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Abstract 

Density-functional theory (DFT) is currently the most popular method for modeling non-covalent 

interactions and thermochemistry. The accurate calculation of non-covalent interaction energies, reaction 

energies, and barrier heights requires choosing an appropriate functional and, typically, a relatively large 

basis set. Deficiencies of the density-functional approximation and the use of a limited basis set are the 

leading sources of error in the calculation of non-covalent and thermochemical properties in molecular 

systems. In this article, we present three new DFT methods based on the BLYP, M062X and CAM-B3LYP 

functionals in combination with the 6-31G* basis set and corrected with atom-centered potentials (ACPs). 

ACPs are one-electron potentials that have the same form as effective-core potentials, except they do not 

replace any electrons. The ACPs developed in this work are used to generate energy corrections to the 

underlying DFT/basis-set method such that the errors in predicted chemical properties are minimized while 

maintaining the low computational cost of the parent methods. ACPs were developed for the elements H, 

B, C, N, O, F, Si, P, S, and Cl. The ACP parameters were determined using an extensive training set of 

118,655 data points, mostly of complete basis set coupled-cluster level quality. The target molecular 

properties for the ACP-corrected methods include non-covalent interaction energies, molecular 

conformational energies, reaction energies, barrier heights, and bond separation energies. The ACPs were 

tested first on the training set and then on a validation set of 42,567 additional data points. We show that 

the ACP-corrected methods can predict the target molecular properties with accuracy close to complete 

basis set wavefunction theory methods, but at a computational cost of double-ζ DFT methods. This makes 

the new BLYP/6-31G*-ACP, M062X/6-31G*-ACP, and CAM-B3LYP/6-31G*-ACP methods uniquely 

suited to the calculation of non-covalent, thermochemical, and kinetic properties in large molecular 

systems. 

 



1. Introduction 

Over the past few decades, density functional theory (DFT) has become the leading approach for the 

quantum mechanical (QM) modeling of various molecular properties.1 DFT’s success can be attributed to 

its favorable balance between computational cost and accuracy, along with the existence of efficient 

algorithmic implementations widely available in modern software packages. One of the main sources of 

error in DFT is the choice of exchange-correlation functional approximation, which determines the 

accuracy of a given DFT method for a particular purpose. For instance, it is known that common density 

functional approximations are unable to accurately describe dispersion forces, which are critical when 

modeling non-covalent interactions and chemical reactions involving large molecules.2–4 As a result, 

several works have focused on improving the accuracy of common density functional approximations by 

developing various dispersion correction techniques.5–8 

It has been shown that dispersion-corrected DFT methods in combination with large basis sets can 

predict various molecular properties and in particular non-covalent interaction energies of small and 

medium-size systems with accuracy similar or slightly lower than that obtained with nearly complete basis 

set wavefunction theory methods.9–14 However, even with recent advances in computer technology, the 

applicability of dispersion-corrected DFT methods with a large basis set is a challenge for systems 

containing more than ca. one hundred atoms. This is unfortunate because there are many interesting 

problems involving systems in this molecular size range: supra-molecular and (bio)chemical complexes, 

nanostructured materials and surfaces, enzyme active sites, and many more.15–17 The reason for this 

limitation is the unfavorable increase in computational cost as approximately the third power in the number 

of basis functions for common DFT methods. Consequently, the development of computationally 

inexpensive DFT based methods that allow efficient and accurate modeling of large systems is an 

important area of research.18–21 

The reduction in computational cost of dispersion-corrected DFT with the use of small double-ζ 

basis sets, such as 6-31G*, allows for the modeling of large molecular systems. The primary sources of 

error in dispersion-corrected DFT plus 6-31G* are the exchange-correlation functional approximation and 

basis set incompleteness error caused by the small size of the basis set. Methods have been recently 

proposed that show that these shortcomings can be mitigated efficiently.22–24 For instance, Grimme and 

co-workers have shown that the D325,26 dispersion correction when combined with two additional semi-

empirical corrections27,28 designed to mitigate basis set incompleteness error (collectively known as the 

“3c” approach28), alleviate the deficiencies of the PBEh, HSE, and B3LYP functionals with a double-ζ 



basis set (yielding PBEh-3c29, HSE-3c30, and B3LYP-3c31 methods). The 3c approach, which was initially 

proposed for a minimal basis set Hartree–Fock (HF) method (HF-3c28), has also recently been extended to 

triple-ζ basis set DFT methods (B97-3c32 and r2SCAN-3c33). Several other methodologies based on DFT 

have been proposed in the literature34–40, and this underscores the interest in developing computationally 

inexpensive DFT based methods for modeling large molecular systems. 

We have shown in earlier works that atom-centered potentials41 (ACPs) offer a useful way to mitigate 

the underlying shortcomings of HF and DFT methods.42–55 ACPs are similar to one-electron effective-core 

potentials56,57 (ECPs) in functional form, except ACPs do not replace any electrons. Sharing a form similar 

to ECPs allows ACPs to be used in any software package that implements the use of ECPs. ACPs can be 

developed to yield energy corrections that minimize the errors in predicted properties for a target method 

and basis set combination by parametrization against high-level reference data. In this way, ACPs can be 

used to efficiently mitigate the shortcomings of double-ζ basis set DFT methods, since the use of ACPs 

incurs only a ca. 10% increase58 in the computational cost relative to the uncorrected method. 

In our recent work58, we developed four sets of ACPs for ten elements in combination with small 

and minimal basis set HF. These ACPs were trained against a set of 73,832 non-covalent properties 

(interaction energies, molecular conformational energies, and molecular deformation energies). Only non-

covalent properties were used in the training set because small basis set HF, and HF in general, is limited 

to applications that do not involve bond breaking or formation, such as fast geometry optimizations, high-

throughput conformer screening, and prediction of non-covalent interaction strengths in large systems. 

Small basis set DFT is a much more promising approach for modeling thermochemical, kinetic, as well as 

non-covalent properties since, as previously mentioned, the parent DFT methods are already reasonably 

successful in the calculation of these quantities. Therefore, ACPs developed for double-ζ basis set DFT 

methods that mitigate the errors associated with the density functional approximation and basis set 

incompleteness error can be used to model all the aforementioned non-covalent properties as well as 

reaction energies, transition state searches, and in barrier height calculations of large molecular systems. 

In this work, we developed ACPs for three density functionals combined with a double-ζ basis set 

(6-31G*59,60) and Grimme’s D325,26 dispersion correction scheme where applicable. The functionals 

chosen were BLYP61,62 (generalized-gradient approximation or GGA functional), M062X63 (hybrid meta-

GGA functional), and CAM-B3LYP64 (range-separated hybrid functional), mainly due to their popularity 

and performance for the target properties.13,14,22,65–67 The main target molecular properties are non-covalent 

interaction energies, molecular conformational energies, reaction energies, barrier heights, and bond 



separation energies. ACPs were developed for ten elements commonly encountered in organic chemistry 

and biochemistry (H, C, N, O, F, P, S, Cl) plus boron and silicon. The ACP development was carried out 

using a training set composed of 118,655 data points calculated at a high level of theory. We used a 

regularized linear least-squares fitting procedure (the LASSO68–70 regression method) to obtain the 

parameters of the ACPs, which greatly simplifies the use of such a large training set. The strengths and 

weaknesses of the developed ACPs are evaluated and discussed based on their performance on the training 

set and a validation set consisting of additional 42,567 data points. 

2. Computational Details 

The ACP development procedure employed in this article has been described in detail in our earlier 

works42–44,58. We summarize it here for convenience. The mathematical form of an ACP is: 

�̂�𝐴𝐶𝑃 =  ∑ (𝑉𝑙𝑜𝑐𝑎𝑙
α (𝑟) + ∑ ∑ 𝛿𝑉𝑙

𝛼(𝑟) |𝑌𝑙𝑚⟩⟨𝑌𝑙𝑚|

𝑙

m=−𝑙

𝐿−1

𝑙=0

)

α

 (1) 

where 𝛿𝑉𝑙
𝛼(𝑟) = 𝑉𝑙

𝛼(𝑟) − 𝑉𝑙𝑜𝑐𝑎𝑙
𝛼 (𝑟), 𝛼 represents atom, 𝑟 is the distance, and |𝑌𝑙𝑚⟩⟨𝑌𝑙𝑚| are projection 

operators using real spherical harmonics based on atom 𝛼 with 𝑙 angular momentum quantum numbers 

and 𝑚 magnetic quantum numbers. The 𝑉𝑙𝑜𝑐𝑎𝑙
α (𝑟) and 𝛿𝑉𝑙

𝛼(𝑟) terms in Equation 1 are represented by 𝑁 

Gaussian-type functions: 

𝑉𝑙
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 for 𝑙 = 0, 1, 2, … , 𝐿 (2) 

where the coefficients (𝑐𝑙𝑛
𝛼 ) and exponents (𝜉𝑙𝑛

𝛼 ) are adjustable parameters determined via a regularized 

least-squares fit to reference data during the ACP development. 

 In order to find the exponents and coefficients that best mitigate the errors in the properties 

predicted using the target method and basis set combination, the ACP operator (Equation 1) is first added 

as a perturbative correction to the Hamiltonian. To first order in the ACP perturbation, the energy 

correction is: 

𝐸𝐴𝐶𝑃({𝑐𝑙𝑛
𝛼 }, {𝜉𝑙𝑛

𝛼 }) =  ∑⟨𝜓𝑖|�̂�𝐴𝐶𝑃|𝜓𝑖⟩

𝑖

 
(3) 
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𝐸𝐴𝐶𝑃(𝒄, 𝝃) =  ∑ 𝑐𝑙𝑛
α
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   where the index 𝑖 runs over occupied molecular orbitals 𝜓.  

 The Δ𝐸𝑙𝑛
α (𝜉𝑙𝑛

α ) = ⟨𝜓𝑖|(|𝑌𝑙𝑚⟩ exp(−𝜉𝑙𝑛
𝛼 𝑟2) ⟨𝑌𝑙𝑚|)|𝜓𝑖⟩ integrals (Equations 4 and 5) are the ACP 

energy terms and they are equal to the difference between the energy when an ACP with exponent 𝜉𝑙𝑛
𝛼  is 

applied and the energy in absence of any ACP, divided by the ACP coefficient. In matrix notation, the 𝒄 

and 𝚫𝐄(𝝃)𝑇are vectors of ACP coefficients and ACP energy terms, respectively. Equations 1–5 indicate 

that the energy corrections introduced by the ACPs decay exponentially with interatomic distances and 

depend on the molecular wavefunction as well as the local chemical environment of a given atom. 

The ACP development process starts with the compilation of a training set of target molecular 

properties. The training set must be chemically diverse and composed of systems exclusively with atoms 

for which the ACPs are being developed. Next, a set of exponents (𝜉𝑙𝑛
𝛼 ) and angular momenta (𝑙) on each 

atom are selected, and the ACP energy terms (Δ𝐸𝑙𝑛
α (𝜉𝑙𝑛

α )) are computed for each exponent and each entry 

in the training set. Once all the ACP energy terms are calculated, the optimal ACP coefficients 𝑐𝑙𝑛
𝛼  and the 

associated exponents are determined using a regularized least-squares fitting subject to a constraint on the 

sum of the absolute values of the coefficients. The ACP development process ends with the generation of 

the ACPs for the target method and basis set combination. 

The ACPs in this work are designed for correcting the BLYP, M062X, and CAM-B3LYP functionals 

in combination with the 6-31G* basis set. These ACPs are tied to these method and basis set combinations 

and are not transferable to other methods. The target elements chosen for ACP development are H, B, C, 

N, O, F, Si, P, S, and Cl; most of these atoms are common in organic chemistry and biochemistry 

applications. Twenty-nine exponents (𝜉𝑙𝑛
𝛼 ) were considered: 0.12 to 0.30 in 0.02 steps, 0.40 to 2.00 in 0.10 

steps, and 2.50 to 3.00 in 0.50 steps. Angular momenta for the ACP energy terms (Δ𝐸𝑙𝑛
α (𝜉𝑙𝑛

α )) were used 

up to the maximum angular momentum of the valence orbital basis functions present in the 6-31G* basis 

set: up to s for H and d for B, C, N, O, F, Si, P, S, and Cl. The total number of ACP energy terms was 

1,102. This way of generating the ACP energy terms and carrying out the fitting procedure is identical to 

our previous works42–44,55,58. LASSO (Least Absolute Shrinkage and Selection Operator) regression68–70 is 

employed to solve the regularized least-squares fitting problem. The advantage of LASSO is that it 

automatically selects the best subset of ACP energy terms and discards the others by assigning a zero 



coefficient to them. All the single-point energy calculations were performed with the Gaussian1671 

software package. The D3 parameters used are listed in the SI, along with the ACP coefficients and 

exponents for each method. An example of the usage of ACPs in the Gaussian16 program is also given in 

the SI. 

The training set (Table 1) used to parameterize the ACPs comprises data sets from the literature that 

represent non-covalent and covalent properties such as interaction energies, molecular conformational 

energies, reaction energies, barrier heights, and bond separation energies. This choice of training set 

properties is motivated by the potential target applications of the ACP-corrected small basis set DFT 

methods, namely fast geometry optimizations, conformer screening, and modeling of chemical reactions 

and non-covalent interaction strengths of large systems. The training set comprises 19,439 non-covalent 

interaction energies, 11,161 molecular conformational energies, 8,315 reaction energies, 58,197 barrier 

heights, and 4,502 bond separation energies. Our training set also includes 240 molecular isomerization 

energies, 219 total atomization energies, and 16,582 molecular deformation energies. In addition to the 

training set, we also assembled a validation set (Table 2), a collection of data used to test the accuracy of 

properties computed using ACPs for systems not included in the training set.  In total, the validation set 

consists of 27,783 non-covalent interaction energies, 9,491 molecular conformational energies, 5,205 

reaction energies, and 88 barrier heights. The structures and reference energies of all data points in the 

training and validation sets are provided in the SI. Most of the reference data used in both the training and 

validation sets were calculated with nearly complete basis set wavefunction theory methods, with the 

exceptions noted in Tables 1 and 2. 

Table 1. List of data sets used for training the ACPs. 

Data set(s) Data points 
Range of reference data (in 

kcal/mol) 
Description of data points 

Non-covalent interaction energies of molecular complexesa: 

HBC677,78, MiriyalaHB10479,80, IonicHB81, HB375x1082, 

IHB100x1082, HB300SPXx1083, CARBH1214 
6,409 -37.01 to +16.30 hydrogen bonding interactions 

S22x578,84,85, S66x886–88, S66a887, A21x1289–91, 

NBC10ext78,92–95, 3B-69-DIM96, 3B-69-TRIM96, 

HW3097 

1,895 -35.76 to +9.34 mixed character non-covalent interactions 

B-setb,64, F-setb,64, Si-setb,64, P-setb,64, S-setb,64, Cl-setb,64, 

Sulfurx898 
1,000 -68.05 to +21.57 

monomers containing at least one B, F, Si, 

P, S, and Cl atom 

Pisubb,99,100, Pi29n101, BzDC215102, C2H4NT95 379 -18.30 to +10.33 non-stacked and stacked π-π interactions 

Hill18103, X40x10104 238 -14.14 to +11.95 halogen bonding interactions 

PNICO2314,105 23 -10.97 to -0.64 pnicogen bonding interactions 

ADIM614,25,106, HC12107 18 -5.60 to -1.30 hydrophobic interactions 

BBI108, SSI108, NucTAAb,c,109–112, CarbhydBz113, 

CarbhydNaph114, CarbhydAroAAb,115, CarbhydArob,116, 
4,756 -100.86 to +64.19 

non-covalent interactions present in 

various biomolecules 



WatAAb,117, HSG78,118, PLF547119, JSCH84, 

DNAstack120, DNA2body120, ACHC121, BDNA122, 

NucBTrimerb,123 

Water38124, Water188895,125–127, Water-2bodyd,54 2,336 -92.89 to +5.10 
hydrogen-bonded water dimers and (H2O)n 

clusters where n=3–10 

CH4PAH128,129, CO2MOF130, CO2PAH131, 

CO2NPHAC132, BzGas133 
876 -6.02 to +12.17 

non-covalent interactions between gas and 

substrate molecules 

SSI-anionicc,108, WatAA-anionicb,c,117, HSG-

anionicc,78,118, PLF547-anionicc,119, IonicHB-anionicc,81, 

IHB100x10-anionicc,82, Ionic43-anionicc,134 

1,509 -135.11 to +88.94 anionic interactions 

Molecular conformational energiese: 

37Conf8135, DCONF136, ICONF14, MCONF137, 

Torsion21138, MolCONF139 
8,280 +0.0005 to +25.06 

various molecules representing 

pharmaceuticals, catalysts, synthetic 

precursors, industrial chemicals, and 

organic compounds 

PEPCONF-Dipeptideb,140, TPCONF141, P76142, YMPJ143, 

SPSf,144, rSPSf,145, UpU46f,146, SCONF14,147, DSCONF148, 

SacchCONF149, CCONF150 

2,082 -4.09 to +19.74 
molecules representative of proteins, 

DNA, RNA, and carbohydrates 

ACONF151, BCONF152, PentCONF153 421 +0.14 to +16.66 hydrocarbon-like molecules 

Undecamer125154 124 +0.06 to +1.87 (H2O)11 clusters 

PEPCONF-Dipeptide-anionicb,f,140, MolCONF-

anionicf,139 
254 -0.47 to +10.96 negatively charged molecules 

Reaction energiesg: 

MN-RE155 7,555 -217.97 to +242.47 

automatically generated reactions using 

molecules from Minnesota 

Database2015B156 

BH9-RE74 449 -89.85 to +116.88 

from BH9 set comprising chemical 

reactions belonging to nine types common 

in organic chemistry and biochemistry 

DIE60157 60 -6.14 to +8.60 
double-bond migration reactions in 

conjugated dienes 

FH51158,159 51 -150.81 to -0.18 
reactions involving various organic and 

inorganic molecules 

BSR36160,161 36 +2.24 to +49.82 hydrocarbon bond separation reactions 

BH76RC162–164 30 -103.91 to +5.60 
hydrogen and non-hydrogen atom transfer 

reactions of small molecules 

G2RC14,164,165 23 -154.04 to -2.18 
reactions whose reactants and products had 

been taken from the G2/97 set 

RC2114 21 -6.72 to +126.56 
organic radical fragmentation and 

rearrangement reactions 

CR20166 20 -35.70 to -7.66 cyclo-reversion reactions 

PlatonicHD6167, PlatonicID6167, PlatonicIG6167 18 -43.64 to +501.85 

homodesmotic, isodesmic, and isogyric 

reactions involving platonic hydrocarbon 

cages, CnHn (where n = 4,6,8,10,12,20) 

AlkIsod14168 14 +2.20 to +15.40 
isodesmic reactions involving CnH2n+2 

alkanes (where n=3-8) 

DARC14,164,169 14 -60.80 to -14.00 Diels-Alder reactions 

DC1314,63,178,179,170–177 12 -106.00 to +152.60 
reactions that were known to be difficult 

for DFT methods 

WCPT6180 6 -0.86 to +11.14 
tautomeric water-catalyzed proton transfer 

reactions 

NBPRC161,164,181 6 -31.20 to +40.40 reactions involving NH3/BH3 and PH3/BH3 

Barrier height energiesh: 



Grambow2020-B97D3i,j,182 32,722 -44.42 to +221.34 

reactions involving H, C, N, and O 

generated using automated potential 

energy surface exploration 

Grambow2020-ωB97XD3i,j,182 23,922 -15.70 to +201.33 

reactions involving H, C, N, and O 

generated using automated potential 

energy surface exploration 

BH9k,74 898 -96.26 to +144.39 

chemical reactions belonging to nine types 

common in organic chemistry and 

biochemistry 

E2SN2i,k,183 418 -15.54 to +50.78 competing E2 and SN2 reactions 

HTBH38k,163 38 +1.70 t0 +38.40 
hydrogen atom transfer reactions of small 

molecules 

NHTBH38k,162 38 -12.54 to +106.18 
non-hydrogen atom transfer reactions of 

small molecules 

WCPT27k,180 27 -6.38 to +81.24 water-catalyzed proton-transfer reactions 

BHROT27k,14 27 +1.01 to +17.24 rotation around single bonds 

BHPERI26k,164,184 26 +0.50 to +39.70 pericyclic reactions 

DBH24k,185,186 24 -2.40 to +82.14 
diverse reactions involving small 

molecules 

INV24k,187 24 +4.10 to +79.70 inversion and racemization reactions 

CRBH20k,188 20 +33.71 to +52.42 
cyclo-reversion reactions of heterocyclic 

rings 

PX13k,189,190 13 -29.97 to +56.19 
proton exchange reactions in small clusters 

of H2O, NH3, and HF 

Bond separation energiesl: 

BSE4976 4,502 9.38 to 177.24 

breaking of 49 unique X-Y type single 

bonds (except H-H, H-F, and H-Cl) into 

corresponding radical fragments, where X 

and Y are H, B, C, N, O, F, Si, P, S, Cl 

Othersm: 

MOLdefb,43, MOLdef-H2Od,191,192, MOLdef-TSn,o,74 16,582 -98.43 to +49.38 

molecular deformation energies of various 

molecules deformed along their normal 

modes 

ISO3414,193, ISOL2414,194, IDISP14,161,164,193,195,196, 

EIE22197, PArel14, AlkIsomer11168, PAH6198, 

Styrene45170, TAUT1514, H2O16Rel5199, 

H2O20Rel10200, SW49Rel6201, SW49Rel345201 

240 -60.28 to +124.46 isomerization energies 

W4-17202, PlatonicTAE6167, AlkAtom19168 219 +2484.26 to +4621.46 total atomization energies 

a) defined as the difference between the energy of the complex and the sum of the monomer energies. A negative interaction energy indicates the complex 

is more stable than the separated monomers. 

b) the reference data was recalculated using DLPNO-CCSD(T)/CBS (see Reference 58). 

c) comprises non-covalently bound dimer complexes where at least one of the monomers is negatively charged. 

d) the reference data was calculated at the CCSD(T)/CBS level using the same extrapolation method as in Reference 124. 

e) defined as the difference between the energy of a particular conformer and a lower-energy conformer of the same molecule. 

f) comprises negatively charged conformers. 

g) defined as the difference between the sum of energies of reactants minus that of products. 

h) forward barrier height is the energy difference between transition state and reactant(s) or pre-reaction complex; reverse barrier height is the energy 

difference between transition state and product(s) or post-reaction complex. 

i) the reference data was recalculated using DLPNO-CCSD(T)/CBS with the same extrapolation method as in Reference 74. 

j) the barrier heights are relative to the pre- or post-reaction complexes for forward and reverse barriers, respectively. 

k) the barrier heights are relative to the isolated reactant(s) or product(s) for forward and reverse barriers, respectively. 

l) defined as the difference between the energy of a molecule and its radical fragments formed by cleavage of a particular bond. 



m) includes molecular deformation energies, isomerization energies, and total atomization energies. Molecular deformation energy is the difference 

between the energy of a molecule deformed along a particular normal mode and the energy of the same molecule at equilibrium. Isomerization energy is 

the energy difference between a molecule and one of its isomers. Total atomization energy is the energy difference between a molecule and the sum of the 

energies of all its constituent atoms. 

n) includes deformations along the imaginary mode of transition state structures from Reference 74. The reference data was calculated at DLPNO-

CCSD(T)/CBS level using the same extrapolation method as used in Reference 58. 

o) contains reference data which is negative in magnitude due to deformation along the imaginary normal mode, indicating that the deformed molecule is 

more stable than the transition state structure. 

Table 2. List of data sets used for validating the ACPs. 

Data set(s) Data points 
Range of reference data (in 

kcal/mol) 
Description of data points 

Non-covalent interaction energies of molecular complexesa: 

BlindNCI203, DES15K204, NENCI-2021205 17,413 -33.78 to +186.83 mixed character non-covalent interactions 

CE20189,190, WaterOrg206 2,396 -46.58 to -10.76 hydrogen bonding interactions 

R160x6207, R739x5208 5,290 -12.02 to +6.79 close contact interactions 

CHAL336209 48 -30.85 to -1.57 chalcogen bonding interactions 

XB45210 33 -13.11 to -0.89 halogen bonding interactions 

L7211,212, S12L9,11,212, S30L213, Ni2021214 54 -416.08 to -1.68 
large molecules relevant in supramolecular 

chemistry and biochemistry 

C60dimer215 14 -6.88 to +12.07 C60 dimers 

H2O20Bind10200 10 -200.54 to -196.59 (H2O)20 clusters 

HW6Clb,200,216, HW6Fb,200,216, FmH2O10b,200,216, 

SW49Bind345b,201, SW49Bind6b,201, Anionpib,217, 

IL236b,218, DES15K-anionicb,204, NENCI-2021-

anionicb,205, CHAL336-anionicb,209, XB45-anionicb,210, 

S30L-anionicb,213 

2,525 -171.42 to +66.15 anionic interactions 

Molecular conformational energiesc: 

SafroleCONF219, AlcoholCONF220, BeranCONF221, 

Torsion30d,222, ANI1ccxCONFe,f,223 
7,447 +1E-3 to +49.96 

Safrole or 5-(2-propenyl)-1,3-

benzodioxol), small alcohol molecules, 

biaryl drug-like molecules, and small 

organic molecules, 

MPCONF196g,224, PEPCONF-Tripeptideh,140, 

PEPCONF-Disulfide140, PEPCONF-Cyclic140,  

PEPCONF-Bioactive140 

1,874 -0.47 to +81.00 peptide-like molecules 

PEPCONF-Disulfide-anionici,140, PEPCONF-Bioactive-

anionici,140 
170 +0.17 to +33.79 negatively charged molecules 

Reaction energiesj: 

W4-17-REf,155 5,205 -380.97 to +364.92 
automatically generated reactions using 

molecules from the W4-17202 set 

Barrier height energiesk: 

WaterOrgBHl,m 88 +12.81 to +61.50 
pericyclic reactions in absence and 

presence of water clusters 

a) defined as the difference between the energy of the complex and the sum of energy of the monomers. A negative interaction energy indicates the 

complex is more stable than the separated monomers. 

b) comprises non-covalently bound complexes with at least one negatively charged monomer. 

c) defined as the difference between the energy of a particular conformer and a lower-energy conformer of the same molecule. 

d) only 30 systems used; we could not find the rest of the systems mentioned in the supporting information of Reference 222. 

e) contains mostly conformational energies but also some molecular deformation energies.  

f) only a subset of the actual data used. 

g) only macrocyclic peptides used. 



h) only a subset from the PEPCONF140 database for which reference data was recalculated at the DLPNO-CCSD(T)/CBS level of theory (see Reference 58 

for more details). 

i) comprises negatively charged conformers. 

j) defined as the difference between the sum of energies of reactants minus that of products. 

k) forward barrier height is the energy difference between transition state and reactant(s) or pre-reaction complex; reverse barrier height is the energy 

difference between transition state and product(s) or post-reaction complex. 

l) the barrier heights are relative to the pre- or post-reaction complexes for forward and reverse barriers, respectively. 

m) contains unpublished data generated in an ongoing project, which will be published elsewhere. 

3. Results and Discussion 

Results obtained using the target methodology (BLYP-D3/6-31G*, M062X/6-31G*, and CAM-

B3LYP-D3/6-31G*) with and without the proposed ACPs compared against the reference data are shown 

in Figure 1. The figure depicts the signed error distribution as vertical lines along with the mean signed 

errors (MSEs) (open circles) and the standard deviations (SDs) of the errors (horizontal black lines). The 

mean absolute errors (MAEs) of each method and the percentage changes in mean absolute error 

(%∆MAE) on application of the ACPs are also given on the right. A more detailed comparison can be 

found in the supporting information (Tables S1 and S2 of the SI). A detailed breakdown of the error 

analysis of each method by subset can be found in Figures S1 and S2 and Tables S3 and S4 of the 

supporting information. In the following, the results obtained from the application of ACPs are discussed 

for the different molecular properties in the training and validation sets. 

Figure 1. Error distribution (in kcal/mol) associated with the uncorrected and ACP-corrected double-ζ 

DFT methods. The various molecular properties represented are: “NCI” or non-covalent interaction 

energies, “CONF” or molecular conformational energies, “RE” or reaction energies, “BH” or barrier 

height energies, and “BSE” or bond separation energies. Suffixes “train” and “val” are short for training 

and validation, respectively (see Table 1 and 2). Methods shown include BLYP-D3/6-31G* (light blue), 

BLYP-D3/6-31G*-ACP (blue), M06-2X/6-31G* (light pink), M06-2X/6-31G*-ACP (pink), CAM-

B3LYP-D3/6-31G* (light grey), and CAM-B3LYP-D3/6-31G*-ACP (grey). The black circles represent 

the mean signed errors (MSEs, kcal/mol) and the black error bars are the standard deviations of the error 

(SDs, kcal/mol). The numbers on the right-hand side of each panel are the mean absolute errors (MAEs, 

kcal/mol) and the percentage change in MAEs upon the application of ACPs (%∆MAE) for each method. 

%∆MAE is defined as [MAE(base method) – MAE(ACP-corrected method)] / MAE(base method) x 

100%. The X-axis has been capped at -150 (left) and +150 kcal/mol (right) for clarity. 



 
 



(i) Non-covalent interaction energies 

Regarding non-covalent interaction energies (“NCI”), the application of ACPs to the double-ζ basis 

set DFT methods decreases the overall MAE by 46–65%, indicating a substantial improvement in the 

description of non-covalent interactions. This is reasonable given that ACPs have been shown to be 

adequate at mitigating the basis set incompleteness error which is known to greatly affect the calculation 

of non-covalent interaction energies.43,44,72 The best methods based on the overall performance for non-

covalent interactions are M062X/6-31G*-ACP and CAM-B3LYP-D3/6-31G*-ACP, both with an MAE 

of about 0.75 kcal/mol. For comparison, BLYP-D3/6-31G*-ACP yields an overall MAE of 0.96 kcal/mol. 

A closer look into individual NCI data sets (Figure S1 of SI) reveals that the ACPs applied to CAM-

B3LYP-D3/6-31G* result in a more uniform reduction in the MAEs of the uncorrected method compared 

to M062X/6-31G*. BLYP-D3/6-31G*-ACP also performs uniformly better than the parent uncorrected 

method, although the individual data set MAEs are slightly higher than CAM-B3LYP-D3/6-31G*-ACP.  

We now take a more detailed view at the performance of CAM-B3LYP-D3/6-31G*-ACP on the 

various non-covalent interaction types in the training set. Application of the ACPs to this functional result 

in MAE reductions for the hydrogen bonding and mixed-character non-covalent interactions greater than 

50%. The description of halogen bonding and pnicogen bonding is also improved with MAE reductions 

in the range of about 19–57%, even though the number of data points for these interaction types in the 

training set is comparatively smaller than the others. Stacked and non-stacked π-π interactions are also 

described better with the ACPs, with MAEs reduced by about 17–34%. In addition to the various 

interaction types, ACPs were also trained on typical systems relevant in organic chemistry and 

biochemistry, where these non-covalent interactions operate co-operatively. Examples include interacting 

nucleotides or proteins interacting with carbohydrates, nucleotides, drugs, water, and other proteins. For 

CAM-B3LYP-D3/6-31G*, the MAE reduction caused by the ACPs in the data sets of biochemical 

significance range between 29% and 94%, indicating that ACPs significantly enhance the performance of 

CAM-B3LYP-D3/6-31G* for modeling non-covalent interactions in biomolecular systems. ACPs for 

CAM-B3LYP-D3/6-31G* also lead to a better description of other non-covalently interacting systems in 

the training set, including gas-substrate and water-water complexes, with MAE reductions in the 24–91% 

range. 

Even though CAM-B3LYP-D3/6-31G*-ACP improves on the base uncorrected method for almost 

all non-covalent interaction types, some outliers with relatively high error exist, which is expected given 

the enormous size of the training set. There are only two NCI subsets in the training set (ADIM6 and 



HC12) where CAM-B3LYP-D3/6-31G*-ACP yields higher MAEs than uncorrected CAM-B3LYP-D3/6-

31G*, both featuring mainly hydrocarbon interactions and contributing only 18 data points to the training 

set. The increase in MAE upon application of ACPs is likely the result of the relative scarcity of pure 

hydrophobic type interactions in the training set. Besides hydrophobic contacts, anionic interactions are 

the other set of interaction types (SSI-anionic, WatAA-anionic, HSG-anionic, PLF547-anionic, IonicHB-

anionic, IHB100x10-anionic, and Ionic43-anionic) where there is room for improvement. In this case, 

ACPs lead to an improved description compared to the uncorrected double-ζ basis set DFT methods. 

However, the remaining relatively high errors are probably due to the fact that the 6-31G* basis set lacks 

diffuse basis functions, which are known to be required for modeling anionic systems.73 

Given the overall good performance of ACPs for non-covalent interactions in the training set, we 

now examine their performance for systems outside the training set. Figure 1 shows that ACPs successfully 

bring down the overall MAE of the double-ζ basis set DFT methods by about 38–48% for the NCI 

validation subset (“NCI-val”). A more detailed look into the results (Figure S3 of SI) shows that 

application of ACPs leads to MAE reductions (%∆MAE) in the range of about 27–67% for the NCI 

validation subsets containing complexes featuring a mix of common interactions found in large molecular 

systems (BlindNCI, DES15K, and NENCI-2021 data sets with a total of 17,413 data points). This range 

of %∆MAE for the subsets used in the validation resembles the %∆MAE obtained for data sets in training 

set with mixed character interactions such as S22x5, S66x8, and S66a8. Regarding hydrogen bonding 

interactions, the CE20, WaterOrg, and H2O20Bind10 subsets of the validation set feature these types of 

interactions. The MAEs for these three subsets are improved significantly on the application of ACPs by 

about 62–92%, depending on the method. The large reduction in error observed for mixed character and 

hydrogen bonding interactions in the validation are probably a consequence of the fact that the training set 

contains more data points of these two kinds than any other interaction type. In any case, the similarity 

between the error reduction in the validation and training set suggests that the proposed ACPs are fairly 

robust regarding these interactions, i.e., they can be applied to similar systems outside the training set. 

Regarding the other interaction types, an assessment of the ACP performance in the validation stage 

for π-π stacking and pnicogen bonding interactions could not be carried out due to the scarcity of high-

level reference data in the literature. This scarcity compelled us to include all available systems containing 

these interaction types in the training set instead of reserving them for validation. The ACPs were further 

validated on systems containing other interaction types such as halogen bonding, chalcogen bonding, and 

close contact repulsions (XB45, CHAL336, R160x6, and R739x5 data sets) that were not specifically part 

of the training set. The MAEs for the data sets representing halogen bonding were mostly deteriorated (by 



>60%) on the application of ACPs, except for BLYP-D3/6-31G*, where the MAE was improved by 56%. 

Application of ACPs to subsets representing chalcogen bonding led to a decrease in the MAEs of 

uncorrected methods by 6–42%, most likely due to the presence of O and S containing complexes in the 

training set that were not purely chalcogen bonded. On the other hand, the MAEs of the uncorrected 

methods for the subsets representing close contact repulsions were initially low (0.50–0.97 kcal/mol), and 

the application of ACPs led to either increase (by 9–30%) or decrease (by 9–33%). All these findings 

suggest an under-representation of halogen bonding, chalcogen bonding, and close contact repulsions in 

the training set compared to other interaction types. Therefore, future ACP development work will require 

more such systems to be included in the training set in order to increase the diversity and robustness of the 

resulting ACPs. 

The application of ACPs to complexes containing at least one monomer with negative charge in the 

validation set led to mostly a reduction in the MAEs of the uncorrected methods by 19–75%. Nevertheless, 

applying the ACPs could only bring down the MAEs to values that were greater than 2 kcal/mol. This 

indicates that the performance of ACPs for anionic interactions in the validation set convey the same 

message as in the training set: even though errors decrease on the application of ACPs, the 6-31G* basis 

set is inappropriate for modeling anionic systems. 

Finally, we tested the proposed ACPs for their performance regarding non-covalent interaction 

energies in some more challenging complexes that are significantly different from those in the training set. 

In particular, we used the C60dimer set of non-covalent interaction energies between C60 dimeric 

complexes and the L7, S12L, S30L, and Ni2021 sets containing interaction energies between relatively 

large supramolecular systems. These data sets provide a more stringent test for ACPs than the other 

validation subsets because of the large size of the systems involved (the absolute reference energies range 

from 25 kcal/mol to 416 kcal/mol) as well as the multiplicity of and cooperativity between the non-covalent 

interactions present in these systems. The application of ACPs led to an overall reduction in the MAEs of 

the underlying methods for these sets by 11–66%, with only a few exceptions. For example, ACPs for 

CAM-B3LYP-D3/6-31G* reduce the MAEs of 4 out of 5 data sets by about 30–51%, indicating once 

again the robustness of the corresponding ACPs. The application of ACPs with CAM-B3LYP-D3/6-31G* 

led to an increase in the MAE of the C60dimer set from 1.78 kcal/mol to 3.97 kcal/mol. Although the error 

increases, this result also demonstrates that in the case of failure due to the systems studied being very 

different from those on which the ACP were trained, the results from the ACP-corrected methods are far 

from being catastrophic. 



(ii) Conformational energies 

Another molecular property included in the training set is molecular conformational energies 

(“CONF”) with 11,161 data points. The purpose of these data is to inform ACPs about how molecular 

motion along rotatable bonds and torsional angles involving various effects (π-conjugation, steric 

interactions, intramolecular hydrogen-bonding, and electron repulsion) influence the molecular potential 

energy surfaces. The CONF systems include peptides, nucleotides, carbohydrates, alcohols, hydrocarbons, 

(H2O)11 clusters, and other molecules representing pharmaceuticals, catalysts, synthetic precursors, 

industrial chemicals, and organic compounds. Interestingly, the overall MAE of all uncorrected double-ζ 

basis set DFT methods for CONF in the training set is below 1 kcal/mol, likely due to error cancellation. 

Application of ACPs further reduces the MAEs by about 15–29% and brings them down to relatively low 

values: 0.70 (BLYP-D3/6-31G*-ACP), 0.43 (M062X/6-31G*-ACP), and 0.45 kcal/mol (CAM-B3LYP-

D3/6-31G*-ACP). 

In order to understand the performance of ACPs for CONF in the training set, we take a closer look 

at the results of CAM-B3LYP-D3/6-31G*-ACP (see Figure S1 of SI). These ACPs perform well for most 

subsets and are particularly suitable for peptides (PEPCONF-Dipeptide, TPCONF, P76, YMPJ), 

carbohydrates (SCONF, DSCONF, SacchCONF, CCONF), alcohols (BCONF), the melatonin molecule 

(MCONF), (H2O)11 clusters (Undecamer125), and a mix of various medium-sized organic molecules 

(37Conf8). The reduction in MAE for these subsets ranges between 24–84%, with most of them generally 

showing an improvement greater than 47%. The MAE reduction for other CONF subsets, like those 

containing organic molecules that are drug-like or have industrial relevance (DCONF and MolCONF) 

range between 13–18%, probably because of the already quite low MAEs of the uncorrected method (0.51 

kcal/mol for DCONF and 0.41 kcal/mol for MolCONF). 

Despite the general improvement in the CAM-B3LYP-D3/6-31G* method for conformational 

energies caused by ACPs, some outliers exist. The conformational energy data sets where the errors of 

ACP-corrected CAM-B3LYP-D3/6-31G* are higher than the uncorrected method are mainly found in the 

data sets for which the uncorrected method already has very small MAEs. For example, the hydrocarbon 

conformer subsets (ACONF and PentCONF) have MAEs of only 0.04–0.06 kcal/mol with CAM-B3LYP-

D3/6-31G*. The MAEs of the ACP-corrected method for these data sets are higher than the uncorrected 

method but are still below 0.50 kcal/mol. Some other outlier subsets have MAEs for the uncorrected 

method in the range 0.25–0.58 kcal/mol, with the MAE from the ACP-corrected method rising to 0.42–

0.74 kcal/mol. 



Regarding the performance of ACPs for conformational energies outside the training set, we used 

9,491 conformational energy data points in the validation set. The application of ACPs to the CONF data 

in the validation set (“CONF-val”) shows overall good performance. The ACPs reduce the MAEs of 

M062X/6-31G* and CAM-B3LYP-D3/6-31G* by about 5–37% for two of the large data sets containing 

various conformers of organic molecules, viz. MAEs for Torsion30 of 0.32 and 0.36 kcal/mol and for 

ANI1ccxCONF of 1.72 and 1.68 kcal/mol, with M062X/6-31G*-ACP and CAMB3LYP-D3/6-31G*-

ACP, respectively.  ACPs applied to BLYP-D3/6-31G* also result in a reduction of MAEs (22–28%) that 

brings the MAEs down to 0.47 kcal/mol for Torsion30 and 2.76 kcal/mol for ANI1ccxCONF. 

The performance of ACPs in the representative Torsion30 and ANI1ccxCONF validation examples 

shows that ACPs generally perform well for CONF data points that share similarities with those used in 

the training set. However, systems that are significantly different from the training set compilation result 

in somewhat higher but not catastrophic errors, for example in the data set containing conformational 

energies of peptide model systems with a disulfide-bridged bond where the ACPs fail to reduce the MAEs 

for the corresponding validation subset. Nevertheless, ACPs work well for other peptide conformational 

systems in the validation set, with MAE reductions in the range of 33–63% for CAM-B3LYP-D3/6-31G*-

ACP in the case of conformational energies of other peptide systems (tripeptide, cyclic, and those that 

show bioactive functionality). 

(iii) Reaction energies 

We turn our attention now to covalent properties involving bond breaking and formation. One of 

such properties included in the training set are chemical reaction energies (“RE”). The training set contains 

8,315 RE data points. Application of ACPs to the RE subsets in the training set shows an overall reduction 

in the MAEs of the double-ζ basis set DFT methods by about 29–34%. This improvement in the MAE 

mainly reflects the MAE decrease observed in two specific RE subsets, MN-RE (7,555 data points) and 

BH9-RE (449 data points). These subsets contain data points representing a variety of chemical reactions. 

For instance, the BH9-RE subset contains reaction energies of the nine most common elementary reactions 

encountered in organic and bioorganic chemistry. Besides MN-RE and BH9-RE, the ACPs also perform 

generally well (MAE reductions between 11–87% for M062X/6-31G*-ACP and CAM-B3LYP-D3/6-

31G*-ACP) for other RE subsets of various types of reactions with fewer data points, with only a few 

exceptions. The decrease in the MAEs for reaction energies is also observed for the relatively large RE 

validation data set (“RE-val”), composed of a subset of the W4-17-RE set with 5,205 data points. For this 

data set, which was not used in the ACP training, the MAEs decrease by about 31–50% on application of 



ACPs compared to the uncorrected double-ζ basis set DFT methods. This indicates that the ACPs are 

successful and robust for reaction energies. 

(iv) Barrier heights 

Besides reaction energies, the training set also included barrier heights of chemical reactions (“BH”) 

in order to make the eventual ACP-corrected methods usable for kinetic studies. The total number of BH 

data points contributes nearly 50% of the training set data (58,197) and is the most dominant property 

overall. The application of ACPs reduces the overall MAE of the parent methods for barrier heights by 

about 27–50%. This improvement originates mostly from the good performance of ACPs (MAE reductions 

by 13–52%) on the four main BH data sets: Grambow2020-B97D3 (32,722 data points), Grambow2020-

ωB97XD3 (23,922 data points), BH9 (898), and E2SN2 (418). Note that the BH9 data set was designed 

recently74 to be used for the particular purpose of developing the ACPs in this work and contains various 

model reactions that increase the diversity of the BH data in the training set. 

For the other BH data sets in the training set besides BH9, E2SN2, and the two Grambow2020 

subsets, the performance of ACPs is also quite good. ACPs mostly bring down the MAEs for the other 

subsets by about 22–94%. Contrary to most other BH data points in the training set, the INV24 and 

BHROT27 subsets feature barriers for processes that do not involve bond breaking or formation. The 

application of ACPs on these two data sets do not show a significant reduction in MAE compared to the 

uncorrected methods. 

To validate the performance of ACPs on barrier height prediction, we applied the uncorrected 

methods and their ACP-corrected counterparts to a data set with 88 data points (WaterOrgBH) not included 

in the training set. This data set contains to-be-published barrier height reference data for pericyclic-type 

reactions in the absence and presence of water clusters, calculated at the DLPNO-CCSD(T)/CBS level of 

theory. The MAEs of double-ζ basis set DFT methods after application of ACPs to the WaterOrgBH data 

set decrease from 14.46 to 9.21 kcal/mol (BLYP-D3/6-31G*), 2.31 to 1.56 kcal/mol (M062X/6-31G*), 

and 1.70 to 1.66 kcal/mol (CAM-B3LYP-D3/6-31G*), indicating that ACPs are likely to perform well 

when they are applied to the calculation of barrier heights outside the training set. 

As an additional test, we also applied the proposed ACPs to the systems in the work of Bistoni et 

al.75, involving the Baeyer–Villiger reaction catalyzed by the cyclohexanone monooxygenase enzyme. 

The geometries used for ACP testing are the relevant stationary points of the reaction (reactant, 

intermediate, transition state, and product), obtained independently with three active site models of 



increasing size. The reference data for the relative energies along the reaction profile were obtained with 

DLPNO-CCSD(T0)/def2-TZVPP. Point charges were used to model the electrostatic potential from the 

surrounding protein environment. The errors in the calculated reaction energies and barrier heights with 

and without ACPs for the three differently sized active sites are shown in Table 3. The errors of various 

methods relative to DLPNO-CCSD(T0)/def2-TZVPP data in Table 3 demonstrates that the ACP-corrected 

methods yield lower errors in the predicted relative energies than the uncorrected methods for most 

stationary points along the reaction profile of different active site sizes, with only a few exceptions. Upon 

application of ACPs for the barrier height prediction of the smallest active site model (99 atoms), the errors 

in the barrier heights (energy of transition state relative to reactant) drop from -22.53 to -7.22 kcal/mol 

(BLYP-D3/6-31G*), -4.74 to 1.67 kcal/mol (M062X/6-31G*), and -5.14 to -1.09 kcal/mol (CAM-B3LYP-

D3/6-31G*).  

Table 3. Reference data (calculated using DLPNO-CCSD(T0)/def2-TZVPP) and errors relative to the 

reference data yielded by various methods (uncorrected and ACP-corrected double-ζ basis set DFT 

methods) for the relative energies along the reaction profile of Baeyer–Villiger reaction catalyzed by the 

cyclohexanone monooxygenase enzyme.a,b,c 

Method 

QM region with 99 atoms QM region with 206 atoms QM region with 307 atoms 

Intermediate 
Transition 

state 
Product Intermediate 

Transition 

state 
Product Intermediate 

Transition 

state 
Product 

DLPNO-

CCSD(T0)/ 

def2-TZVPP 

-4.50 8.10 -68.60 -2.00 10.50 -71.10 -1.50 9.90 -71.90 

BLYP-D3/6-

31G* 
-9.4 -22.53 0.25 -2.98 -16.2 1.56 -1.08 -15.95 0.43 

BLYP-D3/6-

31G*-ACP 
-1.4 -7.22 -1.94 0.94 -3.6 -1.67 2.72 -3.41 -2.22 

M062X/6-31G* -11.45 -4.74 -5.64 -8.5 0.03 -5.08 -6.22 1.06 -5.81 

M062X/6-31G*-

ACP 
-4.36 1.67 1.94 -2.96 4.97 2.54 -0.41 5.82 2.42 



CAM-B3LYP-

D3/6-31G* 
-8.36 -5.14 -3.65 -3.61 0.47 -2.35 -1.49 1.2 -3.24 

CAM-B3LYP-

D3/6-31G*-ACP 
-2.71 -1.09 0.92 -0.63 2.67 1.73 1.85 3.3 1.56 

a) all energies were calculated in the presence of point charges with kcal/mol units, b) the energies along the reaction profile were calculated relative to the 

reactant, c) the geometries and point charges were taken from the work of Bistoni et al.75 

 

(v) Bond separation energies and other properties 

Lastly, we analyze ACP performance for bond separation energies (“BSE”). In our training set, we 

included 4,502 bond separation energies from our recently developed BSE4976 data set. BSE49 contains 

the reaction energies associated with the formation of radical species upon homolytic cleavage of 49 

unique single bonds with various functional group substitutions. The BSE49 set was designed so that the 

49 bonds in question represent all single bonds between unique combinations of the ten atoms for which 

ACPs are being developed in this work. The lack of bond separation energy data in the literature was the 

main motivation behind the creation of the BSE49 data set. Therefore, further validation of ACPs on data 

outside the training set was not possible. Application of our ACPs leads to a reduction in the MAEs 

compared to the parent methods in BSE49 by about 26–43%, suggesting that ACPs offer an efficient way 

of modeling bond separation reactions. 

Other chemical properties that were included in the ACP training set were: molecular isomerization 

energies (“ISOM”), total atomization energies (“TAE”), and molecular deformation energies (“DEF”). A 

few ISOM and TAE data sets from the literature were included in the training set, mainly to ensure that 

ACPs do not lead to a degradation in the functional performance for these properties. The results from 

Figure S1 in the SI show that the application of the ACPs reduce the MAEs of ISOM and TAE with CAM-

B3LYP-D3/6-31G* by about 33% and 28%, respectively. Similarly, with M06-2X/6-31G* the MAEs are 

reduced by about 34%for ISOM and 8% for TAE. For BLYP-D3/6-31G*, the MAE is only reduced for 

ISOM by 42% but an increase in observed for the MAE of TAE by only 10%. 

In addition, a large set of DEF data points were also included in the training set. These data points 

represent energy differences between a molecule at its equilibrium geometry and the same molecule 

deformed along its various normal modes. Our intention when we included these data in the training set 



was to improve the description of molecular potential energy surfaces to obtain reasonably accurate 

geometries and energy derivatives or, at least, prevent the ACP fitting procedure from deteriorating the 

performance of the uncorrected method for these properties. In this connection, we performed transition 

state searches and geometry optimizations on the stationary point structures (reactants, products, and 

transition states) of 100 representative chemical reactions taken from the BH9 data set. Application of 

ACPs resulted in geometries with average root-mean-square-deviations (RMSDs) ranging between 0.110–

0.131 Å (Table S6 of SI) compared to the reference geometries. These average RMSDs are only slightly 

higher than the uncorrected double-ζ basis set DFT methods (0.068–0.123 Å). Note that the geometries 

yielded by DFT-D3 methods with a double-ζ basis set have been shown in the literature to be reasonably 

close to that obtained with quadruple-ζ basis sets.22  

(vi) Overall ACP performance 

In this subsection, we briefly discuss the overall performance of ACPs. First, we consider the various 

biases of the base method as measured by the mean signed errors (MSE) and standard deviations (SD) 

shown in Figure 1. Regarding non-covalent interaction energies, the Figure shows that the uncorrected 

methods tend to over-estimate interaction energies leading to negative MSEs. Application of ACPs 

corrects for this bias and reduces both the MSE and the error spread (SD). For conformational energies, 

the MSEs and SDs of the base methods are reasonably low, and application of ACPs results in a very small 

change for these quantities. For conformational energies, ACPs bring down MSEs and SDs. Covalent 

properties such as reaction energies, barrier heights, and bond separation energies are mostly under-

estimated (positive MSEs) with a substantial error spread. In the particular case of barrier heights and the 

BLYP functional, this may be attributed to delocalization error74, which is partially remedied by the 

application of ACPs. For the covalent properties, application of the ACPs also decreases both the MSE 

and SDs substantially. 

Lastly, we compare the performance of uncorrected and ACP-corrected double-ζ basis set DFT 

methods with the same DFT methods using large basis sets. We present the MAEs of the various methods 

in Table 4. Only a few representative data sets for which nearly complete basis set DFT results have been 

reported in the literature are shown in the table. For non-covalent properties (interaction and 

conformational energies), the MAEs of ACP-corrected methods are slightly higher than the same methods 

at complete basis set limit. However, a particular exception is seen in the case of large hydrogen-bonded 

water cluster sets, Water38 and H2O20Bind10 with CAM-B3LYP-D3/6-31G*-ACP where the MAEs are 

lower than CAM-B3LYP-D3/def2-QZVPDD by almost a factor of two. In the case of covalent properties 



(reaction energies and barrier heights), the MAEs of M062X/6-31G*-ACP and CAM-B3LYP-D3/6-31G*-

ACP methods are lower than the same functionals with def2-QZVPDD basis set for a few cases like BH9-

RE, BSR36, and PX13. The MAEs with CAM-B3LYP-D3/6-31G*-ACP is also lower than CAM-B3LYP-

D3/def2-QZVPDD for two other data sets, namely HTBH38 and WCPT27. Another interesting result is 

observed for the ACP-corrected BLYP-D3/6-31G* method, where the MAEs of data sets containing 

reaction energies and barrier heights, with only a few exceptions, are generally lower than BLYP-D3/def2-

QZVPDD MAEs, indicating that ACPs perform well in mitigating errors other than basis set 

incompleteness like those arising from the approximations in the density functionals itself. The overall 

comparison shown in Table 4 demonstrates that ACP-corrected methods have a performance close to 

nearly complete basis set DFT or sometimes even better, but at a ca. one order of magnitude lower 

computational time. 

Table 4. Comparison of the mean absolute errors (MAEs) of various 6-31G*, 6-31G*-ACP, and nearly 

complete basis set DFT methods for selected data sets. 

Data seta 

BLYP-

D3/6-

31G* 

BLYP-

D3/6-

31G*-

ACP 

BLYP-

D3/def2-

QZVPDDb 

M062X/6-

31G* 

M062X/6-

31G*-

ACP 

M062X/def2-

QZVPDDb 

CAM-

B3LYP-

D3/6-

31G* 

CAM-

B3LYP-

D3/6-

31G*-ACP 

CAM-

B3LYP-

D3/def2-

QZVPDDb 

Non-covalent interaction energies: 

S66x886–88 (528) 1.67 0.60 0.15 0.94 0.52 0.30 1.56 0.52 0.29 

Sulfurx898 (104) 1.15 0.33 0.19 0.60 0.34 0.20 0.99 0.36 0.16 

3B-69-DIM96 (207) 1.65 0.61 0.24 0.76 0.48 0.43 1.68 0.35 0.31 

BzDC215102 (170) 0.94 0.44 0.14 0.63 0.22 0.22 0.82 0.33 0.15 

Water38124 (38) 36.41 1.39 1.30 26.22 4.81 1.62 36.38 3.39 5.87 

CE20189,190 (20) 21.46 2.86 1.02 15.18 3.30 1.16 21.40 3.81 3.27 

H2O20Bind10200 (10) 145.88 24.40 4.50 107.24 15.19 3.35 154.83 13.15 22.12 

Molecular conformational energies: 

YMPJ143 (495) 1.08 0.85 0.53 0.72 0.62 0.38 1.06 0.52 0.34 

BCONF152 (64) 2.55 0.85 0.34 1.75 0.45 0.12 2.44 0.39 0.34 

SCONF14,147 (17) 4.03 0.98 0.41 2.47 0.63 0.18 3.29 0.75 0.19 

PentCONF153 (342) 0.30 0.21 0.36 0.13 0.17 0.11 0.06 0.42 0.08 

Reaction energies: 

BH9-RE74 (449) 5.39 3.12 7.15c 3.40 2.02 2.76d 3.49 2.43 3.14e 

BH76RC162–164 (30) 8.72 4.02 3.28 7.35 3.98 0.86 8.44 4.43 1.61 

NBPRC161,164,181 (6) 2.81 1.77 3.08 2.13 3.34 1.10 1.73 1.84 2.05 

BSR36160,161 (36) 2.74 2.61 3.33 3.62 0.77 3.51 4.81 1.03 4.26 

WCPT6180 (6) 3.71 1.37 1.04 2.74 2.42 0.80 3.42 2.22 0.89 

CR20166 (20) 2.46 2.70 9.63 3.92 2.61 1.75 4.52 3.34 2.52 

DIE60157 (60) 2.39 1.12 1.43 1.16 0.67 0.57 1.29 1.05 0.57 

Barrier heights: 

BH974 (898) 12.72 7.40 8.66c 3.43 2.98 2.27d 4.16 2.88 2.37e 



BHPERI26164,184 (26) 7.24 4.47 3.58 7.24 4.47 1.35 2.25 2.60 2.37 

CRBH20188 (20) 13.52 1.34 16.56 13.52 1.34 1.32 2.31 1.61 1.18 

DBH24185,186 (24) 10.99 5.23 8.25 10.99 5.23 0.85 6.00 4.45 2.66 

HTBH38163 (38) 10.01 5.09 8.79 10.01 5.09 1.08 4.53 2.58 3.61 

NHTBH38162 (38) 13.59 5.54 8.95 13.59 5.54 1.29 8.14 5.37 2.71 

PX13189,190 (13) 33.76 2.17 8.88 33.76 2.17 6.11 29.49 3.59 8.06 

WCPT27180 (27) 12.81 3.18 6.53 12.81 3.18 2.92 9.66 2.49 3.43 

a) details about the data sets can be found in Table S1 of the Supporting Information, b) from Reference 13, c) represents the value obtained with 

BLYP-XDM/def2-QZVPP in Reference 74, d) represents the value obtained with M062X/def2-QZVPP in Reference 74, e) represents the value 

obtained with CAM-B3LYP-XDM/def2-QZVPP in Reference 74. 

 

4. Conclusions 

The use of very accurate quantum mechanical methods, such as nearly complete basis set 

wavefunction theory methods, is not practical for applications involving large systems because of the steep 

scaling of their computational cost with system size. A low-cost alternative is the use of small basis set 

density-functional theory (DFT) methods, but this requires that the inherent shortcomings in these methods 

be mitigated. The focus of this article is to improve the performance of small basis set DFT methods 

without sacrificing their computational efficiency. 

We developed and applied atom-centered potentials (ACPs) to mitigate the shortcomings of BLYP-

D3, M062X, and CAM-B3LYP-D3 methods, in combination with the 6-31G* basis set. We expect these 

shortcomings to be primarily the error from the choice of density functional approximation and basis set 

incompleteness from the limited size of the basis set.  

The ACPs presented in this work were developed for ten elements (H, B, C, N, O, F, Si, P, S, Cl). 

The parametrization of the ACPs was carried out using a regularized linear least-squares fitting procedure 

(the LASSO regression method) using a training set of 118,655 data points calculated mostly using 

wavefunction theory methods extrapolated to the complete basis set limit. The main molecular properties 

in the training set were non-covalent interaction energies, molecular conformational energies, reaction 

energies, barrier heights, and bond separation energies. The performance of the proposed ACPs was 

assessed using the training set and an additional validation set containing 42,567 data points not used 

during the ACP training. 

Our assessment of the new ACP-corrected methods suggests that the ACPs reduce the mean absolute 

errors (MAEs) of double-ζ basis set DFT methods for most subsets, and in general, lead to an improved 

description of all molecular properties in the training set, indicating that ACPs successfully mitigate the 



deficiencies of the parent double-ζ basis set DFT methods. The best performing ACP-based method, i.e., 

CAM-B3LYP-D3/6-31G*-ACP, yields mean absolute errors, relative to high-level of theory, of around 

0.7 kcal/mol for non-covalent interaction energies, 0.4 kcal/mol for conformational energies, 5.6 kcal/mol 

for reaction energies, 3.0 kcal/mol for barrier heights, and 2.5 kcal/mol for bond separation energies. 

Further analysis of the performance of ACP-corrected methods on the validation set shows that ACPs 

are relatively robust, i.e., they are suitable for applications in systems outside the training set. However, 

there is a performance penalty when the system under consideration is significantly different from our 

training set, although no catastrophic results were obtained at any point. This observation suggests that 

increasing the size of the training set and incorporating more diversity is a straightforward way to improve 

the ACPs. In addition, using basis sets containing diffuse functions could be a way to overcome the 

limitations of the present methods in the description of negatively charged systems. The proposed new 

ACPs correct small basis set DFT methods and improve the accuracy of their parent methods, and allow 

carrying out quantum mechanical calculations of large systems at a reasonably low computational cost. 
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