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Abstract 

There has been significant interest in developing fast and accurate quantum mechanical methods for 

modeling large molecular systems. In this work, by utilizing a machine-learning regression technique, we 

have developed new low-cost quantum mechanical approaches to model large molecular systems. The 

developed approaches rely on using one-electron Gaussian-type functions called atom-centered potentials 

(ACPs) to correct for the basis set incompleteness and the lack of correlation effects in the underlying 

minimal or small basis set Hartree-Fock (HF) methods. In particular, ACPs are proposed for ten elements 

common in organic and bio-organic chemistry (H, B, C, N, O, F, Si, P, S, and Cl) and four different base 

methods: two minimal basis sets (MINIs and MINIX) plus a double-ζ basis set (6-31G*) in combination 

with dispersion-corrected HF (HF-D3/MINIs, HF-D3/MINIX, HF-D3/6-31G*), and the HF-3c method. 

The new ACPs are trained on a very large set (73832 data points) of non-covalent properties (interaction 

and conformational energies) and validated additionally on a set of 32048 data points. All reference data 

is of complete basis set coupled-cluster quality, mostly CCSD(T)/CBS. The proposed ACP-corrected 

methods are shown to give errors in the tenths of a kcal/mol range for non-covalent interaction energies 

and up to 2 kcal/mol for molecular conformational energies. More importantly, the average errors are 

similar in the training and validation sets, confirming the robustness and applicability of these methods 

outside the boundaries of the training set. In addition, the performance of the new ACP-corrected methods 

is similar to complete basis set DFT but at a cost that is orders of magnitude lower, and the proposed ACPs 

can be used in any computational chemistry program that supports effective-core potentials without 

modification. It is also shown that ACPs improve the description of covalent and non-covalent bond 

geometries of the underlying methods and that the improvement brought about by the application of the 



ACPs is directly related to the number of atoms to which they are applied, allowing the treatment of 

systems containing some atoms for which ACPs are not available. Overall, the ACP-corrected methods 

proposed in this work constitute an alternative accurate, economical, and reliable quantum mechanical 

approach to describe the geometries, interaction energies, and conformational energies of systems with 

hundreds to thousands of atoms. 

1. Introduction 

Quantum mechanical (QM) methods are an indispensable tool for understanding chemical 

phenomena. When combined with a nearly complete basis set, high-level wavefunction theory methods 

can predict various thermochemical and structural properties with an accuracy comparable to, or even 

better than, experiments. However, such approaches have limited applicability because their computational 

cost increases steeply with the size of the system.1–5 This precludes high-level wavefunction methods from 

being applied to study chemical and biological processes involving large molecular systems, such as 

enzymatic catalysis, protein folding, supra-molecular host-guest complexation, and many others.6–14 

In the past few decades, a significant amount of effort has been devoted to developing efficient and 

accurate QM methodologies that can be applied to large molecular systems.15–28 The application of QM 

modeling begins by selecting a set of approximations to solve the Schrödinger equation. One of the 

simplest QM approaches with a low computational expense is the Hartree–Fock (HF) method. However, 

HF has a major shortcoming in that, by definition, it does not calculate any correlation energy, which 

results in overly repulsive dispersion interactions, bond lengths that are too short, and the poor prediction 

of various other molecular properties. In addition, the cost and accuracy of any QM method is strongly 

dependent on the choice of basis set, the set of functions used to describe the system’s molecular orbitals. 

In HF, the computational cost scales roughly as the fourth power of the number of basis functions, with 

more sophisticated methods presenting an even steeper scaling. Calculations using either minimal or 

double-ζ basis sets are relatively inexpensive, but the use of these small basis sets introduces an additional 

error due to the insufficient number of basis functions. This basis set incompleteness error is severely 

detrimental to the method’s accuracy. Therefore, even though minimal and double-ζ basis set HF offers a 

computationally inexpensive approach for modeling large molecular systems, a way needs to be devised 

to effectively mitigate the deleterious effect of missing electron correlation and basis set incompleteness 

error.29,30 

Many existing semi-empirical QM methods are based on approximations to minimal basis set HF.31–

34 By construction, semi-empirical QM methods circumvent the calculation of certain two-electron 



integrals from the underlying minimal basis set HF approach while incorporating empirical parameters 

obtained by fitting to experimental or high-level theoretical reference data. These approximations 

substantially limit the accuracy of semi-empirical QM methods but in exchange reduce the computational 

cost below that of minimal basis set HF. Due to their reduced computational cost, semi-empirical QM 

methods have found extensive use in modeling large molecular systems. An example of a popular and 

more recent semi-empirical QM approach is the PM7 method of Stewart, which was also modified by 

Throssel and Frisch.35,36  

Another approach that is similar in spirit to conventional semi-empirical QM methods is the HF-3c37 

method proposed by Sure and Grimme. The HF-3c method uses three separate geometry-dependent 

formulas38,39 to add energy corrections (“3c”) for the various deficiencies of minimal basis set HF: one to 

account for some of the missing dispersion interactions, and two to mitigate the effects of basis set 

incompleteness errors. Several other techniques have been proposed in the literature40–54, reflecting the 

interest in developing computationally inexpensive methods for large systems.  

Finding a good compromise between cost and accuracy is critical when modeling large molecular 

systems. HF-3c is an example of a QM method that strikes a good balance between these two desirable 

characteristics. Even though the cost of HF-3c is higher than most semi-empirical QM methods, it is still 

orders of magnitude cheaper than nearly complete basis set wavefunction theory or density-functional 

theory (DFT) based methods. On the other hand, the accuracy of HF-3c in describing molecular structures 

and non-covalent interaction strengths is similar to large basis set DFT.55 These features allow HF-3c to 

be applied for fast geometry optimizations, conformer exploration, and prediction of non-covalent 

interaction energies in fairly large systems, with sizes between many hundreds and a few thousand atoms. 

This allows the QM description of (small) biological systems (proteins, nucleic acids, carbohydrates, 

lipids) as well as supramolecular host-guest complexes. The downside of HF-3c is that it is unable to 

accurately describe thermochemical quantities such as bond breaking and formation energies.56 Grimme 

and co-workers have applied the 3c correction to a few density functional approximations to address this 

problem.57–62 

Our previous works have shown that atom-centered potentials63 (ACPs) offer a convenient means of 

improving the accuracy of HF and DFT based methods.64–76 ACPs are one-electron potentials that share 

the same mathematical form as effective-core potentials77,78 (ECPs) but do not replace any electrons. This 

allows ACPs to be used in most computational chemistry software packages without modifying the code. 

Additionally, ACPs are an economical way of mitigating the errors in the underlying methodology, since 



using them incurs only a small additional cost. In a previous proof-of-concept work, we developed a single 

set of ACPs for the H, C, N, and O elements to mitigate the shortcomings of dispersion-corrected minimal 

basis set HF.64 The parameters for the ACPs were obtained by fitting to a set of 9814 data points of non-

covalent properties (interaction, conformational, and molecular deformation energies). In that work, we 

demonstrated the feasibility of the ACP correction approach by showing that ACPs developed for 

dispersion-corrected minimal basis set HF were able to accurately predict the mentioned non-covalent 

properties. 

In this work, we build upon our previous study64 and develop four ACP-corrected small basis set HF 

based methods. In all cases, the target applications are similar to those of HF-3c and our previous work,64 

namely structures and non-covalent interaction strengths. However, ACPs are developed for a larger set 

of atoms (H, B, C, N, O, F, Si, P, S, and Cl) than in our previous work, greatly increasing the applicability 

of the proposed methods. In addition, the use of the LASSO (Least Absolute Shrinkage and Selection 

Operator) regression79–81 for fitting of ACP parameters greatly simplifies ACP development and allows 

using a training set about eight times as large and much more diverse than in earlier works,64,68–70,73 

resulting in more robust and more widely applicable ACPs. Three of the four new ACP-corrected methods 

are based on HF with minimal (MINIs82 and MINIX37) or small double-ζ basis sets (6-31G*83,84) and use 

Grimme’s D338,85,86 correction to account for the missing dispersion in HF. In addition, we also present a 

set of ACPs designed to improve the performance of the HF-3c method. In addition, our intention with the 

HF-3c-ACP method is to overcome the limitation imposed by the fact that ACPs are available only for the 

ten elements mentioned above. Since HF-3c parameters are available for most elements in the periodic 

table, we expect HF-3c-ACP to reduce to HF-3c performance for the atoms for which ACPs have not been 

developed, which in general should be in the minority. The newly developed ACP-corrected methods are 

assessed using an extensive validation set, demonstrating their performance and robustness. 

2. Computational Methodology 

2.1 Theoretical background 

The procedure employed to develop the ACPs proposed in this work is similar to our earlier proof-

of-concept study64. The mathematical form of an ACP is: 
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where 𝛿𝑉𝑙
𝛼(𝑟) = 𝑉𝑙

𝛼(𝑟) − 𝑉𝑙𝑜𝑐𝑎𝑙
𝛼 (𝑟), 𝛼 represents the atoms on which the potentials are centered, and 𝑟 is 

the distance to atom 𝛼. The |𝑌𝑙𝑚⟩⟨𝑌𝑙𝑚| represents projection operators using real spherical harmonics based 

on atom 𝛼 with 𝑙 angular quantum numbers and 𝑚 magnetic quantum numbers. Equation 1 is the same 

general expression as ECPs77,78. The semi-local nature of the ACP arises from combining the first term 

(the local term), which only depends on the radial coordinate, with the second term (the non-local term), 

which incorporates the anisotropy via angular projections. The individual local and non-local terms in 

Equation 1 are represented by Gaussian-type functions: 

𝑉𝑙𝑜𝑐𝑎𝑙
𝛼 (𝑟) =  ∑ 𝑐𝑙𝑜𝑐𝑎𝑙
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𝛼 𝑟2)

𝑁

𝑛=1

 (2) 

𝛿𝑉𝑙
𝛼(𝑟) =  ∑ 𝑐𝑙

𝛼 exp(−𝜉𝑙
𝛼𝑟2)

𝑁

𝑛=1

 (3) 

where the coefficients (𝑐) and exponents (𝜉) are adjustable parameters that are determined via a regularized 

least-squares fitting to reference data during ACP development (Section 2.2). The sum in Equations 2 and 

3 runs over the total number (𝑁) of Gaussian-type functions defined for atom 𝛼 for the local and non-local 

potential terms. For ease of notation, we will represent the 𝑉𝑙𝑜𝑐𝑎𝑙
α (𝑟) and 𝛿𝑉𝑙

𝛼(𝑟) together as: 

𝑉𝑙
𝛼(𝑟) =  ∑ 𝑐𝑙𝑛

𝛼 exp(−𝜉𝑙𝑛
𝛼 𝑟2)

𝑁

𝑛=1

     𝑓𝑜𝑟  𝑙 = 0, 1, 2, … , 𝐿 (4) 

If the ACP operator (Equation 1) with the functional form of Equation 4 is treated as a perturbative 

correction to any Hamiltonian then the first-order perturbation energy correction induced by the ACPs is: 

𝐸𝐴𝐶𝑃({𝑐𝑙𝑛
𝛼 }, {𝜉𝑙𝑛

𝛼 }) =  ∑⟨𝜓𝑖|�̂�𝐴𝐶𝑃|𝜓𝑖⟩

𝑖

 (5) 

where the sum in Equations 5 runs over the occupied molecular orbitals. Substituting the expressions from 

Equations 1 and 4 into Equation 5 gives: 

𝐸𝐴𝐶𝑃({𝑐𝑙𝑛
𝛼 }, {𝜉𝑙𝑛

𝛼 }) = ∑ 𝑐𝑙𝑛
α

𝛼𝑙𝑛

 ∑⟨𝜓𝑖|(|𝑌𝑙𝑚⟩ exp(−𝜉𝑙𝑛
𝛼 𝑟2) ⟨𝑌𝑙𝑚|)|𝜓𝑖⟩
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 (6) 

The Δ𝐸𝑙𝑛
α (𝜉𝑙𝑛

α ) = ⟨𝜓𝑖|(|𝑌𝑙𝑚⟩ exp(−𝜉𝑙𝑛
𝛼 𝑟2) ⟨𝑌𝑙𝑚|)|𝜓𝑖⟩ integral, known as an ACP energy term, is the 

energy difference between the energy when an ACP with exponent 𝜉𝑙𝑛
𝛼  is applied and the energy in absence 



of any ACP, divided by the ACP coefficient. Packing the coefficients 𝑐𝑙𝑛
𝛼  and exponents 𝜉𝑙𝑛

𝛼  into vectors 

and combining the terms in the inner sum of Equation 6 leads to: 

𝐸𝐴𝐶𝑃(𝒄, 𝝃) =  ∑ 𝑐𝑙𝑛
α

𝛼𝑙𝑛

Δ𝐸𝑙𝑛
α (𝜉𝑙𝑛

α ) = 𝒄 · 𝚫𝐄(𝝃)𝑇 (7) 

where 𝚫𝐄(𝝃)𝑇 is the vector of ACP energy terms. It should be noted that Equation 7 is only correct to first 

order in the ACP perturbation as the coefficients 𝑐𝑙𝑛
𝛼  have an influence on the underlying wavefunction. 

Equation 7 becomes exact only in the limit of 𝒄 → 𝟎, and it is approximately correct if the ACP coefficients 

are small in magnitude. The deviation between the 𝐸𝐴𝐶𝑃 obtained using a self-consistent calculation with 

the corresponding ACP and the linear estimate in Equation 7, which assumes the coefficients have no 

influence on the underlying wavefunction, is called the non-linearity error. 

2.2 ACP development process 

ACPs have features that make them useful to develop energy corrections for a QM method (see 

Reference 69 for more details): (i) ACPs generate energy correction terms based on the molecular orbitals 

(Equation 5) and are wavefunction-dependent, which means they include information from the chemical 

environment and the electronic wavefunction, (ii) the angular projection operators in the potential 

(Equation 1) produces energy correction terms that are dependent upon the local anisotropic environment 

of a given atom, (iii) the exponential form of the ACPs (Equation 4) ensures that a given ACP produces a 

correction that decays exponentially with interatomic distances, (iv) ACPs can be used with any software 

that uses Gaussian-type basis sets and ECPs for geometry optimizations as well as calculation of energies 

and energy derived properties, and (v) the use of ACPs incurs only in a small computational cost (see 

Table S6 in SI for comparison of percentage change in the single-point calculation time between that of 

uncorrected and ACP corrected approaches for twenty selected molecules). 

The first stage of the ACP development process involves assembling a comprehensive and diverse 

training set of target molecular properties. The training set should ideally consist of model systems 

composed of atoms for which ACPs are being developed. The training set should also contain molecules 

representing various chemical environments to ensure that the developed ACPs can be applied to diverse 

chemical systems. Since the focus of this work is to correct the deficiencies of small basis set HF based 

methods regarding molecular structures and non-covalent interactions, our training set contains data points 

of non-covalent interaction energies, molecular conformational energies, and molecular deformation 

energies. 



Next, the exponents (𝜉𝑙𝑛
𝛼 ), atoms (𝛼), and angular momentum channels (𝑙) are chosen, and the 

corresponding ACP energy terms (Δ𝐸𝑙𝑛
α (𝜉𝑙𝑛

α )) are calculated. The ACP energy term evaluation process is 

carried out by first obtaining SCF energy for every training set entry and then evaluating the ACP terms 

post-SCF. This approach speeds up the ACP energy term evaluation process which is important given the 

size of the training set and the number of ACP terms. Once the ACP energy terms have been computed for 

each target method/basis-set, exponents, angular momenta, and systems in the training set, the optimal 

ACP coefficients 𝑐𝑙𝑛
𝛼  are determined using a regularized least-squares fit subject to a constraint on the sum 

of the absolute values of the coefficients. This constraint limits the magnitude of the ACP contributions 

and ensures that the correction arising from the ACP does not lead to significant non-linearity error, which 

would lead to disagreements between the predictions of our linear model (Equation 7) and the results 

obtained from the application of the ACP in an actual self-consistent calculation. 

The training set is organized into subsets, corresponding to different molecular properties and data 

sources from the literature. Each subset of the training set is assigned a weight in the fitting procedure. 

The weight of subset 𝑖 is calculated in the same way as in our previous work64: 

𝑤𝑖 =  
1

𝑀𝑖𝑁𝑖
 (8) 

where 𝑀𝑖 is the average of the absolute value of the reference energies and 𝑁𝑖 is the number of data points 

in subset 𝑖. These weights account for differences in reference data magnitude and number of points in the 

subsets. The error function minimized in the fit is the weighted root-mean-square-error (𝑤𝑅𝑀𝑆𝐸): 

𝑤𝑅𝑀𝑆𝐸 =  √
∑ (𝑤𝑖 ∑ (𝑦𝑟𝑒𝑓,𝑗

𝑖  −  𝑦𝑚𝑒𝑡ℎ𝑜𝑑,𝑗
𝑖 )2)

𝑁𝑖
𝑗𝑖

∑ 𝑁𝑖𝑖
 (9) 

where 𝑗 are the data points in the 𝑖th subset, 𝑦𝑟𝑒𝑓,𝑗
𝑖  are the high-level reference energies for system 𝑗 in the 

𝑖th subset, and  𝑦𝑚𝑒𝑡ℎ𝑜𝑑,𝑗
𝑖  are the energies of the underlying method for which the ACPs are being 

developed.  

The LASSO (Least Absolute Shrinkage and Selection Operator) regression79–81, commonly 

employed in statistics and machine learning, is used to carry out the regularized least-squares fit. In 

LASSO, the 𝑤𝑅𝑀𝑆𝐸 in Equation 9 is minimized subject to the condition that 𝑙1-norm of the ACP 

coefficients does not exceed a certain bound chosen beforehand: 



‖𝑐‖1 =  ∑|𝑐𝑖|

𝑖

 (10) 

The LASSO method is used to limit the magnitude of the ACP coefficients. In addition, for a given 

constraint, LASSO automatically selects the best subset of ACP terms and discards the others, resulting in 

ACPs with fewer terms, which is beneficial because it curbs the computational cost of applying the ACPs. 

2.3 Training and validation data sets 

The training set (Table 1) comprises non-covalent interaction energies, molecular conformational 

energies, and molecular deformation energies. This choice of training set properties is justified by the 

potential target applications of small basis set HF based methods, namely fast geometry optimizations and 

non-covalent interaction strengths in large systems as well as high-throughput87 screening of conformers 

in combination with conformer search techniques88–90. These applications are useful, for instance, when 

performing exhaustive conformational searches of macrocyclic drugs91–96 and other pharmaceutical 

candidates97, and studying biochemical processes like protein folding98–100 and puckering of 

nucleotides101,102. 

A successful method for non-covalent interactions must be able to accurately describe diverse non-

covalent interaction motifs, which means that the training set must contain some of this diversity. For 

instance, the importance of π-π interactions is well-known in medicinal chemistry103, structural 

biology104,105, and organic electronics106. Such interactions also contribute to the stabilization of DNA107,108 

and proteins109, control the strength and specificity of drug-protein interactions110, and help in the rational 

design of supramolecules111–113. Other types of non-covalent interactions are also important in practice. 

For example, Berka et al. reported that aliphatic-aliphatic (or hydrophobic) interactions between amino 

acid backbone chains are the most abundant in proteins, particularly in the hydrophobic active site.114 

Hydrophobic interactions also control the structure and properties of lipid bilayers115,116 and self-

assembled supramolecules117. On the other hand, hydrogen bonding is probably the most studied non-

covalent interaction.118,119 Several other stabilizing non-covalent interactions with potential chemical and 

biological applications have also been studied, including halogen bonding216–219, pnicogen bonding220–222, 

and anionic120–123 interactions. Therefore, we designed our training set to contain representative candidates 

from the interaction types mentioned above. This also allows us to assess the strengths and weaknesses of 

the developed ACPs regarding each interaction type. 

In most cases, the subsets of the training set, and the molecular geometries and reference data in 

them, were adopted from the literature. Occasionally, the reference energies were re-calculated at a higher-



level to improve their quality. In each subset of the training set, data points involving molecules containing 

atoms other than H, B, C, N, O, F, Si, P, S, and Cl were excluded. A detailed list of all the subsets used 

for our ACP training set is given in Table S1 of the SI. The number of data points in each subset varies 

depending on the availability of benchmark data sets. 

The training set used here is almost eight times larger than in our previous work64. In total, the 

training set comprises 73832 data points (167275 molecular geometries) calculated mainly with complete 

basis set wavefunction theory methods (Table S1 in SI). The total number of non-covalent interaction 

energies, molecular conformational energies, and molecular deformation energies are 19439, 44105, and 

10288, respectively. The most abundant type of non-covalent interaction in the training set is hydrogen 

bonding.  The mixed non-covalent interactions subset is second in abundance and features a mix of all 

common interactions found in large molecular systems. The large size of the training set ensures that no 

overfitting occurs when the least-squares fit is carried out. 

In order to evaluate the performance and robustness of the new ACPs, we also assembled a validation 

set (Table 2), different from the training set, by compiling additional data sets from the literature. A 

detailed list of all the data sets included in the validation set is provided in Table S2 of the SI. In total, the 

validation set consists of 32047 high-level data points (92161 molecular geometries) calculated mainly 

with complete basis set wavefunction theory. The validation set contains 27811 non-covalent interaction 

energies and 4237 molecular deformation energies. 

The structures and reference energies of all data points in the training and validation sets are given 

in the SI. In addition, the subsets that comprise the training and validation sets, grouped into categories to 

facilitate the analysis of the results, are listed in Tables 1 and 2. It should be noted that this subset 

categorization is in no way an exhaustive representation of the various types of systems in the training or 

validation set. 

Table 1. List of data sets, grouped by category, in the ACP training set. 

Category Data set(s) Data points 
Reference energy range 

(kcal/mol) 
Description 

 Non-covalent interaction energies of molecular complexesa: 

π-stacking 
Pisubb,124,125, Pi29n126, BzDC215127, 

C2H4NT128 
379 -18.30 to +10.33 

non-stacked and stacked π-π 

interactions 

Hydrophobic ADIM638,129,130, HC12131 18 -5.60 to -1.30 aliphatic-aliphatic interactions 

Pnicogen-bonding PNICO23129,132 23 -10.97 to -0.64 pnicogen bonding interactions 

Halogen-bonding Hill18133, X40x10134 238 -14.14 to +11.95 halogen bonding interactions 



Hydrogen-bonding 

HBC6135,136, MiriyalaHB104137,138, 

IonicHB139, HB375x10140, 

IHB100x10140, HB300SPXx10141, 

CARBH12129 

6409 -37.01 to +16.30 hydrogen bonding interactions 

Mixed NCIs 

S22x5136,142,143, S66x8144–146, 

S66a8145, A21x123,147,148, 

NBC10ext128,136,149–151, 3B-69-

DIM152, 3B-69-TRIM152, HW30153 

1895 -35.76 to +9.34 
mixed-character non-covalent 

interactions  

Anionicc 

SSI-anionic154, WatAA-anionicb,155, 

HSG-anionic136,156, PLF547-

anionic157, IonicHB-anionic139, 

IHB100x10-anionic140, Ionic43-

anionic158 

1509 -135.11 to +88.94 anionic interactions 

Biomolecule-Biomolecule 

BBI154, SSI154, NucTAAb,c,159–162, 

CarbhydBz163, CarbhydNaph164, 

CarbhydAroAAb,165, 

CarbhydArob,166, WatAAb, 155, 

HSG136,156, PLF547157, JSCH142, 

DNAstack167, DNA2body167, 

ACHC168, BDNA169, 

NucBTrimerb,170 

4756 -100.86 to +64.19 
interactions present in various 

biomolecules 

Gas-Ligand 

CH4PAH171,172, CO2MOF173, 

CO2PAH174, CO2NPHAC175, 

BzGas176 

876 -6.02 to +12.17 
interactions between gas molecules 

and substrate  

Water-Water 
Water38177, Water1888128,178–180, 

Water-2bodyd,68 
2336 -92.89 to +5.10 

hydrogen-bonded water dimers and 

(H2O)n clusters where n=3–10 

BFSiPSCl 
B-setb,65, F-setb,65, Si-setb,65, P-setb,65, 

S-setb,65, Cl-setb,65, Sulfurx8181 
1000 -68.05 to +21.57 

monomers containing B, F, Si, P, S, 

and Cl atoms 

 Molecular conformational energiese: 

Small molecule 

37Conf8182, DCONF183, ICONF129, 

MCONF184, Torsion21185, 

MolCONF186, ANI1ccxCONFf,187 

41224 +0.01 to +50.00 

various molecules representing 

pharmaceuticals, catalysts, synthetic 

precursors, industrial chemicals, 

and organic compounds 

 Negatively chargedg 
PEPCONF-Dipeptide-anionicb,188, 

MolCONF-anionic186 
254 -0.47 to +10.96 negatively charged molecules 

Biomolecule 

PEPCONF-Dipeptideb,188, 

TPCONF189, P76190, YMPJ191, 

SPS192, rSPS193, UpU46194, 

SCONF129,195, DSCONF196, 

SacchCONF197, CCONF198 

2082 -4.09 to +19.74 

molecules representative of 

proteins, DNA, RNA, and 

carbohydrates 

Hydrocarbon  
ACONF199, BCONF200, 

PentCONF201 
421 +0.14 to +16.66 hydrocarbon-like molecules 

(H2O)11 Undecamer125202 124 +0.06 to +1.87  (H2O)11 clusters 

Molecular deformation energiesh: 

Deformation MOLdefa,65, MOLdef-H2Od,203,204 10288 -3.43 to +49.38 
various molecules deformed along 

their normal modes 

a) defined as the difference between the energy of the complex and the sum of the monomer energies. A negative interaction energy indicates the complex 

is more stable than the separated monomers. 

b) the reference data was recalculated in this work at the DLPNO-CCSD(T)/CBS level of theory (see SI for more details), at geometries reported in the 

literature. 

c) comprises non-covalently bound dimers where at least one of the monomers is negatively charged.  

d) the reference data was calculated in this work at CCSD(T)/CBS level using the same extrapolation method as in Reference 177. 

e) defined as the difference between the energy of a particular conformer and a lower-energy conformer of the same molecule. 

f) contains mostly conformational energies but also some molecular deformation energies. 

g) comprises negatively charged conformers. 



h) defined as the difference between the energy of a molecule deformed along a particular normal mode and the energy of the same molecule at 

equilibrium. 

Table 2. List of data sets, grouped by category, in the ACP validation set. 

Category Data set(s) Data points 
Reference energy range 

(kcal/mol) 
Description 

 Non-covalent interaction energies of molecular complexesa: 

Mixed NCIs 
BlindNCI205, DES15K206, 

NENCI-2021207 
17413 -33.78 to +186.83 

mixed character non-covalent 

interactions 

Hydrogen-bonding CE20208,209, WaterOrg210 2396 -46.58 to -10.76 hydrogen bonding interactions 

Halogen-bonding XB45211 33 -13.11 to -0.89 halogen bonding interactions 

Chalcogen-bonding CHAL336212 48 -30.85 to -1.57 chalcogen bonding interactions 

Repulsive contacts R160x6213, R739x5214 5290 -12.02 to +6.79 close contact interactions 

Anionicb 

HW6Cl-anionic215,216, HW6F-

anionic215,216, FmH2O10-

anionic215,216, SW49Bind345-

anionic217, SW49Bind6-

anionic217, Anionpi-anionic218, 

IL236-anionic219, DES15K-

anionic206, NENCI-2021-

anionic207, CHAL336-

anionic212, XB45-anionic211, 

S30L-anionic220 

2525 -171.42 to +66.15 anionic interactions 

(H2O)20 cluster H2O20Bind10216 10 -200.54 to -196.59 (H2O)20 clusters 

C60 dimer C60dimer221 14 -6.88 to +12.07 C60 dimers 

Large molecule 
L713,222,223, S12L9,11,223, S30L220, 

Ni2021224 
54 -416.08 to -1.68 

large molecules relevant in 

supramolecular chemistry and 

biochemistry 

 Molecular conformational energiesc: 

Small molecule 

SafroleCONF225, 

AlcoholCONF226, 

BeranCONF227, Torsion30d,228 

2193 +0.001 to +12.50 

Safrole or 5-(2-propenyl)-1,3-

benzodioxol) molecule, small alcohol 

molecules, small organic molecules, 

and biaryl drug-like molecules 

Proteinogenic 

MPCONF196e,229, PEPCONF-

Tripeptidef,188, PEPCONF-

Disulfideg,188, PEPCONF-

Cyclicg,188,  PEPCONF-

Bioactiveg,188 

1874 -0.47 to +81.00 peptide-like molecules 

Negatively chargedh 

PEPCONF-Disulfide-

anionicg,188, PEPCONF-

Bioactive-anionicg,188 

170 +0.17 to +33.79 negatively charged molecules 

a) defined as the difference between the energy of the complex and the sum of energy of the monomers. A negative interaction energy indicates the 

complex is more stable than the separated monomers. 

b) comprises non-covalently bound complexes with at least one negatively charged monomer. 

c) defined as the difference between the energy of a particular conformer and a lower-energy conformer of the same molecule. 

d) only 30 systems used; we could not find the rest systems mentioned in Reference 228 in the supporting information 

e) only macrocyclic peptides considered. 

f) only a subset from the PEPCONF188 database for which reference data was recalculated at the DLPNO-CCSD(T)/CBS level of theory (see SI for more 

details). 

g) available reference data was calculated at LC-ωPBE-XDM/aug-cc-pVTZ level of theory. 

 h) comprises negatively charged conformers. 

2.4 Technical details 



Three sets of ACPs were developed for HF-D3 in combination with the minimal basis set MINIs, 

MINIX, and the double-ζ basis set 6-31G*. An additional set of ACPs was developed for HF-3c, which 

uses the MINIX basis set. The MINIX basis set was proposed at the same time as HF-3c37, and is equivalent 

to MINIs for the first row atoms (H, B, C, N, O, and F) but employs an extra d basis function for Si, P, S, 

and Cl. Angular momentum channels up to the maximum angular momentum of the valence orbital basis 

functions for each atom present in the chosen basis set were used for ACP development. The maximum 

angular momentum values were: s for H (MINIs, MINIX, 6-31G*), p for B, C, N, O, F, Si, P, S, Cl (MINIs), 

p for B, C, N, O, F (MINIX), d for Si, P, S, Cl (MINIX), and d for B, C, N, O, F, Si, P, S, Cl (6-31G*). 

Twenty-nine ACP exponents (𝜉𝑙𝑛
𝛼 ) were chosen, with values: 0.12 to 0.30 in 0.02 steps,  0.40 to 2.00 

in 0.10 steps, and  2.50 to 3.00 in 0.50 steps. It should be noted that the choice of exponents is different 

than in our previous work64. A careful evaluation of the computational cost associated with the calculation 

of ACP energy term integrals (Equation 7) with low exponent functions (0.01 < 𝜉𝑙𝑛
α  < 0.11) suggested that 

ACPs containing exponents lower than 0.12 can lead to a significant increase in calculation time 

(especially for large molecules) compared to methods where ACPs are not applied. Therefore, choosing 

exponents higher than or equal to 0.12 ensures that the computational overhead is limited to a 10–30% 

increase relative to the uncorrected method. 

The combination of ten atoms and twenty-nine exponents along with the various angular momentum 

channels results in 841 ACP terms for MINIs, 957 ACP terms for MINIX, and 1102 ACP terms for 6-

31G*. For our training set of 73832 data points (167275 molecular geometries), ACP development 

required a total of 140678275 (HF- D3/MINIs), 160082175 (HF-D3/MINIX), and 184337050 (HF-D3/6-

31G*) single-point energies. Combined with the self-consistent calculations used to evaluate the impact 

of non-linearity error (1338200) and the calculations on the validation set to evaluate the performance of 

the ACPs (737288), the total number of calculations for this project is 487172988. This complexity 

required the development of specialized software which we briefly describe next. 

The parameters for the D3 dispersion correction used in this work correspond to those for the 

HF/aug-cc-pVTZ method with Becke-Johnson damping: 𝑠6 = 1.0, 𝑠8 = 0.9171, 𝑎1(𝐵𝐽) = 0.3385, and 

𝑎2(𝐵𝐽) = 2.8830 Å. It should be noted that these D3 parameters are very close to those used in HF-3c37. 

The ACP energy term evaluation and fitting processes were carried out using the dcp230 and acpfit231 

packages available in our GitHub repository232. These programs automatize and collate all the data 

required for ACP development. For the LASSO regression, we used the local linearization plus active set 

method proposed by Osborne et al.233 and implemented in octave/MATLAB by Schmidt234,235. All single-



point energy calculations with minimal or double-ζ basis set HF-D3 methods were performed with the 

Gaussian-16236 software package. The HF-3c single-point energy calculations were performed with the 

ORCA237 software package. All the SCF single-point energy calculations on the training and validation 

sets were carried out with the default settings. The post-SCF calculations for the ACP energy term 

evaluations (Equations 6 and 7) were executed using non-SCF multistep Gaussian-16 jobs. 

Once all the ACP energy terms for a particular target method were successfully computed, they were 

passed to the LASSO fit, resulting in an optimal set of ACPs for that method with minimum 𝑤𝑅𝑀𝑆𝐸 for 

a constraint of 25.0 au on the 𝑙1-norm of coefficients. The ACPs proposed in this work contain 

approximately 6–19 terms per atom, and they are designed to be paired with the specific method for which 

they were developed (i.e., HF-D3/MINIs, HF-D3/MINIX, HF-D3/6-31G*, or HF-3c), and are not 

transferable to other methods. The ACP coefficients and exponents for each method are provided in the 

SI. An example of the usage of ACPs in the Gaussian software is also given in the SI. 

3. Results and Discussion 

3.1 Performance of ACPs for the training set 

The optimal ACPs paired with their respective methods (HF-D3/MINIs, HF-D3/MINIX, HF-D3/6-

31G*, and HF-3c) were applied self-consistently on the entire training set. The resulting non-covalent 

interaction energies, molecular conformational energies, and molecular deformation energies are 

compared to the corresponding reference data in Figures 1 and 2. The strip charts represent the error 

distribution as vertical lines for each method. The mean signed errors (MSEs) (open circle) and the 

standard deviations (SDs) of the errors (horizontal black lines) are also represented. The mean absolute 

errors (MAEs) and percentage change in the MAEs upon the application of ACPs (%∆MAE) for each 

method are listed on the right. A detailed breakdown of the errors for each method and subset can be found 

in Table S3 of the SI. 

Table S3 of the SI also lists the deviation between the prediction of the ACP performance from our 

linear model (the LASSO fitting procedure) against the actual results from using the ACP in self-consistent 

calculations. This comparison, which measures the extent of non-linearity error, shows that the deviation 

between the MAEs predicted by the linear model and the self-consistent calculations is under 10% for 

most of the subsets of the training set, with only a few exceptions. This indicates that the 𝒍𝟏-norm constraint 

imposed in the LASSO fit was effective in preventing excessive non-linearity error and that the linear 

model used to develop ACPs is a faithful representation of their eventual performance as a correction 



method. In the following, the results obtained from the self-consistent application of ACPs are discussed 

for the different molecular properties in the training set. 

 



Figure 1. Error distribution (in kcal/mol) associated with non-covalent interaction energy subsets of the 

training set (see Table 1). Methods shown include HF-D3/MINIs (light blue), HF-D3/MINIs-ACP (blue), 

HF-D3/MINIX (light pink), HF-D3/MINIX-ACP (pink), HF-3c (light grey), HF-3c-ACP (grey), HF-D3/6-

31G* (light yellow), and HF-D3/6-31G*-ACP (yellow). The black circles represent the mean signed errors 

(MSEs, kcal/mol) and the black error bars are the standard deviations of the error (SDs, kcal/mol). The 

numbers on the right hand side of each panel are the mean absolute errors (MAEs, kcal/mol) and the 

percentage change in MAEs upon the application of ACPs (%∆MAE) for each method. %∆MAE is defined 

as [MAE(base method) – MAE(ACP-corrected method)] / MAE(base method) x 100%. The X-axis has 

been capped at -18 (left) and +10 kcal/mol (right) for clarity.  

 



Figure 2. Error distribution (in kcal/mol) associated with molecular conformational and deformation 

energy subsets of the training set (see Table 1). Methods shown include HF-D3/MINIs (light blue), HF-

D3/MINIs-ACP (blue), HF-D3/MINIX (light pink), HF-D3/MINIX-ACP (pink), HF-3c (light grey), HF-

3c-ACP (grey), HF-D3/6-31G* (light yellow), and HF-D3/6-31G*-ACP (yellow). The black circles 

represent the mean signed errors (MSEs, kcal/mol) and the black error bars are the standard deviations of 

the error (SDs, kcal/mol). The numbers on the right hand side of each panel are the mean absolute errors 

(MAEs, kcal/mol) and the percentage change in MAEs upon the application of ACPs (%∆MAE) for each 

method. %∆MAE is defined as [MAE(base method) – MAE(ACP-corrected method)] / MAE(base 

method) x 100%. The X-axis has been capped at -35 (left) and +40 kcal/mol (right) for clarity.  

(i) Non-covalent interaction energies 

The ACPs developed in this work have been trained on a wide range of non-covalent interaction 

types, including stacked and non-stacked π-π interactions, hydrophobic interactions, pnicogen bonding, 

halogen bonding, hydrogen bonding, and interactions of mixed and anionic nature. The proper description 

of each of these interactions is important for modeling large molecular systems, like proteins, where they 

operate co-operatively.238 Figure 1 shows that the minimal or double-ζ basis set HF-D3 and HF-3c methods 

without ACPs have MAEs below 2 kcal/mol for different types of interactions except those of anionic 

nature (Anionic subset), where the MAEs are above 3.5 kcal/mol. Figure 1 also shows that HF-3c yields 

MAEs below 0.50 kcal/mol for π-stacking, Hydrophobic, and Mixed NCIs subsets, indicating that HF-3c 

is well suited to model systems that contain interactions of π-π, aliphatic-aliphatic, and mixed nature.  The 

application of ACPs to minimal or double-ζ basis set HF-D3 and HF-3c methods mostly brings down the 

MAEs by about 44–90% (minimal basis set HF-D3), 49–84% (double-ζ basis set HF-D3), and 16–60% 

(HF-3c) for the range of interaction types covered in the subsets π-stacking, Hydrophobic, Pnicogen-

bonding, Halogen-bonding, Hydrogen-bonding, Mixed NCIs, and Anionic. 

Figure 1 shows that the application of ACPs to minimal or double-ζ basis set HF-D3 and HF-3c 

methods leads to an improved description of interactions of mixed, hydrogen bonding, and hydrophobic 

interaction types. π-π stacking interactions are also well described by our ACPs, except in the case of ACPs 

developed for HF-3c. Even though ACPs lead to a better description of anionic interactions than minimal 

or double-ζ basis set HF-D3 and HF-3c, the error spread is still large, evidencing the shortcomings of the 

underlying methods regarding anionic interactions. 

Figure 1 also shows that the minimal or double-ζ basis set HF-D3 methods tend to over-estimate the 

interaction energies of almost all interaction types (except pnicogen bonding), with negative MSEs. On 

the other hand, the MSEs for HF-3c indicate that over-estimation or under-estimation of interaction 

energies depends on the nature of interaction type. The error spread in HF-3c is generally lower than 



minimal or double-ζ basis set HF-D3 methods, resulting in lower MAEs, MSEs, and SDs for this method. 

When applied to minimal or double-ζ basis set HF-D3, ACPs correct the over-estimation in the interaction 

energies, resulting in a lower spread of errors and SDs, and a corresponding decrease in MSEs. Similarly, 

depending on the nature of interaction type, ACPs also improve the over-estimation or under-estimation 

tendencies of HF-3c for certain interaction types, causing a reduction in the corresponding MSEs. 

We now examine the ACP performance for the more common interaction types in the training set, 

namely, hydrogen bonding and mixed interactions (Hydrogen-bonding and Mixed NCIs subsets). ACPs 

lower the MAEs of all four methods for the Hydrogen-bonding subset by about 63% (minimal basis set 

HF-D3), 79% (double-ζ basis set HF-D3), and 36% (HF-3c). For the Mixed NCIs subset, ACPs lower the 

MAEs by 75% (minimal basis set HF-D3), 83% (double-ζ basis set HF-D3), and 27% (HF-3c). It is also 

evident from Figure 1 that ACPs not only reduce the MAEs of the HF-D3 and HF-3c methods but also 

reduce the spread of errors and SDs and the bias. This is particularly true in the case of the HF-D3 methods. 

Some outliers with high error exist, which is natural given the very large size of the training set, but these 

errors are still lower than those predicted without ACPs. The individual errors for the Mixed NCIs subset 

are mostly within ±2 kcal/mol. Some of the systems with errors beyond ±2 kcal/mol are trimers with 

roughly twice the reference energies than the dimers in the training set. For the Hydrogen-bonding subset, 

an inspection of the errors beyond ±5 kcal/mol reveals that the ACPs over-stabilize the hydrogen bonding 

interactions of some complexes with polar bonds involving electronegative S, P, F, and Cl atoms. 

The π-stacking subset with HF-3c-ACP is the only case where ACPs slightly increase the MAE of 

the base method (from 0.38 kcal/mol for HF-3c to 0.49 kcal/mol for HF-3c-ACP). However, it should be 

noted that for π-stacking, the ACPs developed for minimal or double-ζ HF-D3 methods, which initially 

have almost three times higher MAEs than HF-3c, do lead to a reduction in the MAEs by approximately 

66–70%. A similar result occurs for the Mixed NCIs subset where MAEs of minimal or double-ζ HF-D3 

methods are almost three times higher than HF-3c, and the application of ACPs reduce the MAEs for 

minimal or double-ζ HF-D3 methods by about 75–80% and by only about 27% for the HF-3c method. 

These two examples suggest that ACPs reduce the MAEs of the underlying methods when they are high 

and have a lesser impact on those subsets where the MAEs of the underlying method are already low. 

Consequently, in a few rare instances the performance of an underlying method with low initial MAE can 

be negatively, but only slightly,  impacted by the application of ACPs. This is the case for HF-3c-ACP 

applied to π-π interactions. 



A particular limitation of all methods in this work is the performance for the anionic systems in the 

Anionic subset. This subset is challenging for basis sets like MINIs, MINIX, and 6-31G* because of the 

lack of diffuse functions required to properly describe negatively charged species. Figure 1 shows that the 

error spread and the SDs of the Anionic subset are larger than other interaction types. Because the Anionic 

subset was used in the training set, ACPs improve the performance of all four methods for anionic 

interaction energies, with MAE reductions of 19–49%. However, there is obvious room for improvement, 

and it is likely that it can only be achieved by the inclusion of diffuse basis functions, which would incur 

in an additional computational cost. 

An interesting observation from Figure 1 (also Table S3 of SI) is that when ACPs are developed for 

minimal basis set HF-D3 and HF-3c, the MAEs of the resulting ACP-corrected methods are very similar 

irrespective of whether the ACPs are applied to minimal basis set HF-D3 or HF-3c. For example, hydrogen 

bonding interactions (Hydrogen-bonding subset) with HF-D3/MINIs, HF-D3/MINIX, and HF-3c have 

MAEs of 1.95, 1.85, and 1.14 kcal/mol. The application of ACPs brings these MAEs down to very similar 

values (0.74, 0.68, and 0.73 kcal/mol) even though the MAEs for the uncorrected methods were quite 

different. Such consistency in the ACP-corrected MAEs is observed for most of the other types of 

interactions, and they indicate that the ACPs developed for minimal basis set HF-D3 are, to some extent, 

able to mitigate basis set incompleteness errors just like the gCP37,39 and SRB37 corrections of HF-3c. Also, 

since the ACPs developed for HF-3c in most cases improve on HF-3c, ACPs provide additional error 

mitigation beyond that offered by gCP37,39 and SRB37. On the other hand, ACPs developed for double-ζ 

basis set HF-D3 result in lower MAEs than those used in combination with minimal basis set HF-D3 for 

each interaction type, indicating that systematic improvement can be obtained by using ACPs with larger 

basis sets. However, going beyond double-ζ would lead to a significant increase in computational cost, 

and would result in methods with limited applicability for large molecular systems.239 In this regard, a 

better alternative would be the development of ACPs for use with double-ζ DFT methods, an idea that is 

currently being explored in our group.240 

The performance of the proposed ACP based methods for the different interaction types and 

especially for the Mixed NCIs subset makes them promising for various applications. Keeping in mind our 

goal of designing low-cost approaches for modeling supramolecular and biological systems, we also 

assembled subsets and generated reference interaction energy data for prototypical non-covalently bound 

complexes relevant in biochemistry. Non-covalent interactions present in such systems are covered by the 

Biomolecule-Biomolecule subset. The Biomolecule-Biomolecule subset contains model systems 

representative of nucleotide-nucleotide interactions as well as protein fragments interacting with 



carbohydrates, nucleotides, drugs, water, and with other proteins. Such interactions are relevant in 

applications like protein folding241,242, protein structure refinement243,244, protein-ligand binding245–247, 

intercalation248, nucleobase stacking249, and protein hydration250, to name a few. Uncorrected minimal or 

double-ζ basis set HF-D3 in general overestimate the interaction energies in this subset, and application of 

the ACPs reduces this overestimation and decreases the error spread and SDs. Specifically, ACPs reduce 

the MAEs by about 74% (minimal basis set HF-D3) and 84% (double-ζ basis set HF-D3). HF-3c errors 

are centered around the zero-error average line with a relatively small spread, indicating that HF-3c is well 

suited for the complexes present in the Biomolecule-Biomolecule subset. Application of ACPs to HF-3c 

further reduces the MAE (by about 16%) except for a few systems: some nucleotide trimers and some 

nucleotide-amino acid complexes. 

The Gas-Ligand subset comprises small molecules like CO2, CH4, and N2 interacting with benzene, 

coronene, polycyclic aromatic hydrocarbons, polyheterocyclic aromatic compounds, and other 

functionalized organic molecules. The complexes present in the Gas-Ligand subset are representative of 

potential applications in the areas of chemical sensing, gas storage, and gas separation.251–253 By training 

our ACPs to this subset we expect to extend their applicability to the modeling of gas adsorption on various 

porous materials.254 The application of ACPs decreases the MAEs of all considered methods for the Gas-

Ligand by about 77% (minimal basis set HF-D3), 76% (double-ζ basis set HF-D3), and 18% (HF-3c). The 

bias of minimal or double-ζ basis set HF-D3 and HF-3c towards over-estimating the interaction energies 

are also reduced with the application of ACPs, resulting in lower error spread and SDs. 

The Water-Water subset contains interaction energies of water dimers at various intermolecular 

separations as well as small water clusters (H2O)n with n=3–10. Potential target applications of ACPs 

trained against this subset are the modeling of aqueous environments, the study of surfaces of 

astrochemical interest255–260, as well as performing ab initio molecular dynamics simulations of water261–

264. The ACPs improve the MAEs of minimal or double-ζ basis set HF-D3 and HF-3c methods for Water-

Water by about 68% (minimal basis set HF-D3), 78% (double-ζ basis set HF-D3), and 19% (HF-3c). 

Furthermore, Figure 1 shows that the large error spreads obtained with all underlying methods are 

significantly reduced by the ACPs, which bring the MSEs close to zero. 

The last non-covalent interaction energy subset in the training set is BFSiPSCl, which contains 

complexes of monomers containing B, F, Si, P, S, and Cl. This subset extends the applicability of ACPs 

to systems like disulfide-linked proteins, covalent organic frameworks, functionalized silicon surfaces, and 

others. The application of ACPs results in a decrease in the MAEs of the BFSiPSCl subset by about 67% 



(minimal basis set HF-D3), 70% (double-ζ basis set HF-D3), and 52% (HF-3c), with a decrease in the 

error spread and SDs in all cases. The drop in MAE observed for the HF-3c-ACP is more significant for 

this subset than all other interaction energy subsets, and the reduction is also close to that observed in the 

Pnicogen-bonding subset, indicating that perhaps the HF-3c parametrization is not as good for these 

systems as for the more “usual” non-covalent interactions in the previous sets. 

Finally, we consider a few illustrative examples for which we compare the performance of our ACP-

corrected methods with some commonly used DFT methods in combination with large basis sets. For this 

purpose, we use representative data sets from Mardirossian and Head-Gordon's benchmarking work265, for 

which nearly complete basis set DFT results have been reported in the literature. Specifically, we use the 

following sets: BzDC215127 for π-π stacking interactions, HC12131 for aliphatic-aliphatic interactions, 

S66x8144–146 and 3B-69-DIM152 for interactions of mixed nature, SSI154 and HSG136,156 for biomolecule-

biomolecule interactions, Water38177 for water-water interactions, and Sulfurx8181 for interactions 

involving S atoms. The reported MAEs (in kcal/mol) of the DFT methods with the very large def2-

QZVPDD basis set as well as the MAEs of the ACP-corrected methods are shown in Table 3. The table 

shows that the ACPs reduce the MAEs of minimal or double-ζ basis set HF-D3 and HF-3c methods in all 

the selected data sets and brings their MAE to a value close to or even lower than the almost complete 

basis set DFT methods. Therefore, Table 3 demonstrates that ACP-corrected methods have a performance 

similar to almost complete basis set DFT, but naturally at a cost that is reduced by orders of magnitude. 

Table 3. Comparison of the mean absolute errors (MAEs) of various methods for selected data sets in the 

training set. The MAEs lower than those calculated with various DFT methods using the def2-QZVPDD 

basis set are highlighted in bold. 

Data seta 
DFT functionals with 

def2-QZVPDDb 

HF-

D3/MINIs 

HF-

D3/MINIs-

ACP 

HF-

D3/MINIX 

HF-

D3/MINIX-

ACP 

HF-

3c 

HF-3c-

ACP 

HF-D3/6-

31G* 

HF-D3/6-

31G*-ACP 

BzDC215127 

 

0.41 

[LC-ωPBE08-D3(BJ)] 

0.92 0.40 0.85 0.39 0.23 0.44 1.27 0.34 

HC12131 
0.25 

[M06-2X] 
1.80 0.20 1.80 0.22 0.42 0.25 1.19 0.27 

S66x8144–146 

0.29 

[CAM-B3LYP-

D3(BJ)] 

1.24 0.25 1.24 0.26 0.37 0.27 1.49 0.23 

3B-69-

DIM152 

0.43 

[M06-2X] 
1.08 0.42 1.08 0.41 0.50 0.42 1.44 0.25 

SSI154 
0.17 

[B3LYP-D3(BJ)] 
0.87c 0.21c 0.87c 0.20c 0.28c 0.22c 0.76c 0.15c 

HSG136,156 
0.14 

[B3LYP-D3(BJ)] 
0.94c 0.18c 0.94c 0.19c 0.33c 0.19c 0.89c 0.12c 



Water38177 
2.85 

[B3LYP-D3(BJ)] 
30.62 1.56 30.62 1.24 7.67 1.32 19.51 0.77 

Sulfurx8181 
0.33 

[BP86-D3(BJ)] 
0.50 0.41 0.36 0.29 0.71 0.35 0.75 0.19 

YMPJ191 
0.99 

[B97-D] 
1.73 0.97 1.74 1.00 2.32 1.04 0.80 0.57 

SCONF129,195 
0.57 

[LC-ωPBE08-D3(BJ)] 
5.20 0.59 5.20 0.54 1.47 0.57 1.57 0.64 

BCONF200 

0.34 

[CAM-B3LYP-

D3(BJ)] 

2.40 0.29 2.40 0.27 0.58 0.27 1.25 0.34 

PentCONF201 
0.15 

[B3LYP-D3(BJ)] 
0.96 0.16 0.96 0.15 0.55 0.21 0.47 0.15 

a) details about the data sets can be found in Table S1 of the Supporting Information, b) from Reference 265, c) only non-negatively charged complexes 

(ii) Molecular conformational energies 

The purpose of the molecular conformational energy subsets of our training set is to inform the ACPs 

regarding how the potential energy surfaces of various molecules depend on the changes in rotatable bonds 

and torsional angles due to effects like π-conjugation, steric interactions, intramolecular hydrogen-

bonding, and electron repulsion. Our Small molecule conformational energy subset is a good representative 

of such interactions that can be used to assess the performance of ACPs for conformational energies. The 

application of ACPs to the Small molecule subset leads to a reduction in the MAEs of about 55% (minimal 

and double-ζ HF-D3) and 37% (HF-3c), yielding MAEs ranging between 1.46–2.18 kcal/mol for ACPs 

with minimal or double-ζ basis set HF-D3 and 2.34 kcal/mol for ACPs with HF-3c. As seen in Figure 2, 

the spread of errors and SDs of the uncorrected methods is quite large: HF-D3/MINIs, for example, yields 

errors spanning -35 to +40 kcal/mol and an SD of 7.18 kcal/mol. The ACPs reduce the error spread of HF-

D3/MINIs to about -20 to +30 kcal/mol and the SD to 3.31 kcal/mol. Similar observations can also be 

made for the HF-D3/MINIX, HF-D3/6-31G*, and HF-3c methods. 

Conformers in the Negatively charged subset have an overall negative charge, which, as mentioned 

previously, is problematic for the minimal and double-ζ basis sets used in this work. Similar to the Anionic 

subset of non-covalent interaction energies, all uncorrected methods are inadequate for conformational 

energies of negatively charged species, which results in MAEs for the Negatively charged subset higher 

than for the other molecular conformational energy subsets. However, the application of ACPs yields 

relatively low MAEs (0.64–1.28 kcal/mol) compared to the uncorrected methods (1.08–3.01 kcal/mol), 

indicating that ACP-corrected methods are better suited to model molecular conformational energies of 

anionic systems. 



Some other molecular conformational energy subsets used in the training set include the 

Biomolecule, Hydrocarbon, and (H2O)11 subsets. The Biomolecule subset contains conformers of 

molecules that are biologically relevant, like proteins, DNA, RNA, and carbohydrates. The Hydrocarbon 

subset incorporates model systems of aliphatic nature relevant in lipids, polymers, fossil fuels, and organic 

chemistry. The (H2O)11 contains systems relevant in the description of aqueous media.266–268 The 

application of ACPs to the Biomolecule, Hydrocarbon, and (H2O)11 subsets results in a significant drop in 

MAEs relative to the underlying methods, by about 61–86% (minimal basis set HF-D3), 50–85% (double-

ζ basis set HF-D3), and 48–63% (HF-3c). Figure 2 shows that the error spread, SDs, and MSEs of minimal 

or double-ζ basis set HF-D3 and HF-3c methods are all reduced upon application of ACPs. 

Same as for non-covalent interaction energies, Figure 2 shows that the application of ACPs brings 

down the MAEs of various molecular conformational energy subsets to similar values irrespective of 

whether the ACPs are applied to minimal basis set HF-D3 or HF-3c. For example, the MAEs of HF-

D3/MINIs and HF-3c for the Biomolecule subset are 2.69 kcal/mol and 2.14 kcal/mol, respectively. 

Application of the corresponding ACPs results in a reduction of the MAEs to the very similar values of 

1.06 kcal/mol and 1.11 kcal/mol. Like non-covalent interaction energies, the ACP for HF-D3/6-31G* 

yields lower MAEs compared to minimal basis set HF-D3 or HF-3c. For molecular conformational 

energies, the MAEs of the HF-3c-ACP method are notably lower (by about 31–61%) than that of HF-3c. 

Therefore, the ACPs developed for HF-3c offer a significant improvement beyond gCP37,39 and SRB37 for 

molecular conformation energies. 

Finally, we compare the performance of our ACP-corrected methods relative to nearly complete 

basis set DFT results from the literature. For this, we consider a few representative data sets such as 

YMPJ191 for amino acid conformers, SCONF129,195 for carbohydrate-like conformers, BCONF200 for 

butane-1,2-diol conformers, and PentCONF201 for pentane conformers. The MAEs (in kcal/mol) of the 

DFT/def2-QZVPDD and the ACP-corrected methods for these data sets are shown in Table 3. Similar to 

non-covalent interaction energies, the application of ACPs reduces the MAEs of minimal or double-ζ basis 

set HF-D3 and HF-3c methods in all the selected data sets and are close to or even lower than the MAEs 

reported for the various functionals. Table 3 demonstrates that the proposed ACP-corrected methods are 

able to predict the conformational energies with an accuracy similar to large basis set DFT methods at a 

significantly lower computational cost. 

(iii) Molecular deformation energies 



The Deformation subset of the ACP training set contains energy differences between a molecule at 

its equilibrium geometry and the same molecule deformed along its various normal modes. Our intention 

with this subset is to improve the description of the molecular potential energy surfaces around the 

equilibrium geometries, and consequently improve the prediction of bond lengths and molecular 

geometries in general. 

The fact that small basis set HF methods predict erroneous geometries is important for the study of 

large molecules like proteins, as discussed by Kulik et al.269 and Schmitz et al.270 Their findings suggest 

that small basis set HF methods without any correction give, in general, quite inaccurate protein structures. 

This is likely the reason why the HF-3c37 method employs the semi-empirical SRB correction. In fact, the 

SRB correction itself was parametrized by fitting to the geometries of 107 small organic molecules 

computed at a higher level of theory. 

The performance of our ACP-corrected methods for actual geometry optimizations is discussed in 

Section 3.4. The results for the Deformation subset in  Figure 2 already suggest that ACPs improve the 

prediction of molecular geometries substantially. On application of ACPs, the MAEs of all four methods 

for this subset are reduced by about 35–51% (minimal and double-ζ HF-D3) and 31% (HF-3c). Figure 2 

shows that even though the decrease in the spread of errors using ACPs is modest, the under-estimation in 

the prediction of molecular deformation energies of the underlying methods is greatly corrected by the 

ACPs, and the MSEs as well as the SDs decrease. Molecular deformations that are farthest from 

equilibrium have relatively high reference energies and result in errors higher than ±5 kcal/mol. 

Nevertheless, the application of ACPs predict individual errors that are lower than ±5 kcal/mol for 85% 

(or more) of the data points out of a total of 10,288. 

3.2 Performance of ACPs for the validation set 

The results regarding the application of ACPs to the systems in the validation set (Table 2) are 

presented in Figure 3. The figure includes the signed error distribution, MSEs, MAEs, and SDs of minimal 

or double-ζ basis set HF-D3 and HF-3c methods with and without ACPs, as well as the percentage change 

in MAEs upon application of ACPs (%∆MAE) for each method. A detailed breakdown of the errors by 

method and subset can be found in Table S4 of the SI. 

Figure 3. Error distribution (relative to the reference data, kcal/mol) associated with the validation set (see 

Table 2). The top nine panels represent non-covalent interaction energy subsets while the bottom three 

panels represent molecular conformational energy subsets. Methods shown include HF-D3/MINIs (light 

blue), HF-D3/MINIs-ACP (blue), HF-D3/MINIX (light pink), HF-D3/MINIX-ACP (pink), HF-3c (light 



grey), HF-3c-ACP (grey), HF-D3/6-31G* (light yellow), and HF-D3/6-31G*-ACP (yellow). The black 

circles represent the mean signed errors (MSEs, kcal/mol) and the black error bars are the standard 

deviations of the error (SDs, kcal/mol). The numbers on the right hand side of each panel are the mean 

absolute errors (MAEs, kcal/mol) and the percentage change in MAEs upon the application of ACPs 

(%∆MAE) for each method. %∆MAE is defined as [MAE(base method) – MAE(ACP-corrected method)] 

/ MAE(base method) x 100%. The X-axis has been capped at -32 (left) and +24 kcal/mol (right) for clarity.  

The black circles and error bars of HF-D3/MINIs, HF-D3/MINIX, and HF-D3/6-31G* methods for 

(H2O)20 cluster subset are absent from the figure due to MAEs being higher than 100 kcal/mol. 

 



The results show that the when the ACPs are applied to the Mixed NCIs validation subset (“Mixed 

NCIs (val)”), the MAEs of all methods decrease, by 53% (minimal basis set HF-D3), 70% (double-ζ basis 

set HF-D3), and 37% (HF-3c). This reduction in MAEs is similar to what was observed for the mixed 

character interactions in the training set, confirming the robustness of the ACPs for non-covalent 

interactions when applied to systems outside the training set. One particular data set present in the Mixed 

NCIs (val) subset is BlindNCI205. Taylor et al.205 reported an MAE of 0.34 kcal/mol with the M11/aug-cc-

pVTZ method for the BlindNCI data set, which is almost equivalent to the MAE obtained with HF-

D3/MINIs-ACP, HF-D3/MINIX-ACP, and HF-3c-ACP, and almost 28% higher than HF-D3/6-31G*-

ACP (see Table 4). As in the training set, the performance of ACPs in the description of non-covalent 

interaction energies in the validation set is similar in quality to large basis set DFT methods. 

Table 4. Comparison of the mean absolute errors (MAEs) of various methods for selected data sets in the 

validation set. The MAEs that are lower than the DFT methods are highlighted in bold. 

Data seta 

DFT functional 

with a large basis 

set 

HF-

D3/MINIs 

HF-

D3/MINIs-

ACP 

HF-

D3/MINIX 

HF-

D3/MINIX-

ACP 

HF-

3c 

HF-3c-

ACP 

HF-D3/6-

31G* 

HF-D3/6-

31G*-ACP 

BlindNCI205 

0.34b 

[M11/aug-cc-

pVTZ] 

1.00 0.34 1.00 0.36 0.38 0.35 1.10 0.25 

CE20208,209  

1.72c 

[M06-2X/6-

311+G(3df,2p)]  

16.64 1.63 16.64 1.55 3.32 1.84 11.10 1.31 

WaterOrg210 

0.44d 

[B3LYP-

D3(BJ)/6-

31+G**-BSIP] 

1.81 0.77 1.81 0.75 0.71 0.71 2.44 0.40 

CHAL336212 

1.18e 

[BLYP-

D3(BJ)/ma-def2-

QZVPP] 

2.66l 1.73l 2.17l 2.21l 1.30l 2.32l 2.23l 2.07l 

H2O20Bind10216 

8.84f 

[B3LYP-

D3(BJ)/def2-

QZVPPD] 

110.97 6.53 110.97 4.80 16.90 4.14 103.54 2.00 

C60dimer221 

2.85g 

[BP86-

D3(BJ)/def2-

TZVP] 

1.91 0.69 1.91 0.69 0.90 0.79 1.13 0.95 



L7222,223 

1.62h 

[B3LYP-

NL/def2-TZVP] 

3.64 1.42 3.64 1.39 1.37 1.48 3.61 0.82 

S12L9,11,223 

6.44h 

[BLYP-NL/def2-

TZVP] 

14.63 6.41 14.65 5.96 6.05 5.58 13.51 6.22 

S30L220 
6.60i 

[PBE-D3/CBS] 
13.07 5.65 13.25 5.23 4.80 4.74 11.71 5.34 

Ni2021224 

3.20j,k 

[B3LYP-

D3(BJ)/triple-ζ] 

25.53 5.60 25.53 5.89 6.74 5.98 22.01 10.05 

a) details about the data sets can be found in Table S2 of the Supporting Information, b) from Reference 205, c) from Reference 208, d) from Reference 210, 
e) from Reference 212, f) from Reference 265, g) from Reference 221, h) from Reference 195, i) from Reference 55, j) from Reference 224, k) aug-cc-pVTZ 

basis set for six systems and cc-pVTZ basis set for other seven systems, l) only non-negatively charged complexes 

Two data sets (CE20208,209, WaterOrg210) were used to validate the ACPs for hydrogen bonding 

interactions. The MAEs of minimal or double-ζ basis set HF-D3 methods for the Hydrogen-bonding 

validation subset (“Hydrogen-bonding (val)”) are improved on applying the ACPs by 61% (minimal basis 

set HF-D3) and 84% (double-ζ basis set HF-D3). As in the case of the mixed NCIs, this improvement is 

close to the one observed in the training set. On the other hand, application of the ACPs to HF-3c neither 

improves nor deteriorates the MAE for Hydrogen-bonding (val), and the MAE is almost the same as the 

MAE for hydrogen bonding interactions (0.73 kcal/mol) in the training set. As observed for the training 

set, ACPs improve methods whose errors are higher, and barely affect methods that already have low 

MAEs. Comparing to the results obtained with DFT and a large basis set (Table 4), the MAEs of the CE20 

data set with ACPs are close to or lower than most of the benchmarked DFT methods with a 6-

311+G(3df,2p) basis set in the work of Chan et al.208 Also, the B3LYP-D3(BJ)/6-31+G**-BSIP method 

that yields results that are close to B3LYP-D3(BJ)/aug-cc-pVQZ has an MAE of 0.44 kcal/mol for 

WaterOrg data set, which is close that predicted via HF-D3/6-31G*-ACP approach.210 

The assessment of the ACPs on the validation set also helps us understand what types of interactions 

are poorly represented in the training set. Based on the analysis performed with the validation set, these 

interactions are halogen bonding, chalcogen bonding, and close contact repulsions, as discussed below. It 

should be noted that an assessment of ACPs on interaction types such as π-π stacking, pnicogen bonding, 



and hydrophobic interactions, discussed earlier for the training set, was not possible in the validation stage 

because of the scarcity of high-level reference data in the literature. 

For the halogen bonding interactions in the validation set (“Halogen-bonding (val)” subset), all 

methods in absence of ACPs show a large over-estimation of the interaction energies. The application of 

ACPs correct for this over-estimation and lead to a decrease in the MAEs by about 60–76%. Figure 3 

shows that the MAEs of the minimal basis set HF-D3 and HF-3c methods without ACPs are almost three 

times higher than HF-D3/6-31G* (2.01 kcal/mol). Figure 3 also shows that HF-D3/6-31G* has a positive 

MSE, suggesting an under-estimation in the interaction energies for halogen bonding interactions. This 

observation for HF-D3/6-31G* is opposite to what was found in the training set. Nonetheless, the spread 

of errors is decreased when the ACP corrections are used, including HF-D3/6-31G*-ACP, leading to lower 

SDs than without ACPs. 

Model systems representative of chalcogen bonding interactions (“Chalcogen-bonding” subset) 

were absent from the training set. As expected, the improvements in the MAEs when ACPs are applied 

are not significant for the minimal or double-ζ basis set HF-D3 methods. At the same time, ACPs applied 

to HF-3c over-estimate the interaction energies and lead to an increase in the MSE and MAE. A slight 

improvement in the description of chalcogen bonding interactions is observed with ACPs for minimal or 

double-ζ basis set HF-D3 methods, probably due to the presence of O and S containing complexes in the 

training set that are not purely chalcogen-bonded. This suggests that increasing the representation of such 

interactions in the training set could improve the performance and applicability of ACPs. Chalcogen 

bonding interactions are a difficult test not only for the methods considered in this work but also for many 

other electronic structure methods. For example, several dispersion-corrected DFT methods tested with 

ma-def2-QZVPP basis set have MAEs above 1 kcal/mol for the entire CHAL336212 data set.212 In this 

context, Figure 3 suggests that the HF-3c method is the best suited among the minimal basis set HF 

methods for modeling chalcogen bonding interactions. 

Steric repulsive interactions, even though found in some molecules that are forced to be in close 

contact due to the presence of other attractive interactions or external pressure, seldom occur naturally.271 

Repulsive interactions (“Repulsive contacts” subset) are captured well by the minimal or double-ζ basis 

set HF-D3 and HF-3c methods (MAEs of 0.59–0.89 kcal/mol) and only small improvements are seen with 

the application of ACPs. Specific subsets for repulsive interactions were missing from our training set. 

Still, the slight reduction in the MAEs of minimal or double-ζ basis set HF-D3 and HF-3c methods 

observed with ACPs probably comes from some of the data sets in our training set that contain some data 



points with repulsive character (e.g. S22x5136,142,143, S66x8144–146, S66a8145, A21x123,147,148, and 

NBC10ext128,136,149–151). It should be noted that the MAEs of minimal or double-ζ basis set HF-D3 and HF-

3c methods with and without ACPs are lower than the newly reparametrized PM6-D3H4R, DFTB3-

D3H4R, PM6-D3H4X, and DFTB3-D3H4X methods (MAEs of 0.94–1.48 kcal/mol). These methods 

attempt to capture the repulsive interactions via the use of a repulsive energy correction term (parametrized 

against R160x6213 and R739x5214 data sets that constitute the validation Repulsive contacts subset) 

specifically designed for PM6 and DFTB3 methods with the D3H4 correction for dispersion and hydrogen-

bonding.214,272 

Next, we turn our attention to the (H2O)20 cluster (H2O20Bind10216 data set), C60 dimer 

(C60dimer221 data set), and Large molecule (L713,222,223, S12L9,11,223, S30L220, Ni2021224 data sets) subsets. 

These subsets are a good test for ACPs as they contain non-covalently bound complexes that are relatively 

large and at the same time feature multiple co-operative interactions including one or more of hydrogen 

bonds, halogen bonds, π-π stacking, H-π, ion-dipole, dispersion, etc. The systems present in (H2O)20 

cluster, C60 dimer, and Large molecule subsets are known to be challenging not only for minimal or 

double-ζ basis set HF-D3 and HF-3c methods but also for many other electronic structure methods. The 

absolute reference interaction energies of many complexes in these subsets range from 25 kcal/mol to  416 

kcal/mol. It should also be noted that due to the large size of the systems, the most feasible way to generate 

the reference data of such systems is via the use of methods like CCSD(T)-F12a (H2O20Bind10), DLPNO-

CEPA/1 (C60dimer), and CIM-DLPNO-CCSD(T) (Ni2021) or back-correction of experimental data 

(S12L and S30L). The reference data for these data sets are expected to be of lower quality than the others, 

which are typically calculated at CCSD(T)/CBS. The application of ACPs to minimal or double-ζ basis 

set HF-D3 and HF-3c methods on (H2O)20 cluster, C60 dimer, and Large molecule show a general 

improvement in the MAEs of the underlying methods. ACPs for minimal basis set HF-D3 reduces the 

MAEs by about 64–94%, while that for double-ζ basis set HF-D3 reduces the MAEs by about 16–98%. 

ACPs for HF-3c also reduce the MAEs by about 7–76%. The systems with large errors, higher than ±8 

kcal/mol even after the use of ACPs, are, as expected, those that have very large reference energies. Table 

4 shows a comparison of MAEs of various HF based approaches with large basis set DFT methods for the 

H2OBind10, C60dimer, L7, S12L, S30L, and Ni2021 data sets. It can be seen that, with the exception of 

Ni2021 data set, the MAEs in Table 4 for all other data sets shows that ACPs have a performance similar 

to large basis set DFT, making the approach particularly promising for modeling interaction energies in 

large molecular systems. 



We now consider the results for the conformational energies evaluated with the subsets “Small 

molecule (val)” and “Proteinogenic”. The Small molecule (val) subset contains conformational energies 

of various small organic and biaryl drug-like molecules. On the other hand, the Proteinogenic subset 

contains a collection of polypeptide conformers like tripeptides, peptides with disulfide linkages, 

macrocyclic peptides, and peptide sequences with associated bio-functionality. For the Small molecule 

(val) subset, application of ACPs brings down the MAEs of minimal or double-ζ basis set HF-D3 and HF-

3c methods by about 66% (minimal basis set HF-D3), 25% (double-ζ basis set HF-D3), and 50% (HF-3c). 

For the Proteinogenic subset, the improvement in MAEs seen on the application of ACPs is about 40% 

(minimal basis set HF-D3), 49% (double-ζ basis set HF-D3), and 17% (HF-3c). Figure 3 shows that the 

spread of errors is more or less symmetric about the zero-error average line, except for some systems with 

errors higher than ±8 kcal/mol, corresponding to the disulfide linkages which were not present in the 

training set. 

For non-covalent interaction energies of anionic interactions (“Anionic (val)” subset), although the 

application of ACPs leads to a reduction in MAEs of minimal or double-ζ HF-D3 and HF-3c methods by 

about 24–43%, these MAEs still range between 2.65–5.21 kcal/mol making the overall approach not usable 

for modeling anionic interactions. The good performance of ACPs for most of the conformational energies 

in the training and validation sets does not translate to the Negatively charged (val) subset. Nevertheless, 

upon application of ACPs, the MAEs (in kcal/mol) of HF-D3/MINIs is slightly reduced from 4.17 to 3.92 

and from 4.74 to 4.03 for HF-3c. The respective MAEs of HF-D3/MINIX-ACP and HF-D3/6-31G*-ACP 

increase by about 5% and 76%. Similar to the results in the training set, the poor results in the Anionic 

(val) and Negatively charged (val) subsets are another indication of the serious problems associated with 

using minimal and double-ζ basis sets without diffuse functions for negatively charged systems. A possible 

solution to deal with anionic systems would be to develop ACPs for minimally augmented basis sets273. 

3.3 Performance of ACPs for molecular geometries 

One attractive possible use of ACPs is for fast geometry optimizations. To gauge the performance 

of the various HF based methods for this task, we compared and analyzed the structures obtained after 

energy relaxation with those obtained using dispersion-corrected DFT methods with large basis sets. The 

296 structures used for the test contain both non-covalently bound complexes and single molecules, 

ranging in size between 2 and 205 atoms. For single molecule structures, we used the equilibrium 

geometries of small organic molecules taken from our MOLdef data set, a variety of organic molecules 

taken from Reference 274, selected structures from LB1257 and CLB18275 data sets, and polypeptide 



structures from Reference 270. For non-covalently bound structures, we selected the equilibrium complex 

structures from the A21148, S66144, L7222, and S30L220 data sets. Wherever high-level geometries were not 

available, we obtained reference geometries using dispersion-corrected DFT and a reasonably large basis 

set (CAM-B3LYP-D3(BJ)/6-311++G**) with the “tight” convergence criteria in Gaussian-16. All the 

optimized and reference geometries used for testing are provided in the SI. We used Kabsch’s algorithm276 

to compare the optimized structures with the reference. 

The results are summarized in Table 5. The table shows that the root-mean-square-deviation 

(RMSD) of the atomic coordinates for the small basis set HF based methods with ACPs are generally 

lower than those without ACPs, and this decrease happens for single molecules and non-covalently bound 

complexes, including charged systems. These results indicate that ACPs are generally able to yield better 

geometries than the uncorrected methods. The RMSD values for the individual methods and geometries 

can be found in Table S5 of SI. 

To examine the source of the improvement in the molecular geometries upon application of ACPs, 

we calculated the average error in the intermolecular separation distances for the dimer complexes. We 

also compared the average error in a few selected bond lengths and angles for the single molecules. Table 

5 shows that, on average, the intermolecular separation distances are improved, and the under-estimation 

in the separation distances yielded by the small basis set HF based methods is corrected by the ACPs, 

leading to better geometries for non-covalently bound complexes. Furthermore, the average deviations in 

bond lengths presented in Table 5 indicate that the average deviation of the small basis set HF based 

methods is between 0.002 Å to 0.092 Å for the selected bonds. It can be seen that the inclusion of ACPs 

with small basis set HF based methods leads to a better description of bond lengths as the polarity of a 

bond increases, leading to lower errors in bond lengths (except for HF-3c-ACP). A general improvement 

in the prediction of bond angles is also observed on application of ACPs. The combination of low average 

errors in bond lengths and angles leads to better overall geometries of single molecule structures. Despite 

overall good geometries for both single molecules and complexes, upon application of ACPs some tested 

geometries tend to have slightly higher RMSDs (greater than 0.7 Å) than the uncorrected methods due to 

slight deterioration in the bond lengths of C-H and C-C bonds. Such deviations relative to the reference 

geometry are visible in Table S5 of SI for some purely planar systems and peptides with highly flexible 

backbones. 

Table 5. Results of various methods for equilibrium structures. RMSD is the root-mean-square deviation 

in the atomic coordinates, MAE is the mean absolute error, and MSE is the mean signed error.  



 
HF-

D3/MINIs 

HF-

D3/MINIs-

ACP 

HF-

D3/MINIX 

HF-

D3/MINIX-

ACP 

HF-3c 
HF-3c-

ACP 

HF-D3/6-

31G* 

HF-D3/6-

31G*-ACP 

Overall geometry: 

Mean RMSD (Å) 

(complexes)  
0.326 0.289 0.326 0.284 0.223 0.211 0.320 0.229 

Mean RMSD (Å) 

(single molecules) 
0.205 0.167 0.182 0.163 0.158 0.187 0.084 0.049 

Mean RMSD (Å) 

(charged single molecules)  
0.759 0.533 0.750 0.513 0.483 0.684 0.516 0.208 

Overall mean RMSD (Å) 0.254  0.217 0.240 0.212 0.184 0.196 0.180 0.122 

Inter-molecular separation distancea,b: 

MAE (Å) 0.222 0.124 0.221 0.126 0.112 0.111 0.157 0.084 

MSE (Å) -0.171 0.015 -0.172 0.017 -0.022 0.002 -0.087 0.005 

Selected bond lengths: 

C-H bond (MAE / MSE) (Å) 
0.005 / 

-0.004 

0.014 / 

0.014 

0.005 / 

-0.004 

0.017 / 

0.017 

0.007 / 

-0.006 

0.018 / 

0.018 

0.010 / 

-0.010 

0.002 / 

0.001 

C-C bond (MAE / MSE) (Å) 0.019 / 0.018 
0.034 / 

-0.033 

0.019 / 

0.018 

0.028 / 

-0.024 

0.016 / 

0.013 

0.028 / 

-0.023 

0.011 / 

-0.011 

0.005 / 

0.003 

C-N bond (MAE / MSE) (Å) 0.036 / 0.034 
0.030 / 

-0.029 

0.036 / 

0.034 

0.031 / 

-0.029 

0.018 / 

0.011 

0.033 / 

-0.030 

0.013 / 

-0.012 

0.010 / 

-0.009 

C-O bond (MAE / MSE) (Å) 0.057 / 0.057 
0.012 / 

-0.001 

0.057 / 

0.057 

0.011 / 

-0.003 

0.011 / 

0.001 

0.014 / 

-0.008 

0.017 / 

-0.017 

0.005 / 

-0.002 

C-F bond (MAE / MSE) (Å) 0.068 / 0.068  
0.020 / 

-0.014 

0.068 / 

0.068 

0.022 / 

-0.019 

0.010 / 

-0.004 

0.030 / 

-0.030 

0.017 / 

0.017 

0.006 / 

-0.001 

C-Cl bond (MAE / MSE) (Å) 0.092 / 0.092 
0.042 / 

-0.042 

0.026 / 

0.026 

0.039 / 

-0.039 

0.015 / 

0.015 

0.093 / 

-0.078 

0.017 / 

-0.017 

0.016 / 

0.016 

Selected bond angles: 

C-C-H angle  

(MAE / MSE) 

0.546 / 

-0.039 

0.365 / 

0.070 

0.554 / 

-0.043 

0.378 / 

0.049 

0.421 / 

-0.063 

0.381 / 

0.059 

0.228 / 

-0.001 

0.197 / 

0.007  

C-C-C angle  

(MAE / MSE) 

0.792 / 

-0.434 

0.404 / 

-0.132 

0.781 / 

-0.445 

0.443 / 

-0.216 

0.597 / 

-0.340 

0.460 / 

-0.220 

0.336 / 

-0.193 

0.274 / 

-0.128 

C-C-N angle 

(MAE / MSE) 

1.385 / 

-0.444 

1.026 / 

-0.092 

1.381 / 

-0.456 

1.114 / 

-0.350 

1.280 / 

-0.392 

1.108 / 

-0.404 

0.583 / 

-0.171 

0.366 / 

-0.071  

C-C-O angle 

 (MAE / MSE) 
1.402 / 0.503 

0.891 / 

0.094 

1.325 / 

0.491 

0.975 / 

0.171 

1.125 / 

0.568 

1.108 / 

0.248 

0.455 / 

-0.025 

0.328 / 

0.145  

C-C-F angle  

(MAE / MSE) 
0.265 / 0.086 

0.218 / 

0.045 

0.233 / 

0.078 

0.183 / 

0.017 

0.267 / 

0.154 

0.253 / 

-0.023 

0.106 / 

0.045 

0.224 / 

0.133 

C-C-Cl angle  

(MAE / MSE) 

0.493 / 

-0.374 

0.377 / 

0.078 

0.327 / 

0.204  

0.422 / 

0.228 

0.435 / 

0.323 

0.407 / 

0.264 

0.124 / 

0.025  

0.305 / 

-0.121 

a) calculated as the distance between the centers of mass of each monomer. 

b) excluding the geometries of the non-dimer complexes from the L7 data set for simplicity. 

3.4 Applications of ACPs developed for HF-3c 

This section explores the use of HF-3c-ACP for modeling systems where most but not all atoms in 

the system have an associated ACP. For the atoms for which ACPs are not available, our intention is that 



HF-3c, which is the overall best of the underlying methods in this work will still give a reasonable 

description of the system. A particular example of an application where HF-3c-ACP could be used is in 

modeling metalloproteins where the atoms for which ACPs are unavailable are the metal ion(s) in the 

active site. 

We calculated the interaction energies of two systems from Reference 224 using HF-3c and HF-3c-

ACP to demonstrate the above idea. These two systems represent the adsorption of ethanol and benzene 

with different-sized cluster models of zeolite ZSM-5.277,278 The ZSM-5 zeolite complexes are mainly 

composed of H, C, O, and Si atoms for which ACPs are available. However, they also contain an additional 

aluminum atom. For the ZSM-5 zeolite complexes, the high-level (CIM-DLPNO-CCSD(T))  interaction 

energy reported in Reference 224 is -12.35 kcal/mol (benzene and zeolite or Benzene-ZSM5) and -36.55 

kcal/mol (ethanol and zeolite or Ethanol-ZSM5). The HF-3c approach overestimates the interaction 

energies and yields -21.38 kcal/mol for Benzene-ZSM5 and -43.86 kcal/mol for Ethanol-ZSM5. The ACPs 

help reduce the interaction energies over-estimated by HF-3c and brings them closer to the reference: The 

corrected interaction energies predicted by HF-3c-ACP are -19.41 kcal/mol and -39.75 kcal/mol, 

respectively. 

We now explore the same idea by taking some subsets of the validation set and purposefully applying 

only part of the available ACPs so that not all atoms in the system have an associated correction. Table 6 

presents a summary of the MAEs using various methods for two data sets from the validation set: the 

DES15K206 set of non-covalent interaction energies (11474 data points) and the Torsion30228 set of 

molecular conformational energies (2107 data points). The table shows that the MAEs of the HF/MINIX 

method are 4.83 and 0.92 kcal/mol for the DES15K and Torsion30 data sets, respectively. Using the HF-

3c method, the MAE decreases for DES15K (2.14 kcal/mol) and increases to 1.18 kcal/mol for Torsion30. 

Table 6 shows that using HF-3c-ACP but applying ACPs only to hydrogen and one of the non-hydrogen 

atoms indicates that ACPs improve the results progressively as the correction is applied to more atoms in 

the system. If only hydrogen and one of the non-hydrogen atoms are corrected, the performance of HF-

3c-ACP is similar to HF-3c. If the correction is applied to hydrogen and two non-hydrogen atoms, most 

atoms are corrected and the MAEs decrease substantially and resemble HF-3c-ACP, in which all atoms 

receive an ACP. Therefore, we conclude that the application of ACPs is, in general, beneficial, and greater 

performance is obtained as more atoms receive an ACP, so the use of ACPs is recommended even in 

systems containing atoms for which ACPs are not available. 



Table 6. Mean absolute error (MAE) for the DES15K data set of non-covalent interaction energies and 

Torsion30 of conformational energies for HF/MINIX, HF-3c, and HF-3c with application of ACPs to 

various atoms. 

Subset 

Mean absolute error (in kcal/mol) 

HF/MINIX 
HF-

3c 

HF-3c with 

H & O 

ACPs 

HF-3c with 

H & N 

ACPs 

HF-3c with 

H & C 

ACPs 

HF-3c with 

H, N, & O 

ACPs 

HF-3c 

with H, C, 

& O 

ACPs 

HF-3c 

with H, 

C, & N 

ACPs 

HF-3c 

with H, 

C, N, & O 

ACPs 

HF-3c-

ACP 

DES15Ka 4.83 2.14 1.95 2.24 2.17 1.83 1.78 2.07 1.68 1.32 

Torsion30b 0.92 1.18 1.20 1.09 0.70 1.06 0.70 0.58 0.57 0.59 

a) atom frequency: H = 138132, C = 62376, O = 11604, N = 9250, other (F, P, S, Cl) = 7936. 

b) atom frequency: C = 23744, H = 18473, N = 4143, O = 985, other (S) = 70. 

4. Summary and Outlook 

An important field of research in modern computational chemistry is the development of new 

quantum mechanical methods that are accurate and can be applied to model large molecular systems. Small 

basis set Hartree–Fock (HF) methods are orders of magnitude less expensive than more accurate nearly 

complete basis set wavefunction theory or DFT methods, but suffer from basis set incompleteness error 

and lack of electronic correlation. Provided these shortcomings can be addressed, such methods could be 

applied for modeling large molecular systems as well as for routine applications of fast geometry 

optimizations, conformational exploration, and prediction of non-covalent interaction strengths. 

In this work, we show that HF with small and minimal basis sets can be effectively corrected by 

applying atom-centered potentials (ACPs, one-electron potentials similar to effective-core potentials) that 

are designed to correct for the inaccuracies in the underlying method. Four new sets of ACPs were 

developed for use with HF-D3 and small basis sets (MINIs, MINIX, 6-31G*) and HF-3c. The advantages 

of ACPs include that they can be used in most computational chemistry software packages without changes 

to the code and that they incur only a modest computational cost. The ACPs developed in this work apply 

to ten elements (H, B, C, N, O, F, Si, P, S, Cl), and our purpose is that the presented ACPs serve to address 

problems in organic chemistry and biochemistry. For the occasional system containing atoms for which 

no ACPs are available, we have shown that the improvement of the performance of the underlying method 

is progressive with the number of atoms where ACPs have been applied. Therefore, the use of ACPs is 

beneficial even if some atoms are not corrected, and in this case, we recommend the use of HF-3c-ACP. 

We anticipate that the ACP based approaches developed in this work will allow efficient and accurate 

modeling of biomolecules such as proteins, nucleic acids, carbohydrates, lipids, and other molecules 



containing B, Si, and halogen atoms such as covalent organic frameworks, functionalized polyaromatic 

hydrocarbons, functionalized silicon surfaces, and more. 

The ACPs were developed by using a large training set of 73832 data points calculated at a very high 

level of theory (CCSD(T)/CBS, in general). The training set contains a mixture of non-covalent interaction 

energies, molecular conformational energies, and molecular deformation energies. We expected that the 

size of the training set ensures the robustness and applicability of the ACPs. To test this, we validated the 

new ACPs on a validation set with 32047 data points. The assessment of minimal and double-ζ basis set 

HF-D3 and HF-3c methods, before and after the application of their corresponding ACPs showed that 

ACPs lower the MAEs of most subsets in the training set and that this good performance is carried over to 

the validation set with approximately the same performance in terms of average error. Relative to the 

uncorrected methods, ACP-corrected approaches improve the  prediction of non-covalent interaction 

energies and molecular conformational energies. Furthermore, the addition of molecular deformation 

energies to the training set results in an improvement of the equilibrium molecular structures upon 

application of the ACPs. However, ACP-corrected methods showed relatively poor performance for some 

interaction types that were not part of the training set, such as chalcogen bonding or repulsive contacts, 

indicating that more diverse systems need to be included in the training set for greater robustness of the 

resulting methods. 

Our analysis of representative data sets indicates that our ACP-corrected methods yield results 

similar to almost complete basis set DFT methods, naturally at a much lower computational cost. 

Nonetheless, there remains a limitation regarding the description of negatively charged systems probably 

caused by the lack of diffuse functions in the basis sets employed. In spite of this, our ACPs offer a modest 

improvement even in this case. ACPs for small basis sets that include some diffuse functions are currently 

under development. We are also currently working on expanding the set of ACPs to DFT-D3 methods 

with small basis sets for prediction of accurate thermochemical properties along with non-covalent 

properties. Despite the limitation, we have shown that ACPs provide a way of developing methods that 

combine low-cost with robustness and wide applicability. We anticipate that ACPs will be useful to 

practitioners interested in modeling large systems or other time-intensive applications. 
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