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Abstract: 

    The first catalytic vicinal thiosulfonylation of ynones has been 

developed. Under the catalysis of 1-10 mol% Cs2CO3, various 

thiosulfonates underwent Michael addition/nucleophilic substitution 

tandem reaction with different ynones to form C-SO2 and C-S bonds 

simultaneously and produce multifunctional vinyl sulfones in high yields 

and excellent E-selectivity. 

Introduction 

Organosulfur compounds are widely used in medicinal and biochemistry, 

organic synthesis and material science.1 Thus, the development of efficient 

method for the construction of C-S bond and the installation of sulfur-

containing functional groups into organic molecules are topics of 

continuous interest. Among different sulfur-containing compounds, vinyl 

sulfones often serve as the critical structural motifs in numerous 

pharmaceuticals and biologically active compounds.2 Given the great 

significance, considerable efforts have been exerted to develop efficient 

methods for the synthesis of these important frameworks.3 Except for the 



classic Knoevenagel condensation reaction,4 Horner-Wadsworth-Emmons 

olefination5 and vinyl sulfides oxidation reactions,6 atom transfer radical 

addition (ATRA)7 has emerged as a powerful strategy for the synthesis of 

vinylsulfone derivatives. A number of difunctionalization of alkynes, 

including halosulfonylation,8 selenosulfonylation,9 aminosulfonylation,10 

disulfonylation,11 thiocyanatosulfonylation,12 carbosulfonylation13 and 

carboxysulfonylation,14 have been developed through ATRA reactions. In 

sharp contrast, thiosulfonylation of alkynes has only rarely investigated, 

which allows concomitant formation of C-SO2 and C-S bond in one step. 

Recently, Xu and coworkers15 reported an elegant dual gold/photoredox-

cocatalyzed ATRA to alkynes, which provides a novel protocel for the 

synthesis of thio-functionalized vinylsulfones. Interestingly, using Eosin Y 

as photocatalyst, Jia and coworkers16 realized a similar thiosulfonylation 

of alkynes under metal-free conditions, but with reversed regioselectivity. 

Very recently, Reddy and coworkers17 reported that the same products can 

also be obtained through a new radical-involved vicinal thiosulfonylation 

of 1,1-dibromo-1-alkynes. However, these aforementioned radical 

reactions are not suitable for thiosulfonylation of ynones due to the 

dramatically reduced stability of α-ketone alkenyl radical intermediate as 

compared to alkenyl radical. 

 



Scheme 1 α-ketone alkenyl radical and alkenyl radical 

To the best of our knowledge, there is no method for vicinal 

thiosulfonylation of ynones has been disclosed to date. Therefore, the 

development of novel and mechanically different method for vicinal 

thiosulfonylation of ynones is highly desirable. As part of our continuous 

research on C-S bond formation reactions,18 we envisaged that a base can 

catalyze the Michael-addition/nucleophilic substitution tandem reaction of 

ynones and thiosulfonates to produce multifunctional vinylsulfones 

through a novel non-radical process. Herein, we would like to report this 

result. 

Results and discussion 

At outset, we commenced our study with ynone 1a and thiosulfonate 2a 

as the model substrates. To our delight, in the presence of 10 mol% DBU, 

the vicinal thiosulfonylation reaction proceeded smoothly in THF at room 

temperature to produce the desired product 3a in 87% yield (Table 1, entry 

1). Encouraged by this success, several other common bases were then 

examined. TBD and DBN catalyzed the difunctionalization in high yield 

(Table 1, entries 2 and 3). Triethylamine, the Hunig’s base, DABCO and 

Ph3P cannot catalyze the reaction (Table 1, entries 4-7). tBuOK catalyzed 

the reaction in modest yield (Table 1, entry 8). Inorganic bases, such as 

NaOH, Na2CO3 and K2CO3 are inefficient for the reaction (Table 1, entries 

9-11). Interestingly, Cs2CO3 catalyzed the reaction in high yield (Table 1, 



entry 12). A brief evaluation of the reaction media indicated that 

acetonitrile was the best choice with respect to the yield (Table 1, entries 

13-17) Reducing the amount of 1a to 1.2 equivalents led to slightly 

decreased reaction yield (Table 1, entry 18). Interestingly, reducing the 

catalyst loading to 5 mol%, excellent yield and stereoselectivity were 

maintained (Table 1, entry 19). However, further reducing the catalyst 

loading to 1 mol% resulted in decreased reaction yield (Table 1, entry 20). 

Finally, the control experiment showed that in the absence of a base, no 

desired product was formed (Table 1, entry 21). 

Table 1 Optimization of reaction conditions a 

 

Entry base solvent Time/h E/Zc Yield(%)b 

1 DBU THF 7 >25:1 87 

2 TBD THF 7 >25:1 97 

3 DBN THF 7 >25:1 76 

4 Et3N THF 7 >25:1 nr 

5 DIPEA THF 7 >25:1 nr 

6 DABCO THF 7 >25:1 nr 

7 PPh3 THF 7 >25:1 nr 

8 tBuOK THF 7 >25:1 34 

9 NaOH THF 7 >25:1 nr 

10 Na2CO3 THF 7 >25:1 nr 

11 K2CO3 THF 7 >25:1 nr 

12 Cs2CO3 THF 7 >25:1 93 

13 Cs2CO3 DCM 7 >25:1 22 

14 Cs2CO3 DCE 7 >25:1 42 

15 Cs2CO3 MeOH 7 >25:1 5 



16 Cs2CO3 CH3CN 7 >25:1 98 

17 Cs2CO3 toluene 7 >25:1 6 

18d Cs2CO3 CH3CN 7 >25:1 95 

19e Cs2CO3  CH3CN 7 >25:1 98 

20f Cs2CO3  CH3CN 8 >25:1 85 

21 / THF 24 / nr 
a Reaction conditions: 1a (0.6 mmol), 2a (0.4 mmol), base (10 mol%), CH3CN（4.0 mL), 8 h, rt; 

b Isolated yield; c Ratio of E/Z isomers was determined by 1H NMR analysis of the crude products; 

d 1a (0.48 mmol), 2a (0.4 mmol); e Cs2CO3 (5 mol%); f Cs2CO3 (1 mol%). 

With the optimal reaction conditions in hand, we first examined the 

substrate scope of ynones, with the results summarized in Table 2. A variety 

of ynones with substituents on the aromatic rings underwent the 

thiosulfonylation efficiently to give the desired vinyl sulfones in high yield 

and excellent regio- and stereoselectivity (3a-3q). In addition, different 

positions and electronic properties have no apparent impact on the reaction 

yield and selectivity (3r-3x). The bulky naphthyl derived ynones 1y and 1z 

participated in the reaction to afford the corresponding products 3y and 3z 

in 98% and 88% yields, respectively. Heteroaryl substituted ynones were 

proven to be very good reactants for the reaction, furnishing the 

corresponding produces in excellent yield (3aa-3ac). Gratifyingly, 

different alkyl-substituted ynones also performed very well, giving the 

desired products in high yield and excellent E-selectivity (3ad-3ai).  

Table 2. Substrate scope of ynones a 

 



 
 
 



 
a Reaction conditions: 1a (0.6 mmol), 2a (0.4 mmol), Cs2CO3 (5 mol%), CH3CN (4.0 mL), 8 h, rt; 

isolated yield, ratio of E/Z isomers was determined by 1H NMR analysis of the crude products; b 

Cs2CO3 (1 mol%); c Cs2CO3 (2 mol%); d Cs2CO3 (10 mol%); e Cs2CO3 (20 mol%). 

We next investigated the substrate scope of thiosulfonates in this 

transformation. Both symmetrical and unsymmetrical thiosulfonates 

smoothly underwent the reaction, affording the corresponding thio-

functionalized vinylsulfones in high yields and excellent regioselectivity 

(Table 3). Substrates bearing electron-donating, -withdrawing and neutral-

substituents coupled with ynones to produce the desired products in 

excellent yields (3aj-3ap). Different positions of the substituents have no 

obvious influence on the reaction yield and selectivity (3aq-3as). The 

bulky naphthyl-derived thiosulfonate 2l reacted efficiently with ynone 1x 

to furnish 3at in high yield. Heteroaryl-derived thiosulfonate 2m 

underwent the reaction to provide 3au in 95% yield. Notably, alkyl 

thiosulfonates performed smoothly to afford the corresponding products in 

high yields (3av-3ax). The configuration of 3ap was unambiguously 

determined by X-ray crystallography analysis.19 

 



Table 3. Substrate scope of thiosulfonates a 

 

 
a Reaction conditions: 1a (0.6 mmol), 2a (0.4 mmol), Cs2CO3 (5 mol%), CH3CN（4.0 mL), 8 h, rt, 

isolated yield; b Cs2CO3 (1 mol%); c Cs2CO3 (2 mol%); d Cs2CO3 (10 mol%); e Cs2CO3 (20 mol%). 

To gain insight into the reaction mechanism, several control experiments 

were performed (Scheme 2). The addition of a radical scavenger TEMPO 

to the reaction has no influence on the formation of the product (eq. 1). 

Phenylacetylene is a very good reactant in photoredox-catalyzed 

thiosulfonylation reaction. But under our standard conditions, 

phenylacetylene cannot react with ynone to give the vicinal 



thiosulfonylation product (eq. 2). Under that catalysis of DBU, 

thiosulfonate underwent multicomponent reaction with ynone and H2O to 

give vinylsulfone 5a in 97% yield (eq. 3). When D2O was used instead of 

H2O, deuterated product 5b was achieved in 85% yield with 99% D-

incorporation. These results indicate that the reaction do not proceed 

through a radical process.  

 

Scheme 2 Control experiments 

Based on the results presented above, a plausible mechanism was 

proposed in Scheme 3. Base attacks thiosulfonate to generate sulfonyl 

anion I and species II. Sulfonyl anion I undergoes Michael addition with 

ynone to give allenoate III, which subsequently attacks the sulfur atom of 

species II to produce the final product with release of catalyst. In order to 

minimize the steric repulsion, the adjacent sulfonyl group and the thio 

group prefer to adopt a trans-conformation, which leads to the formation 

of E-isomer as the major product. 



 

 

Scheme 3 Proposed mechanism 

Conclusions 

In summary, a base-catalyzed difunctionalization of ynones has been 

described. The metal-free conditions, broad substrate scope, high atom-

economy, excellent reaction yield and stereoselectivity provide a novel 

method for the synthesis of multifunctionalized vinylsulfones. Further 

studies on a broader substrate scope and the applications of this method are 

ongoing in our laboratory.  
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