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ABSTRACT 

Hydrogen bonding interactions among water molecules play a critical role in chemical 

reactivity, dynamic proton mobility, static dielectric behavior, and thermodynamic 

properties of water. In this study, we demonstrate the modification of ionic conductivity 

of water via hybridization with vacuum electromagnetic field by strongly coupling O–H 

stretching mode of H2O to a Fabry–Perot cavity mode. This leads to formation of 

collective vibro-polaritonic states which, as experiments show, enhances the proton 

conductivity does increase by an order of magnitude at resonance. In addition, an increase 

of dielectric constants is observed at resonance in the coupled state. Our finding illustrates 
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that the potential of engineering a vacuum electromagnetic environment to control the 

ground-state properties of water. 
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Introduction 

The strong coupling between molecular transition and optical resonator vacuum 

electromagnetic fields can be used to transform molecular or material properties through 

the formation of collective hybrid light-matter states; for example, reaction coordinates 

can be modified by facilitating coherent interactions between individual molecules.1−4 

When electronic excitations are coupled to electromagnetic fields, it has been shown that 

it can produce unusual photochemical dynamics,5, 6 enhanced electronic transport,7, 8 and 

distinct optical responses.9, 10 Similarly, vibrational excitation can also be coupled to the 

vacuum field of a cavity, thus generating so-called vibro-polaritonic states (Figure 

1a).11−13 This is typically achieved by coupling a given vibration to the electromagnetic 

field of cavity consisting of two parallel mirrors, a Fabry-Perot cavity. The 

electromagnetic field is generated by the zero-point fluctuation, the so-called vacuum 

fluctuations, of the cavity mode and therefore occurs even in the dark. Vibrational strong 

coupling enables transformation of energy landscape in chemical reaction.14, 15 

Water is typically characterized with representative physicochemical properties such 

as chemical reactivity, hydration, and thermodynamic properties.16−18 Even under static 

conditions, protons are moving along a hydrogen bond network via proton transfer and 

reorientation between water molecules (Figure 1b); this process is known as the Grotthuss 
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mechanism.19−29 A central proposition of using vibrational strong coupling can be the 

modification of the potential energy surface of water molecules.30−33 Thus, the proton 

transfer process and orientation of water molecules in the Grotthuss mechanism can be 

perturbed by vibrational strong coupling. However, there have been no reports of using 

vibrational strong coupling to influence the fundamental ionic transport properties of 

aqueous electrolyte solutions. 

In this study, we describe how the vibrational strong coupling of water enhances ionic 

conductivity and modifies dielectric property. We fabricated a Fabry–Perot cavity for the 

infrared (IR) and electrochemical measurements. The Rabi splitting of vibrational energy 

levels was measured for the water of aqueous electrolyte solutions from IR spectra 

measurements. Interestingly, vibrational strong coupling promotes an order of magnitude 

increase in the proton conductivity, which was also associated with increased dielectric 

constants of the electrolyte solutions. The origin of these findings is discussed with 

respect to vibrational strong coupling regime. Tailoring the intramolecular interactions 

and coherent dynamics of molecular ensembles play a role in the observed modification 

of the physicochemical properties of water molecules. 
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Figure 1. (a) Schematic outline of vibrational strong coupling. The vibrational energy 

level and cavity energy level were hybridized to form two polaritonic states and dark 

states. Polaritonic states are separated by the Rabi splitting frequency, ωR. (b) Mechanistic 

model for proton transfer among water molecules. Protons in hydronium ions (H3O+) are 

transferred to neighboring water molecules via proton transfer. Sequential reorientation 

of the hydronium ion yields proton transfer to the next water molecules.  

 

Results and Discussion 

A cavity with two parallel mirrors was prepared, as shown in Figure S1. The holes for 

liquid insertion were used to position the two platinum wire electrodes for 

electrochemical measurements. The mirrors were fabricated by depositing 20-nm-thick 

SiO2 and 8-nm-thick Au on a 2-mm-thick CaF2 window. These mirrors were mounted 

within a homemade cell, and the cavity thickness was mechanically controlled by the four 
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screws. The homogeneity of the cavity thickness was verified based on the Newton ring 

as a result of interference structural color of the cavity.33 The cavity modes can be 

determined by the fringe observed in the peak-to-peak separation of cavity modes. The 

cavity thickness was controlled between 1 and 5 µm without using a spacer. Typical 

spectroscopic properties of the cavity used in this study are shown in Figure S2. The 

progression of cavity modes was caused by the interference characteristic of the cavity. 

It should be noted that to carry out the electrochemical experiments, the use of polymer 

spacers under pressure to tune the cavity is a problem because it deforms the mirrors, and 

hence the conductivity is not that of a laterally uniform cavity. The two mirrors had to be 

positioned in parallel within the cavity to accurately observe changes in the 

electrochemical properties of the electrolyte solutions, as described later. 

The formation of vibrational strong coupling states was confirmed using IR 

transmission spectroscopy. Water was sandwiched between the two parallel mirrors, and 

the IR spectra were recorded as shown in Figure 2a. The first-order cavity mode 

frequency was detuned by varying the cavity thickness within the range from 1.0 to 1.6 

µm. To characterize the cavity, the coupled cavity mode position was determined based 

on one of the uncoupled cavity modes where water had no IR absorption bands of water 

molecules. When the cavity mode was matched to the O–H stretching frequency of H2O 
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(ωst,OH = 3400 cm–1), the original absorption peak disappeared, and then two new peaks 

that were attributed to the vibro-polaritonic states appeared. This observation was 

consistent with previous reports about the vibrational strong coupling of H2O.30−35 When 

the peak position of vibro-polaritonic peaks are plotted as function of the cavity mode, 

the expected anti-crossing behavior of the upper and lower polaritonic branches is 

observed, as shown in Figure 2b. This Rabi splitting behavior was observed for the first-

order cavity modes without saturation of the intense O–H stretching band. The Rabi 

splitting frequency (ωR,OH) was estimated to be 760 cm−1, which is greater than width of 

full width at half maximum (FWHM) of the O–H stretching mode (510 cm−1) and the 

cavity mode (200 cm−1). In cases with strong coupling conditions, ωR,OH was greater than 

the sum of the photon loss rate of the cavity and the dephasing rate of the O–H stretching 

frequency of H2O molecules.30−37 This system achieved a particularly vibrational 

ultrastrong coupling, where ωR,OH / 2ωst,OH = 0.11, which can be the benchmark among 

molecules coupled to vacuum fields. We also confirmed the vibrational strong coupling 

of D2O as shown in Figure S3. When the cavity mode was matched to the O–D stretching 

frequency of D2O (ωst,OD = 2500 cm–1), the Rabi splitting frequency was determined to be 

520 cm–1. This system also achieved a particularly vibrational strong coupling, where 

ωR,OD / 2ωst,OD = 0.11, which can be the benchmark among molecules coupled to vacuum 
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fields. We also observed vibro-polaritonic behavior of mixture of H2O and D2O (1:1 ratio) 

as shown in Figure S4. When the cavity mode was matched to either O–H or O–D 

stretching frequency of mixture of H2O and D2O (1:1 ratio), the Rabi splitting for O–H or 

O–D stretching mode were observed: ωR,OH = 500 cm–1 ; ωR,OD = 380 cm–1. In both case, 

coupling strength was not reaching to the ultrastrong coupling regime (ωR,OH / 2ωst,OH < 

0.1, ωR,OD / 2ωst,OD < 0.1). The narrower Rabi splitting frequency can be explained by the 

lower concentration of H2O or D2O species in the cavity. These observations possess the 

formation of vibrational strong coupling state of water molecules in a cavity. 
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Figure 2. (a) IR spectra of H2O in a non-cavity cell (black) and H2O in the cavity cell 

under detuning conditions (red). From top to bottom, the cavity mode frequency was set 

as 3420 cm−1, 3300 cm−1, and 3050 cm−1. (b) The anti-crossing behavior of water in the 

cavity. Cavity thickness was controlled to be between 1.0 and 1.6 µm. 

 

The ionic properties of a 0.01 M HClO4 aqueous electrolyte solution were evaluated 

under vibrational strong coupling from electrochemical impedance measurements using 

two platinum electrodes. First, the control experiment was conducted using a non-cavity 

cell with CaF2 windows without Au mirrors, where there were no effects of vibrational 

strong coupling on the ionic conductivity and dielectric constants. Figure S5 shows the 

typical Cole–Cole plot in the presence and absence of a cavity effect. Both cases involved 



 10 

an equivalent circuit comprising a series of resistance components and two sequential 

Randles circuits, which are parallel circuits consisting of resistance and capacitance, as 

shown in the inset of Figure S5. A resistance value could then be assigned to the electrical 

resistance of the circuit. One Randles circuit was assigned to the electrolyte, and the other 

Randles circuit was assigned to the electrode-electrolyte interface. Using the cavity-type 

cell, we observed a marked decrease in the resistance and a marginal increase in the 

capacitance compared with those observed in the non-cavity-type cell with similar cell 

constants. The resistance and capacitance of the 0.01 M HClO4 electrolyte in the cavity 

cell solution were 0.720 MΩ and 0.198 pF, respectively. Conversely, the resistance and 

capacitance of the 0.01 M HClO4 electrolyte in the non-cavity cell were 3.59 MΩ and 

0.182 pF, respectively. Considering that the cell constants of the non-cavity 

electrochemical cell and the cavity cell were similar to one another, it could be concluded 

that the observed changes in the resistance and capacitance reflect the modification of the 

ionic conductivities (σ) and relative dielectric constants (ε) of the electrolyte solution in 

the cavity under vibrational strong coupling. It should be noted that the mirrors of the 

cavity are coated with SiO2. In fact, we conducted the control experiments on the CaF2, 

Au / CaF2, SiO2 / Au / CaF2 windows as shown in Figure S6. The observed behavior 

suggesting that SiO2 serves as an insulator for Au mirror. 
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Next, we measured the proton conductivity of aqueous electrolyte all the while tuning 

the cavity mode. The proton conductivity of the 0.01 M HClO4 electrolyte with an off-

resonance geometry condition was typical value of 0.013 S cm−1.38, 39 However, as can be 

found in Figure 3a, when the first and the second cavity modes were tuned across the O–

H stretching mode, the proton conductivity was enhanced by an order of magnitude (0.19 

S cm−1) under on-resonance vibrational strong coupling conditions with a cavity length 

of 1.1 µm. The increase of the proton conductivity was again observed at second order of 

cavity mode at 2.2 µm. In addition, the relative dielectric constants showed a weak 

dependence: going from 82 for off-resonance condition to 120 for the on-resonance 

condition under vibrational strong coupling (Figure 3b). The increase of the both ionic 

conductivity and dielectric constant were confirmed from cavity mode response as shown 

in Figure S7. Moreover, the unique coupling effect between the O–H vibration and the 

cavity was confirmed from the control experiment with deuterated 0.01 M DClO4 / D2O 

solution. The resonance conditions to achieve the vibrational strong coupling is shifted to 

the 1.5 µm of cavity length as shown in Figure 3c and Figure 3d, because of the different 

vibrational frequency (ωst,OH = 3400 cm–1,ωst,OD = 2500 cm–1). The maximum enhancement 

of the deuteron conductivity reached 0.14 S cm–1 with a cavity length of 1.5 µm, as shown 

in Figure 3c. The modulation of the dielectric response of deuteron was also shifted due 
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to the isotope effects, as shown in Figure 3b and Figure 3d. In addition, we conducted the 

electrochemical experiments for the HClO4 / DClO4 in H2O / D2O (1 : 1 ratio). As 

described above, the 1 : 1 mixture of H2O and D2O showed weaker coupling region to 

either pure H2O or D2O solvent. In these systems, enhancement of the ionic conductivity 

of HClO4 / DClO4 in H2O / D2O (1 : 1 ratio) in cavity under on-resonance condition was 

low as shown in Figure S8. The observed cavity-dependent behavior of the ionic 

conductivity excludes the possibility of surface-enhanced ionic transport via formation of 

a diffusion layer in the microchannel40−42 or structured water formation at the walls of the 

microchannels.43−45 The observed electrochemical behavior is thus inherently different 

from previously reported electrochemical phenomena in microchannels. 

We also evaluated the effect of the solvent and ions on the vibrational strong coupling 

behavior to study ionic conductivity and dielectric constants (Figure 3e and 3f). When a 

tetrabutylammonium perchlorate (TBAClO4) acetonitrile solution was used, vibrational 

strong coupling of acetonitrile molecules was not observed in the IR spectra (Figure S9). 

This result could be due to the relatively weak oscillator strength of the acetonitrile 

molecule (fosc,CN = 3.93 × 10−6) compared with that of the H2O molecule (fosc,OH = 181 × 

10−6).34, 46 Considering the comparable molar densities of acetonitrile and water, the 

anisotropic polarizability of acetonitrile molecules may lead to a limited number of 
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coupled molecules in the cavity. Thus, it was not possible to observe any effect of the 

coupling on the ionic conductivity of the TBAClO4 acetonitrile solution (Figure S10). 

However, the ionic conductivity of an aqueous KCl solution showed an increase from 

0.001 to 0.004 S cm–1 under vibrational strong coupling, as shown in Figure S11a. We 

did observe a marked enhancement of the ionic conductivity of Milli-Q water over an 

order of magnitude under vibrational strong coupling, as shown in Figure S11b. The 

observed modest enhancement with KCl was attributed to the vehicle mechanism, where 

hydrated K+ and Cl– migrated throughout the solution as ionic carriers. The mobilities of 

hydrated K+ and Cl– also increased under the vibrational strong coupling of water. From 

these results, we propose that vibrational strong coupling could impact the ground-state 

proton transfer mechanism. 
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Figure 3. Effect of vibrational strong coupling on (a) ionic conductance and (b) relative 

dielectric constants of 0.01 M HClO4 / H2O electrolyte. (c) Ionic conductance and (d) 

relative dielectric constants of 0.01 M DClO4 / D2O electrolyte. Dotted horizonal lines 

represent the bulk values of ionic conductivity and dielectric constant. Dotted vertical 

lines represent the resonant wavelength of O−H or O−D stretching mode for the first 
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or second order of cavity modes. (e) Ionic conductivity and (f) relative dielectric constant 

for various electrolyte solutions. 

 

We would like to discuss the origin of the modification of ionic conductivities and 

dielectric constants of aqueous electrolyte solutions under vibrational strong coupling 

states. Figures 4a and 4b show the dependence of the proton conductivity and dielectric 

constant on the anti-crossing frequency. This frequency was extrapolated by polaritonic 

frequency separations at distinct cavity modes.10, 37 The modulation of both parameters 

was not observed in the weak coupling region. However, a sudden increase was observed 

when anti-crossing frequency reaches about 400 cm–1 (Figure 4a and 4b). This threshold-

like behavior meets the observed strong coupling condition. This observation is consistent 

with the reported ground-state reactivity modulation under vibrational strong coupling.47 

This dependence plus all the other results presented above show that the origin of the 

enhancement is vibrational strong coupling. 
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Figure 4. (a) Dependence of proton conductivity of 0.01 M HClO4 on anti-crossing 

frequency. Red dotted lines are theoretical fitted lines for proton transport in the cavity. 

Dotted lines are values of bulk proton conductivity. (b) Dependence of dielectric constant 

of 0.01 M HClO4 on Rabi splitting frequency. Dotted lines are values of bulk dielectric 

constant. 

 

There is the discussion about the origin of the modification of ground-state properties 

of molecules under vibrational strong coupling.4, 48−50 It has been proposed that 

modification of the potential energy surface to affect the application of transition state 

theory in vibrational strong coupling.48, 49 Vibrational strong coupling can modify the 

ground-state potential energy surface of molecules,51−55 which can account for the 

modification of activation energy in the reaction.4, 56 In addition, the collective strong 

coupling has been shown to result in coherent emission among molecules micro-meters 
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apart57, 58 and the coherent vibrational energy transfer process.59−61 The vibrational strong 

coupling also affected the coherence among the molecular vibrations of individual water 

molecules. The formation of the dark states, involved in the Tavis-Cummings model for 

the energy states in the strong coupling system, could be considered to play some role in 

the coherent energy transport of the coupled molecules in the cavity.62−64 

The mechanism for the proton conductivity is explained by the proton transfer and 

reorientation of water molecules. The proton transfer in intermediate Zundel type 

complex are regarded as barrierless due to the quantum nature of the excess proton. The 

rate-limiting step of this mechanism is the hydrogen bond rearrangement known as “water 

reorientation”.20, 22−25, 29 Considering the origin of the enhancement in proton conductivity, 

vibrational strong coupling affected the O–H stretching mode by causing softening (lower 

polariton) and hardening (upper polariton) vibro-polaritonic modes of water.30−32 Based 

on the modification of the potential energy surface, collective vibrational strong coupling 

leads to the accelerated processes of nuclear motion or water reorientation process on the 

hydration shell under the protons/ions trasnportation.55, 65−69 Probably, nuclear coherence 

among water molecules is required for effective charge diffusion and thus ion transport.70, 

71 In addition, the origin of the enhancement in dielectric constant is related to the 

correlation of the dipoles of individual water molecules.72−75 We may expect that the 
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contribution of the dark states could act as an energy reservoir to extend the coherence to 

modification of the proton transfer rate as well as increase the dielectric constants.62, 63, 76, 

77 The modification of the responses of molecular systems under the perturbations 

requires novel theoretical consideration for further quantitative descriptions about the 

present observation. 

In principle, the results of this study can be applied to various ionic conductors. 

Aqueous electrolyte solutions are often used in electrolyzes or fuel cells. Enhancing the 

proton conductivity or modulating the transport number in such systems is critical. To 

date, ionic conductors have generally been designed according to the ion binding energy 

and ionic carrier,78 and even nanostructures can be exploited by introducing a space-

charge layer.79 Vibrational structures are ubiquitously observed in all types of molecular, 

polymeric, and inorganic materials. Various types of materials can be placed in an optical 

cavity, such as that developed in this study. Increasing the ionic conductivity is 

advantageous for all electrochemical energy devices, such as those applied in water 

electrolysis, fuel cells, and battery systems. Also, modulating the coherence of proton 

mobility could also promote various electrochemical reactions coupled to proton transfers. 

Taking advantage of vibrational strong coupling can aid in the development of efficient 

energy conversion systems using vibrational strong coupling. 
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Conclusions 

The results presented in this study confirm that the collective vibrational strong 

coupling of water enhances proton conductivity by an order of magnitude. We also 

observed the increments in the ionic conductivity of various aqueous electrolyte solutions 

under vibrational strong coupling of water. The origin of the phenomenon was discussed 

considering the water molecule behavior in the collective vibro-polaritonic states. 

Because vibrational structures are ubiquitous in all types of materials, we propose that 

inherent promotion of ionic transport can be attained using a collective vibrational strong 

coupling-based approach. 
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