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Abstract 

In recent years, thanks to advances in computer hardware and dataset availability, data-driven approaches 

(like machine learning) have become one of the essential parts of the drug design framework to accelerate 

drug discovery procedures. Constructing a new scoring function, a function that can predict the binding score 

for a generated protein-ligand pose during docking procedure or a crystal complex, based on machine and 

deep learning has become an active research area in computer-aided drug design. GB-Score is a state-of-the-

art machine learning-based scoring function that utilizes distance-weighted interatomic contact features, 

PDBbind-v2019 general set, and Gradient Boosting Trees algorithm to the binding affinity prediction. The 

distance-weighted interatomic contact featurization method used the distance between different ligand and 

protein atom types for numerical representation of the protein-ligand complex. GB-Score attains Pearson’s 

correlation 0.862 and RMSE 1.190 on the CASF-2016 benchmark test in the scoring power metric. GB-

Score’s codes are freely available on the web at https://github.com/miladrayka/GB_Score. 
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1 - Introduction 

 

Ligand-protein docking is one of the widespread tools in computer-aided drug design (CADD), which is used 

extensively to distinguish potent drug in large molecular libraries
[1]

. Generally, the docking procedure is 

constituted of two interconnected steps: pose identification and pose scoring. Various well-known and 

successful techniques, such as evolutionary and Monte Carlo algorithms, have been proposed to generate 

poses similar to the actual crystal structures
[2-3]

. In the scoring step, binding affinity for a specific ligand-

protein pose is estimated with a scoring function, which is later used to discriminate between the active and  

the inactive ligands
[4]

. The generated poses during the docking procedure have accepted similarity to the 

native complex structure but attributed binding affinity values by scoring function are imprecise, which leads 

to undermining the overall docking performance.
[5]

.  

A robust scoring function should have four characteristics: scoring, ranking, docking, and screening abilities. 

Scoring comprises deriving a linear correlation between predicted and experimental binding affinity. Ranking 

entails arranging the known ligands of a given target protein by their binding affinities. Docking and 

screening represent the capability of scoring function in identifying the native ligand pose and true binders 

among decoys and random molecules
[6]

. In general, most conventional scoring functions (force-field, 

knowledge, and empirical-based) perform well in docking and screening evaluations but show poor 

performance in scoring and ranking. This deficiency is assumed associated with the linear regression method, 

which is utilized in designing these scoring functions. Therefore, one way for improving scoring functions is 

using approaches based on nonlinear regression and fitting
[7-8]

.  

Over the past decade, data-driven approaches, specifically machine and deep learning, have been successfully 

applied in the drug discovery
[9]

. Ligand- and structure-based drug discovery exploit this brand-new 

knowledge and assimilate it to their traditional algorithms to circumvent the well-known obstacles and 

enhance their performance and capability
[10-12]

. One burgeoning field of employing machine and deep 

learning is devising new scoring functions, which harness the nonlinear regression ability of these 

algorithms
[7-8]

.  

In recent decades, various machine learning algorithms are employed for designing data-driven scoring 

functions. Among these methods, Random Forest
[13]

 (RF), Extremely Randomized Trees
[14]

 (ERT), and 

Gradient Boosting Trees
[15]

 (GBT) present superior performance over other algorithms like Support Vector 

Machine
[8]

. RF-Score
[16]

, ∆𝑣𝑖𝑛𝑎𝑅𝐹20,
[17]

 the combination of RF-Score v3 and ligand-based features
[18]

, and RI-

Score
[19]

 are examples of scoring functions adopted RF for their training algorithm. As examples of GBT-

based scoring functions, we can mention TopBP-ML
[20]

, EIC-Score
[21]

, AGL-Score
[22]

, ECIF-GBT
[23]

, and 

ECIF::LD-GBT
[23]

, which the latter uses Extended Connectivity Interaction Fingerprint (ECIF) and ligand 

descriptors as features and achieves the highest scoring power on CASF-2016 benchmark. Very recently, a 

new scoring function called ET-Score
[24]

 has been introduced, which employs the distance-weighted 

interatomic contact between atom type pairs of the ligand and the protein for featurizing protein-ligand 

complexes and ERT algorithm for the training process.  

Feedforward, convolutional, and graph neural networks are the prominent deep learning architectures, which 

applied for structure-based protein-ligand binding affinity predictions. Feedforward neural network (FFNN) 

is composed of several layers, each of which consists of a finite number of neurons. Data input should be 

converted to a numerical 1-dimensional array. During learning, parameters of FFNN are optimized so that 

FFNN can predict the target value of unseen data precisely
[25]

. NNScore
[26-27]

, BgN-Score
[28]

, and very 

recently Zhu et al
[29]

 paper are among machine and deep learning-based scoring functions, which take 

advantage of FFNN as a learning algorithm. Convolutional neural network (CNN) is one of the deep learning 

methods which frequently applied in the computer vision field. In contrast to FFNN, CNN’s inputs can be 2 

or 3-dimensional grids
[25]

. So 3-dimensional molecular structure with minimum feature engineering can be 

employed as inputs for training CNN models. KDeep
[30]

, Pafnucy
[31]

, OnionNet
[32]

, and RosENet
[33]

 are the 

most famous scoring functions which utilize CNN in their construction. Graph neural network
[34]

 (GNN), 

specifically message passing neural network (MPNN), gets attention in recent years and becomes one of the 

most promising neural networks in the chemistry discipline. In MPNN or GNN each input data, i.e. molecule, 

is represented as a graph in which nodes of the graph are atoms and the bonds between them are considered 

as edges
[35]

. PotentialNet
[36]

 and graphDelta
[37]

 can be considered as MPNN scoring functions. 

Here, we improve our previous scoring function, ET-Score, by employing better feature selection, an 

expanded train set, and different learning algorithms. Also, we scrutinize our new generated scoring function, 

GB-Score, in rigorous circumstances to assess its' generalization ability in the unseen data points. Section 2 



provides information about used data sets for training and testing, feature generating based on distance-

weighted interatomic contact concept, and a concise description of three learning algorithms. Section 3 

consists of 6 parts, which in parts 1 to 3 scoring power of GB-Score is examined in different conditions. 

Subsections 3-4 and 3-5 deal with analyzing the test set and the importance of used features closely. In 

subsection 3-6, GB-Score compared to other scoring functions. The last section is devoted to conclusions. 

 

2 - Methods 

2-1- Dataset 

 

PDBbind dataset is one of the most widely used datasets in predicting the protein-ligand binding affinity 

discipline. The PDBbind dataset is composed of protein-ligand complexes whose binding affinities and 

structures are determined using experimental techniques. The binding affinity values are expressed based on -

logKi, -logKd, and -logIC50, also protein and ligand structures are saved separately to pdb and mol2 (or sdf) 

file formats, respectively. Because the PDBbind dataset is updated annually, in this report, we utilized the 

2016 and 2019 versions of this dataset for training, validating, and verifying our proposed models. Both 

versions consist of three sets: general, refined, and core sets. The core set contains 285 high quality protein-

ligand structures, which for both versions are the same. Conventionally, the core set is assigned as an external 

test set for verifying the performance of proposed models, so its complexes have to be excluded from the 

training set (“hard overlap” exclusion). The quality of structures in the refined and the general sets are lower 

than the core set, so they are usually used in the training procedure. The refined set 2016, the composition of 

the refined and general sets of each PDBbind version 2016 and 2019 containing 3772, 12988, and 17366 

protein-ligand structures, respectively, are used as training sets
[6, 38-39]

.  

In recent years, it has been speculated that the superiority of machine learning-based scoring function is 

related to the similarity between train and test sets. Recently, Su et al.
[40]

 has attempted to circumvent this 

obstacle by designing series of new train sets in which "soft overlap" between train and test sets is decreased. 

This overlap arises from the similarity between proteins, binding sites, and ligands in train and test sets. If for 

two complexes in the train and the test sets, the aforementioned similarities are above a pre-defined 

threshold, the complex in the train set is removed. After doing the same procedure iteratively, series of non-

redundant train sets are produced.
[40]

 Here, we used new train sets that are compiled of the refined set 2016 

with 80%, 85%, 90%, and 95% similarities thresholds.   

One of the main challenges in machine learning applications is the failure of the trained model to extrapolate 

to out-of-distribution data. To investigate the capability of our proposed model in out-of-distribution data, we 

added the core set structures to the general and the refined sets 2019 then we devised three nonidentical train 

and test sets by excluding all HIV-1 Protease, Trypsin, and Carbonic Anhydrase from the gathered above 

data. Details of all aforementioned train and test sets can be found in Table 1. 

 

Table 1- Details of all train and test sets. Nf is the dimension of the generated feature vector by distance-

weighted interatomic contacts between ligand and protein atoms method, which during the preprocessing 

step, all static, quasi-static (variance below 0.01), and correlated (correlation above 95%) features were 

eliminated.  

Name Train size Test size Nf 

Refined set (2016) 3772 285 93 

General set + Refined set (2016) 12988 285 101 

General set + Refined set (2019) 17366 285 104 

Refined set 80% (2016) 2105 285 93 

Refined set 85% (2016) 2562 285 93 

Refined set 90% (2016) 3054 285 93 

Refined set 95% (2016) 3570 285 93 

HIV-1 Protease 17352 299 104 

Trypsin 17429 222 104 

Carbonic Anhydrase 17205 446 104 

 



2-2 Feature generation 

 

Recently, we have shown that distance-weighted interatomic contact between ligand and protein atoms can 

be utilized as features for the mathematical representation of protein-ligand complexes in the machine 

learning procedure
[24]

. Besides invariance property, generated features are unique, compact, and 

computationally affordable which are compatible with Himanena et al.
[41]

  description of ideal features. As 

before, we considered element-based atom types (H, C, N, O, F, P, S, Cl, Br, I) for ligand. To generate 

protein atom types, we classified amino acid residues based on their chemical nature of side-chains into four 

groups (Charged (c), Polar (p), Amphipathic (a), Hydrophobic (h)): 

Charged = {Arg, Lys, Asp, Glu} 

Polar = {Gln, Asn, His, Ser, Thr, Cys} 

Amphipathic = {Trp, Tyr, Met} 

Hydrophobic = {Ile, Leu, Phe, Val, Pro, Gly, Ala} 

Then the same element-based atom types attributed to each group. Via this process, the resulting protein atom 

types will reflect the local chemical environment of protein atoms. In the next step, all interatomic distances 

for a specific atom types pair are calculated. Distances with magnitude below the predefined cutoff (dcutoff) 

are weighted by an inverse power of a natural number (n) and sum together. In our previous work, we 

demonstrated that 12 𝐴̇ and 2 are appropriate choices for dcutoff and n, respectively
[24]

. The mentioned 

algorithm is repeated iteratively for all possible atom types pairs, and a feature vector with 400 dimensions as 

a representation of a protein-ligand complex is produced
[24]

: 

 

𝑋⃗ = {𝑋𝐻,𝐻𝑝 , 𝑋𝐻,𝐶𝑝 , … , 𝑋𝐼,𝐼ℎ} 

 

𝑋𝑖,𝑗 = ∑∑
1

𝑑𝑙𝑘
2

𝐿𝑖

𝑙=1

𝐾𝑗

𝑘=1

 

 

where i and j are atom types of ligand and protein, respectively; Li is the total number of ligand atoms of type 

i and Kj is the total number of protein atoms of type j, dlk is the Euclidean distance between the l-th ligand 

atom of type i and the k-th protein atom of type j, which is less than 12 𝐴̇. 

During the preprocessing step, all static, quasi-static (variance below 0.01), and correlated (correlation above 

95%) features were eliminated, which led to different features dimension for different train sets. Also, 

normalization was applied to the remaining features due to their means and standard deviation. Dimensions 

of feature vectors (𝑁𝑓) are represented in Table 1.  

 

2-3 Machine learning algorithms 

 

RF
[13]

, ERT
[14]

, and GBT
[15]

 are among the most widespread machine learning algorithms employed in 

designing scoring functions
[8]

. These three algorithms belong to the ensemble learning method, whose 

objective is to create a model based on a diverse set of predictors. One way to attain this goal is to train each 

predictor on a different random subset of the train set. RF, ERT, and GBT consist of a collection of decision 

trees. In RF and ERT, bootstrap aggregating or bagging, a sampling method with the replacement, is 

employed to devise random subsets of data. Each decision tree is trained separately on the different train 

subsets and the prediction of the model on a new instance, in regression case, is the mean of all prediction 

values. Utilizing extra randomness by the ERT algorithm results in more diverse decision trees than RF and 

faster training. Unlike RF and ERT, GBT incorporates the boosting method to generate a diverse set of 

predictors. The general idea behind the boosting approach is to train predictors iteratively, each trying to 



improve its predecessor
[42-43]

. Here,  Scikit-learn machine learning package is used for training
[44]

. In RF and 

ERT number of trees in the forest (n_estimators) is set to 500 and only the mtry (max_features) 

hyperparameter optimizes concerning out-of-bag criteria
[16]

. In GBT case, all hyperparameters are set to the 

values in Sánchez-Cruz et al. paper
[23]

. All hyperparameters are aggregated in Table 1s. Because of the 

stochastic nature of the aforementioned algorithms, the training procedure repeats ten times, and the model's 

root mean square error (RMSE) and Pearson's correlation (Rp) are reported by averaging over ten models
[6, 16]

. 

 

3 Results and discussion 

3-1 Scoring power CASF-2016 

 

One way for the assessment of scoring function performance is using the CASF-2016 benchmark set. In the 

CASF-2016, a scoring function is evaluated by four metrics: 1- Scoring power 2- Ranking power 3- Docking 

power 4- Screening power
[6]

. Here, we only examine the scoring power of our proposed scoring function. In 

the scoring power, the capacity of a scoring function to predict binding affinity in a linear correlation with 

experimental data is evaluated. The core set 2016, as an external set with 285 high-quality crystal structures 

and experimental binding data, is used to evalute the scoring power. 

As mentioned before, after excluding the core set, the refined set 2016, the composition of the refined and the 

general sets 2016, and the same composition for 2019 are used as the training sets. The distance-weighted 

interatomic contact featurization method was applied to protein-ligand complexes to generate a numerical 

representation for them
[24]

. RF, ET, and GBT were adopted as fast and standard learning algorithms to 

discern hidden patterns in the training data.   

All results for different train sets are aggregated in Table 2. After fine-tuning mtry, both RF and ERT learning 

algorithms presented similar performances on the core set 2016 when different train sets were applied. GBT 

outperformed RF and ERT slightly on three train sets, specifically when the refined set 2016 was chosen as 

the train set (Rp improved by 15.8% and 21.9% with respect to RF and ERT). In the machine learning 

discipline, one approach for improving the performance of the proposed model is the increasing amount of 

available data
[42]

. A comparable trend can be noticed in Table 2. By increasing the number of data points 

from the refined set 2016 to the composition of refined and general sets 2019, Rp for RF, ERT, and GBT 

improved by 39%, 32.7%, and 28.6%, respectively. The best model was achieved by training GBT on the 

composition of refined and general sets 2019, which accomplished Rp and RMSE, 0.862 and 1.19, 

respectively. We call this fittest model “GB-Score”. Figure 1 illustrates the correlation plot between predicted 

binding affinities by the GB-Score and experimentally determined values for the core set 2016. 

 

Table 2- Performance of RF, ET, and GBT on the core set 2016. Standard deviation is shown in parenthesis. 

                                         ML 

Train set   

 RF  ET  GBT 

Rp RMSE Rp RMSE Rp RMSE 

Refined set (2016) 0.820 (0.002) 1.353 (0.003) 0.825 (0.001) 1.344 (0.002) 0.838 (0.002) 1.263 (0.004) 

Refined set + general set 

(2016) 

0.850 (0.001) 1.297 (0.004) 0.852 (0.001) 1.287 (0.003) 0.858 (0.002) 1.203 (0.006) 

Refined set + general set 

(2019) 

0.852 (0.001) 1.289 (0.002) 0.852 (0.001) 1.287 (0.003) 0.862 (0.001) 1.190 (0.004) 

 

Figure 1 shows that the GB-Score has predicted false values for protein-ligand structures with pKi/d values 

more than 10. This observation can be attributed to the employed train set because only 1.80% of train set 

data have pKa of more than 10, therefore the GB-Score predictions are biased toward middle range pKi/d 

values. Increasing data instances with high pKi/d magnitudes can be applied as a solution. 



 

Figure 1- The correlation plot between predicted binding affinities by the GB-Score and experimental values 

for the core set 2016. 

To provide more robust metrics, we devised a new model using GBT and 5-fold cross-validations over all 

PDBbind 2019v protein-ligand data. The test part holds approximately 3530 instances, which is almost 12.5 

times more than the core set 2016. Rp and RMSE, in this case, are 0.764 (0.001) and 1.205 (0.007). The 

decline in model performance is reasonable because the test set size is larger and more diverse concerning the 

core set 2016. 

 

3-2 Non-redundant train sets 

 

As discussed earlier, one objection against machine learning-based scoring functions is due to the similarity 

between train and test sets. Therefore, the performance of the proposed scoring function has to be evaluated 

more rigorously by performing "leave-cluster-out" or composing multiple subsets by filtering out the data 

similar to those in the test set
[45-46]

.  

Lately, Su et al.
[40]

 investigated this problem systematically by employing different machine learning 

algorithms and various subsets of data as training sets, which were devised by filtering out "hard overlap" 

and "soft overlap" for different similarity thresholds with respect to test set (Core set 2016). They concluded, 

even if a train set with low similarity to the test set is applied, some machine learning-based scoring functions 

achieve better scoring power, which can be attributed to the nonlinear and complex characteristics of the 

learning algorithms.  

Here, Su et al.’s new sets, which are compiled of the refined set 2016 with 80%, 85%, 90%, and 95% 

similarities thresholds (similarity between protein sequences, binding sites, and ligands), are indicated as 

train sets and GBT employed as a learning algorithm. Table 3 shows all results for different ranges of sample 

size and similarity thresholds. Our model achieved acceptable performance in the four different train sets 

even in the 80% similarity threshold with only 2105 data points. This result allows us to conclude that the 

distance-weighted interatomic contact featurization and GBT algorithm are relatively robust with respect to 

decreasing sample size or filtering out "soft overlap". 

 



 

Table 3- Shows all results for different ranges of sample size and similarity thresholds. 

Non-redundant train set 

similarity (v.2016) 

80% 85% 90% 95% 

Sample size 2105 2562 3054 3570 

Rp 0.729 (0.003) 0.781 (0.001) 0.816 (0.001) 0.838 (0.003) 

RMSE 1.546 (0.005) 1.419 (0.002) 1.336 (0.001) 1.271 (0.008) 

 

3-3 Family specific extrapolation 

 

In order to estimate the extrapolation ability of our model, distinct train and test sets were constructed by 

excluding only the most populated protein subfamilies, which were detected using the search tool on 

PDBbind website, from the composition of refined and general sets 2019. Excluded subfamily constitutes the 

test set, and the rest assigns as the train set. HIV-1 Protease, Trypsin, and Carbonic Anhydrase are considered 

the most populated subfamilies
[47]

. Train and test set sizes are presented in Table 1 (theirs PDB Ids can be 

found on Github repository). Table 4 shows that the model can generalize its prediction ability to unseen 

cases, despite that its performance declines when all instances of a subfamily are excluded from the train set. 

A hypothetical explanation for this generalization can be attributed to similarities between three subfamilies 

and other protein-ligand complexes in training sets. The best performance happened at Trypsin subfamily 

with Rp 0.680 and RMSE 1.292.  HIV-1 Protease test set with 299 structures is a challenging case in which 

our model achieved the lowest statistical metrics.  

Table 4- Results of model’s performance on excluded subfamilies. 

Family HIV-1 Protease Trypsin Carbonic Anhydrase 

Rp 0.655 0.680 0.673 

RMSE 1.335 1.292 1.304 

 

3-4 Core set analysis 

 

The core set 2016 is constituted of 57 clusters or protein families. Predicted Rp and RMSE values by GB-

Score for each of these clusters are illustrated in Figures 2 and 1s, respectively (the Rp and RMSE numerical 

values can be found in Table 2s in the supporting information). In the Pearson's correlation case, we can 

notice, the GB-Score can predict trends within the majority of clusters properly, which Rp for 75.4% of all 

clusters shows an acceptable value (above 0.7). For all clusters, Rp values are positive except one cluster with  

target ID 33 (Integrase protein family), which presents negative Pearson's correlation (-0.57). Comparing Rp 

and RMSE values affirm which there is no distinct correlation among them (Spearman rank correlation 

0.053). The GB-Score, with Rp's average 0.769 (median 0.870) across all clusters, outperforms newly 

reported scoring function AEScore in per-cluster analysis (average 0.67 and median 0.82)
[48]

. 



 

Figure 2- Per-cluster Pearson's correlation coefficient in the core set 2016. 

 

3-5 Feature selection 

 

GBT is a non-linear estimator. Therefore, to obtain the amount of importance of used features on predicted 

target values, we utilized permutation feature importance
[13]

 (PFI) as a tool for inspecting our model. In PFI, 

the importance of each feature is quantified by estimating the decrease of model score after random shuffling 

of the given feature value. This procedure is repeated several times to estimate the mean and the standard 

deviation for all the features. Here, we adopted the default score of GBT in Scikit learn package
[44]

 (i.e., the 

coefficient of determination of the prediction) and repeated mentioned procedure 10 times.  

Only features whose means of importance are greater than two times their standard deviation are retained. 

Among 104 used features for numerical representation of protein-ligand complex, 76 features passed our 

criteria, which constitute 77.04 % of all importance (relevant details shown in Table 3s). The features 

belonging to hydrophobic amino acids have the most important contributions in binding affinity prediction, 

which shuffling them decreases model performance by 26.01%, nearly the sum of two charged and polar 

groups. Amphipathic, polar, and charged amino acid groups impact the model score with 22.46%, 16.45%, 

and 12.11%, respectively.  Our results are almost compatible with our previous work on ET-Score
[24]

, in 

where we measured feature importance using "mean decrease in impurity"
[49]

. 

Figure 3 provides information about the sum of feature importances for protein (right panel) and ligand (left 

panel) atom types. The features contain the Carbon atom type in both ligand and protein constitute 37.75% 

and 28.26% of all importances, respectively. This importance can be correlated to the Carbon element 

abundance in ligands and proteins. N and O are the next important features in the protein case (15% and 

15.64%, respectively). The Hydrogen atom type in both protein and ligand has similar importance (both 

almost 11.8%). The numerical values for other atom types are presented in Table 4s.  



 

Figure 3 - Illustration of sum of permutation importance for different atom types of ligand (left panel) and 

protein (right panel). 

3-6 Comparison 

 

Figure 4 illustrates the scoring power comparison between the GB-Score (highlighted by red color) and other 

new scoring functions in terms of Rp. All scoring functions belong to ML-based, e.g. utilizing convolutional 

neural network or random forest, except X-Score
[6]

, which is chosen as the best representation of the 

conventional scoring function. As we can clearly see all ML-based scoring functions outperformed X-Score 

in the scoring power benchmark on the core set 2016. Su et al.
[40]

 demonstrate the superiority of ML-based 

scoring functions is associated with the non-linear and complex essence of ML algorithms. However, the 

mentioned ML-based scoring functions in Figure 4 managed different training sets to train their algorithms 

(different released versions of refined or general sets), which makes the comparison between them unclear 

and unfair.  

All ML-based scoring functions achieve similar and comparable performances (performance metrics are only 

different in the second and third decimals) in binding score prediction, nevertheless, they used various kinds 

of feature engineering techniques. ECIF::LD-GBT
[23]

 employed ECIF and ligand descriptors for representing 

protein-ligand complex and adopted GBT as a learning algorithm. AGL-Score
[22]

 applied multiscale weighted 

labeled algebraic subgraphs for generating features. ET-Score
[24]

 was developed to utilize distance-weighted 

interatomic contact features and ERT algorithm to binding affinity prediction. EIC-Score
[21]

 is based on 

differential geometry representations of the protein-ligand complexes and GBT algorithm. RosENet
[33]

 

descriptors employ molecular mechanics energies from Rosetta force field and voxelized representation of 

protein-ligand complex through CNN architecture. KDEEP
[30]

 as a CNN-based scoring function considers eight 

pharmacophoric-like properties for featurizing the complex via a voxelized representation of the binding site. 

PLEC-nn
[50]

, a neural network-based scoring function, represents pairing between ligand and protein atoms 

and their environment according to hashed fingerprint. OnionNet
[32]

 applied similar features like RF-Score
[16]

, 

element pair-specific contacts between ligands and protein atoms, but grouped them into different distance 

ranges to construct grid shape input for its CNN. ∆𝑣𝑖𝑛𝑎𝑅𝐹20 
[17]

used RF algorithm and various Autodock 

Vina
[3]

 energy terms and some molecular descriptors. RI-Score
[19]

 constructed its features based on rigidity 

index descriptors. 



As mentioned above, ML-based scoring functions employed different training sets during training 

procedures, which makes the comparison ambiguous, however, ECIF::LD-GBT achieves the best scoring 

power (Rp = 0.866), and our suggested scoring function, GB-Score, stands in the second rank with a slight 

departure to the first rank scoring function (Rp = 0.862).   

 

 

Figure 4- Performance scoring power comparison of the GB-Score with different scoring functions on the 

core set 2016 in terms of Rp.  

4 - Conclusion 

 

In this report, we improve our previous scoring function, ET-Score
[24]

, in several steps to generate GB-Score 

as a new binding affinity estimator. In the first step, we scrutinized distance-weighted interatomic contact 

features to eliminate correlated, static, and quasi-static features (section 2.2). Through this step, our features 

reduced from 189 in ET-Score case to 104 in GB-Score. Thus, we built a simpler model to predict target 

value than ECIF::LD-GBT with 1710 features which is compatible with Occam's razor principle
[43]

. Recently 

developed ML-based scoring functions demonstrated using GBT and the general set as learning algorithm 

and the training set, respectively, are more suitable in binding score prediction and achieved better 

performance in the benchmark. As expected, by employing two mentioned enhancements and applying a 

larger train set, GB-Score accomplished comparable performance to other recently released ML-based 

scoring functions in the CASF-2016 benchmark test in the scoring power metric with Rp and RMSE, 0.862, 

and 1.190, respectively. We investigated GB-Score scoring power capacity by employing newly developed 

train sets by Su et al.
[40]

, which "soft overlap" between train and the core set 2016 reduced through different 

similarity thresholds. In this situation, GB-Score achieves acceptable performance (Rp above 0.7). 

Furthermore, three distinct train sets were devised by excluding HIV-1 Protease, Trypsin, and Carbonic 

Anhydrase from the collection of the general and refined sets to form test sets for verifying GB-Score 

capability in the out-of-distribution domain. Although its performance was undermined, in the three 

mentioned test sets, it performed satisfactorily. The permutation importance technique was used to look 

under the hood of our black box model for attaining the importance of our proposed features.  

In the near future, to thoroughly examining GB-Score and also other ML-based scoring functions, two open 

problems need to be addressed. The first problem consists of inquiring about the scoring function in the real 

scenario to verify its capacity in the docking and screening powers to distinguish between wild and decoy 

poses. It is a challenging problem in developing scoring functions based on ML. One proposed explanation 



for this undermining can be related to the unavailability of docking poses in the training set
[51]

. The second 

important problem is considering better assessment of ML-based scoring functions through uncertainty 

quantification
[52-53]

 and domains of applicability
[54]

 because all newly proposed scoring functions are 

converging to the same performance, which makes them indistinguishable. So analyzing model test error, its 

uncertainty across test sets, we can spot sub-domains in which different models perform better than the others 

and practice this assessment for further model comparison. We hope to publish our results on these two 

challenges in the near future.  

 

5 - Software and data availability 

 

All Python codes, PDB IDs for all training and test sets, and Jupyter notebook for repeating this report are 

provided in GitHub (https://github.com/miladrayka/GB_Score).  
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