aggregation number of about 20 are those with more pronounced net 

charges (such as pure SDS and pure DDA). Notably, some lipid mixtures display slow kinetics and have not 

reached an accretion plateau. 

The second measure of accretion was changes in the Solvent Accessible Surface Area (SASA) of the simulated 

lipids over time, a measure of their compactness or conversely their accessibility for further interactions (Figure 

1D). The SASA plots of the different chemistries start high, then decrease as lipids aggregate and become less 

exposed to water. Admittedly this analysis is sensitive to the molecular size of the employed lipids, so that 

chemistries that involve bigger and bulkier lipids tend to display greater solvent accessibility. Accounting for this 

shift, the plots follow a similar trend to those displayed in the cluster size examination. 

The two analyses provide quantitative information that portray cohesive aggregation profiles for distinct lipid 

chemistries. Interestingly, the accretion profiles of some lipid combinations are strikingly different from those 

of both pure constituents, as best exemplified by the complete self-assembly of SDS with DDA with prominent 

compactness, while each of them hardly manifest a full-sized micelle by the end of the simulation (Figures 1C 

and 1D). This may illustrate cooperative stabilizing interactions between the lipids, similar to those 

experimentally reported for SDS and C12TAB (sharing similar topology with DDA)40, with kinetic implications. 

 

  



 

Figure 1 - The self-assembly process of different lipid chemistries. A) The molecular structures of the five lipid types 

employed in the simulations. The headgroup charged moieties are marked by color-coded frame and explicit charge 

indicator. B) A typical self-assembly progression of lipids in an MD simulation. Depicted are 100% DPC molecules, with blue 

and orange spheres corresponding to headgroup moieties ammonium and phosphate, respectively. C) Average size (lipid 

counts) of clusters in experiments of different lipid chemistries. Clusters start from size 2 and grow over the duration of the 

simulation. Line colors refer to different lipid chemistries (legend in D). The plots are an average of several simulations of 

either pure or mixed (50%-50%) lipid chemistries, and were smoothed with a sliding window of 1ns. D) Average accessible 

surface area (SASA) of the employed lipids in the experiments1. The plots are an average of several simulations of either pure 

or mixed (50%-50%) lipid chemistries, and were smoothed with a sliding window of 200ps. 

 

  



Exit Rates of Lipids from Pre-Micelles Are Significantly Affected by Compositional Variation 

Deriving association and dissociation kinetics from MD simulations is often nontrivial, and the chosen strategy 

changes depending on the explored molecular system41-45. Kinetics by classical MD simulations are mostly 

studied in ligand-receptor systems, where single-molecule experiments are performed on a sole receptor-ligand 

pair. This setting makes it computationally demanding to derive statistically correct association and dissociation 

rates46. In contrast, self-assembling lipid systems unlock a variety of cluster sizes, shapes, conformations and 

compositions yielding an abundance of association and dissociation events of free-monomers (ligands) with 

respect to a lipid cluster (receptor), facilitating the derivation of statistically reliable kinetic rates. 

We adopted a reaction-based methodology for detecting instances of lipids associating with, and dissociating 

from pre-micellar clusters. Such transitions were detected and recorded for all employed lipids from all the 

simulations, noting the composition and size of the involved clusters in each transition. Using this methodology, 

lipid exit rates were first measured (Figure 2A, Supp. Video 1). This is generally a much simpler analytic 

measurement than that of entry rates due to it being a first order reaction. Based on previous ligand-receptor 

studies, we treated regarded the involved cluster as the receptor, its constituent lipid types that may influence 

the exit kinetics as “modulators”, and the leaving lipid as the “probe”. A “residence time” was defined as the 

duration between the first and last contact of the probe with the cluster, and its inverse is defined as the exit 

rate coefficient (Eq 1). A similar definition of the term is used in the realm of ligand-receptor complexes45, 47-52, 

and has been discussed in the context of micellar systems as well53, 54. In the analysis, we only inspected 

residence reactions that occurred for more than 1ns in clusters of at least ten monomers, to make sure the 

probe was fully inserted within a micellar phase before its expulsion. 

𝑘𝑒𝑥𝑖𝑡 = ⟨
1

𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 𝑇𝑖𝑚𝑒
⟩             𝐸𝑞. 1 

Figure 2B shows that with increasing levels of modulator DPC within the clusters, the exit rate coefficients of 

SDS and DDA drastically diminish, while those of DAS and LAU are unaffected. Interestingly, the measured rate 

coefficients are an order of magnitude higher than observed experimentally, for pure SDS and pure C12TAB 

micelles55, 56, explainable by the disordered nature of the pre-micelles as compared to fully-formed micelles in 

the lab, and perhaps also by the limitations of the computational model such as the choice of the employed 

force-field. 

By systematically mapping the kinetic modulation for all probe-modulator pairs, we generated a matrix of rate 

modifications (Figure 2C). This matrix represents an MD-derived estimate of β-matrix of mutually-catalytic 

interactions in the GARD model15, 57 (see Methods). The results clearly demonstrate that the most affected lipid 

probes are SDS and DDA, having their exit rates diminished by all lipid modulators with varying powers and 

linearity scores, while other lipids experience very mild catalysis. Notably, the highest kinetic influences in the 

matrix occur mutually between SDS and DDA, reflecting the cooperativity observed in their accretion profiles 

(Figures 1C and 1D). 

Lastly, we examined the influence of cluster size on the probe residence times. For this, we combined all 

reactions of the same lipid probe type with all other lipid modulators, and calculated typical residence times for 

all possible cluster sizes. The results depict linear ascent for all probes, ranging from cluster sizes of 2 monomers 

to about 20 monomers (Figure 2D). This phenomenon has been demonstrated before in vesicles29, explained by 

a higher packing order of lipids, and was mostly absent in micelles of shorter lipids35. For larger cluster sizes, the 

residence times observed seem to peak between 25-35 monomers, and diminish for even bigger clusters with 

higher observed variation. This trend could similarly be a result of greater molecular crowdedness in bigger 

clusters with increasing number of stabilizing hydrophobic interactions29. This data expands the previous analysis 

and demonstrates that variations in the micellar phase, either compositional or size-based, have substantial 

kinetic effects over exiting lipid monomers. 

  



 

Figure 2 - Exit reactions of monomeric lipids from pre-micellar clusters. A) an SDS probe molecule escaping from a pre-

micellar cluster. Orange – SDS, cyan – DPC. The probe is in space-filled representation, while the cluster lipids are in stick 

representation. The time from the first (fully inserted) to the last (dissociating) image is about 0.6 ns. B) Kinetic analysis 

showing the average exit rate coefficients of different probe lipids influenced by varying levels of modulator DPC in the 

involved clusters. Error bars convey the standard error of the mean. R2 values for the weighted linear regressions: SDS – 

0.962, DDA – 0.946, DAS – 0.065, LAU – 0.286. The basal rate coefficient of DPC, at pure DPC clusters, is depicted for contrast. 

C) Matrix of all composition-induced modifications to the exit rate coefficients. Values correspond to the extent of rate 

modification for each probe-modulator pair, in respect to the probe’s basal rate. Colors correspond to the magnitude of the 

values. Stars represent R2 values, whereby one star is 0.55-0.7, two stars are 0.7-0.85, and three stars are 0.85-1. D) Average 

residence time of different lipid probes within clusters of various sizes. Error bars convey the standard error of the mean. R2 

values for the weighted linear regressions, for clusters sizes 2 to 20 lipids: DPC – 0.937, SDS – 0.997, DDA – 0.993, DAS – 

0.919, LAU – 0.976. 



Entry Rates of Lipids into Pre-Micelles Show Sensitivity to Compositional Variation 

In comparison to exit rates, the derivation of ligand entry rates in MD is not trivial, with multiple reported 

approaches optimized for different cases of protein-ligand binding49, 51, 52, 58. When it comes to the explicit kinetic 

analyses of monomer entry into a lipid assembly (Figure 3A, Supp. Video 2), the available literature is rather 

scant31, 35, 42. To accommodate this challenge, we adapted published algorithms in the realm of protein-ligand 

binding45, 48-50 to fit the lipid assembly system. We defined the term “addition time”, which is the duration 

between two consecutive entries of lipids of the same type. In this approach, the cluster into which the probe 

lipid enters includes the lipid that entered prior to it. Our defined “addition time” is analogous to the unbound 

time in ligand-protein systems45, 48-50, a duration in which a receptor is not bound to a ligand. It has been argued 

that the unbound time of a receptor, together with the concentration of free ligands, correspond to the entry 

rate coefficient. We therefore use the formula shown in eq. 2, whereby ⟨𝐶𝑚𝑜𝑛𝑜𝑚𝑒𝑟𝑠⟩ is the average of the varying 

concentration of free probe during the addition time. In the analysis, we only inspected residence reactions that 

occurred for more than 300ps in clusters of at least ten monomers. 

𝑘𝑒𝑛𝑡𝑟𝑦 = ⟨
1

𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 × ⟨𝐶𝑚𝑜𝑛𝑜𝑚𝑒𝑟𝑠⟩
⟩                𝐸𝑞. 2 

In general, the analysis presents rate coefficients that are about one order of magnitude faster than 

experimentally reported, for pure SDS and pure C12TAB systems55, 56. Again, this may be a result of the 

limitations of the employed computational model, such as the choice of force-field, or likely the disordered 

nature of the simulated pre-micellar assemblies as compared to fully-formed micelles in lab experiments. A 

known fact is that MD simulations can emulate relative differences of a measure better than its absolute values 

as experimentally reported59. Remarkably, the entry rate coefficients are also about 2-2.5 orders of magnitude 

higher than those of the exit rates, a difference that is very comparable to experimental reports55, 56. Therefore, 

it seems that at the very least the results convey trends that are reliably similar to those of the actual rate 

coefficients. 

The entry analysis show that elevated levels of modulators in the involved clusters elicit mostly rough linear 

surges for the calculated rate coefficients (Figure 3B), with lower linearity scores than those that appear in the 

exit analysis. The detected mutually-catalytic influences were summarized in accordance to the GARD concepts, 

in a similar manner to the 𝛽-matrix of the exit analysis (Figure 3C). Interestingly the entry matrix conveys similar 

trends to those that appear in the exit matrix, whereby the same modulator-probe pairs show significant rate 

modifications. This symmetrical pattern suggests that the same mechanism underlie both types of rate 

modification. It also accentuates the influence of cluster composition over accretion dynamics, as accelerated 

entry and decelerated exit both promote faster assembly growth. 

Lastly, we investigated the influence of cluster sizes on the entry rate of lipids, independent of clusters 

composition (Figure 3D). We calculated the inverse of the entry rate coefficients, for all lipid types across all 

relevant experiments, and averaged them based on the size of their involved clusters. Some trends are similar 

to those of the exit analysis, such as linear ascents at small cluster sizes. However, the employed lipid types 

generally preserve the magnitudes of their kinetics across all cluster sizes, fitting previous results35. 

  



 

Figure 3 - Entry reactions of monomeric lipids into pre-micellar clusters. A) A DPC molecule joining a lipid cluster. Cyan – 

DPC, orange – SDS. The probe is in space-filled representation, while the cluster lipids are in stick representation. The time 

from the first (associating) to the last (fully-inserted) image is about 0.4 ns. B) Kinetic analysis showing the average entry rate 

coefficients of different probe lipids influenced by varying levels of modulator DDA in the involved clusters. Error bars convey 

the standard error of the mean. R2 values for the weighted linear regressions: DPC – 0.356, SDS – 0.814, DAS – 0.446, LAU – 

0.481. The basal rate coefficient of DDA, at pure DDA clusters, is depicted for contrast. In the analysis, we eliminated a 

minority of cases in which the relative amount of the lipid components in the cluster changes by more than 5% of the total. 

We also subtracted from the addition time segments in which the concentration of free probes is zero, and eliminated cases 

where the addition time is below 300ps. C) Matrix of all composition-induced modifications to the entry rate coefficients. 

Values represent the scope of rate modification for each probe-modulator pair, in respect to the probe’s basal rate. Colors 

correspond to the magnitude of the values. Stars represent R2 values, whereby one star is 0.55-0.7, two stars are 0.7-0.85, 

and three stars are 0.85-1. D) Average residence time of different lipid probes within clusters of various sizes. Error bars 

convey the standard error of the mean. R2 values for the weighted linear regressions, for clusters sizes 2 to 14 lipids: DPC – 

0.020, SDS – 0.834, DDA – 0.890, DAS – 0.732, LAU – 0.067. 



Specific Headgroup Interactions Contribute to Observed Rate Modifications 

In addition to exploring the kinetic effects, it is important to demonstrate the molecular mechanisms that 

underlie this dynamic behavior. As the tailgroups of the employed lipids are nearly identical, these mechanisms 

likely involve only interactions between pairs of headgroup, neutral, charged and zwitterionic (Figure 1A).  

In order to determine the headgroup contributions, we further investigated the lipid-lipid interactions during 

probe residence reactions. We introduced a measure called Headgroup Interaction Prevalence (HIP), which is 

defined as the percentage of a reaction’s residence time in which a specific headgroup interaction is present. 

We further defined a HIP fold change, comparing two groups of reactions with high and low probe residence 

(see Methods). The results (Figure 4A) indicate that headgroup interactions play an important role in residence 

time elongation, since specific headgroup moiety interactions result in different HIP fold changes. The 

interactions that portray greater and more significant HIP fold changes match those exhibiting greater rate 

modifications in the exit kinetic measurements (Figure 2C), as illustrated in Figure 4B. Heterogeneous lipid 

headgroup interactions appear to contribute more to residence time elongation than homogeneous 

interactions, further emphasizing the power of lipid mutual catalysis60. Interestingly, for pairs of single-charge 

probes and cluster zwitterionic lipids, interactions with both zwitterionic headgroup moieties generally display 

substantial HIP fold changes, possibly due to the proximity of moieties on the lipid headgroup structure. Taken 

together, this analysis vividly displays the mechanistic interactions that underlie the observed compositionally-

driven kinetic effects. 

The detected probe accretion kinetic effects indicate that the activation energy for exit and entry transitions is 

sensitive to the composition of the modulating clusters. The asymmetry between the exit rate decelerations 

(Figure 2C) and entry rate accelerations (Figure 3C) implies that variations in cluster composition may influence 

the energy levels of both the transition state and the micellar ground state (Figure 4C). In essence, it is possible 

that both catalysis and thermodynamic changes in affinity levels contribute to the observed kinetics. Validating 

these energy transformations for different micellar chemistries is a challenging task. Classical MD simulations 

have been used extensively to determine binding free energies for protein-ligand interactions, using a wide 

variety of methods for disparate chemical systems22. Self-assembling lipid systems, that are dynamic and 

generate clusters of diverse sizes, compositions and conformations, may prove more tasking to dependably 

investigate as compared to proteins with more defined binding sites. 

Therefore, we opted for a descriptive approach that focuses on changes in the mode of interaction of a probe 

with its modulating cluster. We devised two analyses that examine the lipid-cluster mode of interaction: a 

dynamic variation of the HIP analysis, and an analysis that follows the orientation of probes throughout their 

residence. While the first analysis focuses on molecular interactivity, the second investigates probe 

conformational transformations. 

The dynamic HIP analysis shows the percentage of reactions in which a specific headgroup interaction is present 

at each time-step during the probe residence. We calculated these values for probes interacting with modulator-

rich and modulator-poor clusters, and plotted the difference (HIP shift) between these two groups (Figure 4D, 

Supp. Figure 4A-D). The results indicate that elevated levels of modulator lipids in clusters indeed promote the 

majority of probe-modulator headgroup interactions, which is most prominent in chemistries that match 

substantial exit rate modifications. The analysis demonstrates how probes become engulfed in the cluster during 

their residence (Figure 4C, 4D), interacting selectively with neighboring lipids. The gradual changes in HIP shift 

throughout the residence, especially for kinetically-affected chemistries (e.g. SDS-DDA), suggest that higher 

modulator concentration in clusters make these interactions more intensive within the pre-micellar cluster than 

in the transition states (at the beginning and end of the probe residence). Thus it can be expected that the energy 

state of the probe within the cluster is more affected by compositional variation than that of the transition state. 

However, there are indications that the transition state is somewhat affected as well. The association and 

dissociation phases of the residence show almost complete symmetry (Supp. Figure 4A-D), pointing to cohesive 

modes of interaction. As HIP shifts are observed at the very beginning and end of the residence (i.e. the shallow 

depth of probe penetration into the cluster) , these findings further strengthen the assertion that the modes of 



interaction for both monomeric entry and exit are highly similar with a definitive transition state61 that is 

sensitive to compositional changes. 

To further elucidate the lipid-cluster mode of interaction, a probe orientation analysis was introduced. It follows 

the orientation of the probe in regard to the geometric center of the involved cluster (Figure 4E). Similar to the 

dynamic HIP analysis, we calculated the shift in probe orientation (orientation shift) between modulator-rich 

and modulator-poor clusters (Figure 4F, Supp. Figure 4E-F). As before, the most affected chemistries match 

probe-modulator pairs that experience substantial rate modifications, leading to more tangential probe 

orientations that suggest higher headgroup involvement. 

The analysis depicts mostly no variation in the orientation shift along the residence, implying that increased 

modulator presence in clusters affects probe orientation equally at the transition state and at the bulk of the 

micellar residence. This is true except for chemistries involving LAU as probe or modulator. It appears that 

clusters with high LAU concentrations show more pronounced tangential orientations at the transition state, 

which continuously diminish throughout the probe residence. This behavior could again be clarified by the 

increased cluster compactness induced by the lipid (Figure 1C and 1D). High-LAU compactness could obligate 

probes to more forcibly disrupt the micelle during their transition and assume more tangential orientations. 

These changes may explain LAU-modulated detected kinetic effects.  In sum, both dynamic analyses portray 

changes to lipid-cluster interaction modes, suggesting that although catalytic contributions are undeniably 

present, accretion kinetics are more influenced by compositionally-driven affinity modifications. 

  



 

Figure 4 - Specific headgroup interactions during lipid residence within clusters. A) A volcano plot describing the fold change 

in Headgroup Interaction Prevalence (HIP) values between long residence (above 10ns) and short residence (1ns-2ns) 

reactions. Colors refer to lipid types; shape refer to the charge of the interacting moiety. Inner shapes represent the probe’s 

moiety, and outer shapes represent moieties that belong to other lipids in the cluster. Black dashes indicate a 2.5 fold change 

and a 10-5 p-value. B) Illustrations of representative lipid headgroup interactions with low (1-3) and high (4-6) HIP fold change. 

High HIP fold changes match the kinetic results, indicating that these interactions prolong probe residence times. C) The 

energy landscape of lipid entry/exit transitions. Black corresponds to the basal energy profile of the transition, while gray 

corresponds to a profile modified by compositional variation as inferred from the observed kinetics. Green dashes represent 

activation energies for the exit reaction. D) Dynamic HIP plots depicting the difference (shift) in HIP values between 

modulator-rich (50%-100%) and modulator-poor (0%-50%) clusters along the first 0.5ns of the residence. Colors refer to 

distinct headgroup moieties interactions of probe-modulator pairs. Shapes in the legend refer to the charges of the moieties 

(see legend of A). Only interactions to the right of the vertical dashed line in A are included. E) The probe orientation (α) in 

respect to the geometrical center of the cluster (blue circle). F) A plot depicting the degrees shift in probe orientation in 

relation to the geometrical center of the involved clusters. The shift is between modulator-rich (50%-100%) and modulator-

poor (0%-50%) clusters, along the first 0.5ns of the probe residence. Positive shifts correspond to changes in orientation 

towards a tangential direction, while negative shifts correspond to changes towards a radial orientation. Colors refer to 

different probe-modulator pairs. Only single-moiety probes (SDS, DDA and LAU) are included. 



Observed Accretion Kinetics predicts Micelle Self-Reproduction at Non-Random Compositions 

Self-reproduction of a chemical system is a widely accepted criterion for seeding life. As gleaned from the 

function of nowadays cells, a multicomponent chemical system must undergo homeostatic growth in which the 

relative concentration of each molecule in the system is preserved over growth and split cycles12. It has long 

been reported that micelles can grow through accretion of environmental lipids34, 55 or through endogenous 

synthesis62, 63, and can divide once they become too big and structurally unstable64. Some recent studies have 

provided experimental demonstration of compositional homeostasis in a population of proliferating mixed 

micelles13, 65, 66, but detailed evidence at the single micelle level is still lacking. 

From our MD simulations, we can see strong indication of compositional homeostasis. For example, we can look 

at the mutual interaction of SDS and DDA, accelerating the entry and decelerating the exit of each other with 

comparable strengths. If we account for only the exit rates (the more reliable of the two measures), we 

calculated – by taking the intersection point of the two curves of exit rates of SDS probe-DDA modulator and 

vice versa – that micelles with 45.25% DDA and 54.75% SDS will attain perfect compositional homeostasis, where 

both lipid types will display an identical exit flux. Other such pairs could display similar homeostatic states at 

different ratios. 

Furthermore, acquiring the rate modification parameters by which one lipid influences the entry and exit rates 

of a second lipid allows us to tentatively examine the prospect of compositional homeostasis in more elaborate 

micellar clusters containing more than two lipid types. For that, we examined the compositional space of 

micelles comprised of the five employed lipid types (Figure 5), and calculated the entry and exit fluxes for the 

lipids (see Methods). Providing equimolar 4mM lipid concentrations in the environment, we observed that 

0.58% of the compositional space “pixels” attains homeostasis. The centroid of the best self-reproducing 

assemblies contains 21% DPC, 36% SDS, 37.5% DDA, 3% DAS and 2.5% LAU. The self-reproducing compositions 

are clustered together in space (Figure 5), matching the definition of a compotype (cluster of composomes as 

predicted by the GARD formalism)12. 

An important aspect of the group of homeostatic compositions are how distant they are from the equimolar 

concentrations in the environment. This is a hallmark of the fact that these compositions are governed by kinetic 

phenomena away from equilibrium. Without composition-driven kinetic effects, whereby the entry and exit 

rates for all lipid types would be equal, equilibrium will be reached at compositions that reflect the outside 

concentrations15. The resultant homeostatic compositions in our analysis are more distant from the equimolar 

state than 40.38% of possible compositions. This nontrivial finding is significant as it portrays away-from-

equilibrium dynamics for self-reproducing mixed micelles that defines living cells. 

  



 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 - Micellar self-reproduction in five-dimensional compositional space. The PCA plot features the reproduction 

capacity of mixed micelles of different compositions containing the employed five lipids, within an environment where these 

lipids are in equimolar 4mM environmental concentrations. The best 62 (0.58%) reproducers are shown in blue and the worst 

2000 reproducers are in orange. We note that enhancement of the equimolar concentrations had negligible effects on the 

results. 

 

 

Conclusions 

The depicted MD results provide prime evidence that the composition of pre-micellar assemblies affect their 

accretion trajectory by modifying the entry and exit rates of aggregating lipids. Using simple analyses, we were 

able to quantify the mutual rate modifications among the simulated lipids, observing cooperative and selective 

interactions. We further described the mechanistic underpinnings of the observed kinetics and the contribution 

of lipid-micelle affinity. Finally, we extrapolated the kinetics of more elaborate mixed micelles based on the 

matrices of derived rate modification parameters, predicting the scope of compositional homeostasis in an 

emulated multi-component assembly. These results constitute an important step towards researching the origin 

of life in invoked simple lipid chemical systems. 

Self-aggregation is a concerted interplay of monomers, primarily driven by tailgroups hydrophobic 

interactions67. This insight is reflected in accretion kinetics, whereby changes to the length of lipid tailgroups 

could modify exit rates by several orders of magnitude61, 68, 69. This work uncovers the contribution of headgroup 

chemistries to the accretion kinetics, which is perhaps energetically milder yet has substantial kinetic influence. 

Previous reports illustrated the effects of headgroup chemistries on aggregate sizes and structures67, and our 

work uncovers complementary key facets in lipid insertion and removal. 

Molecular Dynamics is an established experimental tool for investigating the emergent behavior and accretion 

kinetics in lipid systems24, and has proven itself again in the present work, generating entry and exit rates that 

are highly comparable to experimentally measured rates55, 56. Importantly, the observed kinetic trends match 

previous experimental reports, such as the cooperativity between single-charged positive and negative lipids40 

and the generally faster entry and slower exit kinetics of neutral lipids70. Therefore, we advocate that the MD 

results are expected to reliably display compositionally-driven kinetic effects. Future work may improve our 

analytical endeavors, exploring more heterogeneous systems in longer and more elaborate simulations, and 

perhaps validating these results with advanced laboratory experiments. 



One of the remarkable aspects of the kinetic analyses is the existence of a form of mutual catalysis between 

different lipid types. This finding suggests that each lipid may act as a rate modifier and influence the accretion 

rates of another lipid in a micellar context. Mutual catalysis among simple molecules has been reported before71, 

72, particularly in lipid systems13, 65, yet has not been quantitatively explored in detail. Excitingly, rate 

modifications appear to distribute very unevenly, and when present, they occur with significant probe-

modulator specificity. These conclusions match previous GARD predictions57, 73, and strengthen the treatment 

of mixed micelles as nanoreactors5, 13. It is reasonable to assume that mutual rate modification applies for most 

(if not all) lipophilic molecules, and thus more diverse micellar systems will produce more complex catalytic 

networks. 

Lastly, the acquired results promote the reality of micellar self-reproduction. Expanding on previous reports13, 

here we present the possibility of micelles attaining compositional homeostasis, based on the derived rate 

modification parameters. This finding is extremely significant in the context of the origin of life, providing, 

perhaps for the first time, direct evidence that growing micellar assemblies could truly self-reproduce, 

bequeathing their compositional information to progeny. Therefore, this significantly supports the possibility of 

life’s emergence in catalytic mixed micelles, paving a path for selection and evolution towards life as we know 

it. 

 

Experimental section 

System set-up: The 3D models of Lauric Acid (LAU), Dodecyl Phosphocholine (DPC), Dodecyl Dimethyl Ammonio 

Propane Sulfonate (DAS), Dodecyl Dimethyl Amine-oxide (DDA) and Sodium Dodecyl Sulfate (SDS) were built 

using the Micelle/Membrane Builder facility of CHARMM-GUI74. 54 lipid molecules were packed in random 

positions and orientations in a simulation box of 7.4×7.4×7.4 nm3 using the gmx insert-molecules tool of 

Gromacs 2020.2 (https://doi.org/10.5281/zenodo.3773801)75 for each system. The molecules were in high 

concentrations (~220mM), well above their CMC. The systems were solvated with TIP3P water molecules. Each 

box was replicated by periodic boundary conditions. Sodium or chloride ions were added in random positions to 

achieve a neutral net charge of the systems. The minimization procedure and set-up of molecular dynamics (MD) 

simulations were performed with GROMACS 2020.2 program package using the CHARMM-36 all-atom additive 

force field containing lipid parameters76. The real space summation of electrostatic interactions was truncated 

at 1.2 nm, and the Particle Mesh Ewald (PME) method was used to calculate the electrostatic interactions 

beyond 1.2 nm with a grid spacing of 0.12 nm and an interpolation order of 4. Van der Waals interactions were 

calculated using a cut-off of 1.2 nm. The solvated systems were energy minimized to eliminate unfavorable 

positions. Harmonic positional restraints were applied on lipid head group atoms – carboxyl oxygen for LAU, 

phosphate phosphorus for DPC, ammonium nitrogen for DAS, ammonium nitrogen for DDA and sulfate sulfur 

for SDS – and tail group atoms – carbons at positions 4, 8 and 12 – to achieve smooth minimization. 5,000 steps 

of steepest descent algorithm was used, adopting harmonic force constants of 1,000 kJmol-1nm-2 for the 

abovementioned lipid atoms. The minimized systems were equilibrated over 2 successive runs: 125ps (NVT, 1fs 

time-step) and 200ps (NPT, 2fs time-step). To allow water molecules and ions to adjust around the lipids, 

harmonic restraints with a force constant of 1,000 kJmol-1nm-2 were applied on the same lipid atoms as in the 

case of the minimization step.  

Production of MD trajectories: All-atom MD simulations were performed on a local High Performance Cluster 

(HPC) called Chemfarm with nodes of 2 GPUs and 36 CPUs using the CHARMM-36 force field of GROMACS 2020.2 

package. All simulations comprise trajectories of 50ns, with atomic coordinates recorded every 2ps. Two sets of 

triplicates were performed for binary systems (containing two types of lipids), whereas one set of triplicates was 

performed for each pure system (containing a single lipid-type). For each replica, new initial random velocities 

were generated, and for each set of replicas new initial atom positions were set as well. For the binary systems, 

five different concentration ratios were performed: 

 

 



Table 1 - Five different concentration ratios used for the binary systems 

 Ratio Monomer Count 

1 10%/90% 6/48 

2 30%/70% 16/38 

3 50%/50% 27/27 

4 70%/30% 38/16 

5 90%/10% 48/6 

 

The following MD protocols were used: the integration time step was 2fs; the isobaric–isothermal (NPT) 

ensemble was employed; the pressure was set to 1 bar using isotropic coupling to the Parrinello-Rahman 

barostat with a time constant of 5ps and an isothermal compressibility of 4.5*10−5 bar−1; the temperature was 

kept constant at 300K using the Nosé-Hoover thermostat with a time constant of 1ps. Bonds with hydrogen 

atoms were constrained using the Linear Constraint Solver (LINCS). 

Overall Simulation analyses: The MD trajectories were analyzed with tools included in the GROMACS 2020.2 

package and by in-house Python scripts. Molecular clusters of lipids were calculated with the gmx clustsize tool 

of GROMACS using a cut-off of 0.24nm (unless mentioned otherwise in the text), the largest distance to be 

considered in a cluster. The cut-off choice was based on the database of atomic van der Waals radii used by 

GROMACS77. The equilibrium minimum pairwise distance between two lipid molecules is the equilibrium 

nucleus-nucleus distance of two hydrogen atoms i.e. 0.24nm (twice the van der Waals radius of a hydrogen 

atom). Visualization of molecular conformations was made with PyMOL (The PyMOL Molecular Graphics System, 

Version 2.3.0 Schrödinger, LLC.) and VMD, version 1.9.4a43 (June 11, 2020)78. Further analyses and graphs were 

generated using Python. 

Β-matrix analysis: We took the slopes of all modulator-probe pairs and divided them by the basal exit rate 

coefficient of the probe. The basal rates were measured in pure mixtures (clusters of 100% probe type). We then 

multiplied the results by 100 to acquire the clear percentages of change in rate coefficients. For example, the 

exit rate coefficient of probe A from clusters of lipids A and B: 

𝑘𝑒𝑥𝑖𝑡 𝑜𝑓 𝐴 = 𝑘𝐴(𝑓𝐵 ∗ 𝛽𝐴𝐵 + 1 )            𝐸𝑞. 3 

Where 𝑘𝐴 is the basal exit rate of probe A, 𝑓𝐵 is the fraction of modulator B within the cluster, and 𝛽𝐴𝐵  is the 

value in the β-matrix that corresponds to the extent that modulator B modify the exit rate of probe A. The 

equation is accommodating of micelles that include more than two types, as exemplified in the compositional 

flux analysis. 

Headgroup Interaction Prevalence (HIP) analysis: We took all the probe residence reactions and measured, at 

each time-step, the minimal distance of each of the probe’s headgroup moieties to other moiety types in the 

cluster. If the distance was equal or below 0.3nm, we noted that the moieties interaction is present. For each 

reaction, we calculated the fraction of the residence time in which each possible probe-cluster moieties 

interaction occurs (HIP values). Then, we grouped the reactions into two groups based on the duration of their 

residence times – long residence group (above 10ns) and short residence group (1ns-2ns) – and calculated the 

average HIP value for every possible headgroup pair interactions within each group. Lastly, we calculated the 

fold changes in the HIP values between these two groups for each moiety pair interaction, as a ratio of the long 

residence group over the short residence group. T-tests were applied to observe the significance of the fold 

changes 

Dynamic Headgroup Interaction Prevalence (HIP) analysis: We first divided all reactions into two groups based 

on their involved clusters composition (below 50%, and above 50% lipid modulator levels). Then, we calculated 

the presence of a probe-cluster moiety interaction across all compatible reactions in a specific group, and did so 

separately for each relevant time-step (for the first and last 0.5ns of residence time). The HIP trends were 

smoothed with a sliding window of 10ps. Later, we calculated the difference (shift) in the HIP plots between the 

modulator-rich and modulator-poor groups. We did so only for cross-interactions (between lipids of different 



types), since same-type interactions exist in clusters of many additional lipid types and thus are not applicable 

to this analysis. 

Probe Orientation analysis: The orientation of a lipid is defined as the angle between two vectors – the lipid 

vector, that connects a prominent atom in the lipid’s headgroup and its terminal carbon, and the vector that 

connects the lipid headgroup and the geometrical center of the involved cluster. The prominent headgroups 

atoms are: “N” for DPC, “S” for SDS, “N” for DDA, “S” for DAS, and the carboxyl “C1” for LAU. The probe 

orientations were calculated for all the residence reactions from the exit analysis, and separately for each time-

step within the first and last 0.5ns. The plots were smoothed with a sliding window of 10ps. Similar to the 

dynamic HIP analysis, the residence reactions were divided into two groups based on the involved cluster 

composition (below 50%, and above 50% lipid modulator levels). Afterwards, all compatible reactions within 

each group were averaged discreetly for each time-step, generating a typical orientation progression for the 

group. Lastly, we calculated the difference (shift) in the probe orientation plots between the modulator-rich and 

modulator-poor groups. 

Compositional flux analysis: We generated all possible compositions from the five employed lipid types, with a 

resolution step of 5%. We then inserted each composition into a variation of the GARD kinetic equation below, 

and calculated its accretion flux, as well as the cosine similarity (H) between them. This similarity measure 

reveals the level of compositional homeostasis, as high similarity means the flux drives the micelle towards its 

current composition. A successful reproducer is defined as a composition that has an H value of 0.9 or above. 

Lastly, the typical reproducing composition was generated from averaging the compositions of the ten best 

reproducers (those with the highest calculated H values). 

 

𝑑𝑛𝑖

𝑑𝑡
= (𝐶 × 𝑘𝑒𝑛𝑡𝑟𝑦,𝑖 × (1 + ∑(𝑓𝑗 × 𝛽𝑒𝑛𝑡𝑟𝑦,𝑖𝑗)

𝑁𝐺

𝑗=1

)) − (𝑘𝑒𝑥𝑖𝑡,𝑖 × (1 + ∑(𝑓𝑗 × 𝛽𝑒𝑥𝑖𝑡,𝑖𝑗)

𝑁𝐺

𝑗=1

))       𝐸𝑞. 4 

 

In the equation: 𝑛𝑖  is the amount of lipid type i, 𝑁𝐺  is the number of lipid types in the system, C is the 

environmental concentration of lipid i, 𝑘𝑒𝑛𝑡𝑟𝑦,𝑖 and 𝑘𝑒𝑥𝑖𝑡,𝑖  are the basal entry and exit rates of lipid type i into 

and from a homogeneous cluster (100% lipid i), 𝑓𝑗 is the fraction of the composition that pertains to modulator 

lipid type j, and 𝛽𝑒𝑛𝑡𝑟𝑦,𝑖𝑗  and 𝛽𝑒𝑥𝑖𝑡,𝑖𝑗  are the rate modification parameters of modulator j over probe i, taken 

from the derived β-matrices (Figures 2C and 3C). 
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