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Abstract 

To improve air quality, knowledge of the sources and locations of air pollutant emissions is 

critical. However, for many global cities, no previous estimates exist of how much exposure to 

fine particulate matter (PM2.5), the largest environmental cause of mortality, is caused by 

emissions within the city vs. outside its boundaries. We use the Intervention Model for Air 

Pollution (InMAP) global-through-urban reduced complexity air quality model with a high-

resolution, global inventory of pollutant emissions to quantify the contribution of emissions by 

source type and location for 96 global cities. Among these cities, we find that the fraction of 

PM2.5 exposure caused by within-city emissions varies widely (µ=51%; σ=23%) and is not well-

explained by surrounding population density.  The list of most-important sources also varies by 

city. Compared to a more mechanistically detailed model, InMAP predicts urban measured 

concentrations with less bias but more error. Predictive accuracy in urban areas is not 

particularly high with either model, suggesting an opportunity for improving global urban air 

emission inventories. We expect the results herein can be useful as a screening tool for policy 

options and in many cases may be robust enough to inform policy action to improve public 

health. 
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1. Introduction  

Air pollution is the greatest single environmental health risk worldwide. According to the 

World Health Organization, ambient air pollution prematurely kills 7 million people per year 

(WHO, 2021), with an estimated economic cost of ~ $3 trillion USD, or 3.3% of global GDP 

(Myllyvirta, 2020). Among air pollutants, fine particulate matter (PM2.5) has the largest health 

impact in monetized terms: more than half of the global population is exposed to annual-average 

ambient concentrations exceeding the first interim target from the World Health Organization, 35 

μg/m3 (HEI, 2019). Efforts to reduce PM2.5 concentrations have not been uniformly successful 

(UNEP, 2021).  

Making effective plans for improving air pollution requires prioritization, which in turn 

requires knowing the emission sources that contribute most to poor ambient air quality and to the 

resulting health effects. However, the complexity of the atmospheric system and of the human 

and natural systems that cause emissions make that task challenging; in many cases it can be 

difficult for scientists and policymakers to determine which sources to target to maximally 

reduce the population exposure.  

Air quality models and other decision support tools that relate pollution emissions to the 

resulting ambient concentrations and health impacts can be important for designing effective 

policies to improve air quality. Mechanistically detailed Eulerian chemical transportation models 

(CTMs) are commonly used for this purpose, but owing to high requirements for user training, 

computational resources, and input data, are often unavailable for urban-level policy analysis. 

Multiple reduced-complexity air quality models (RCMs) have been designed to fill this gap 

(Levy et al. 2009; Heo et al. 2017; Casey et al. 2018; Mikati et al. 2018). Among these RCMs, 

the Intervention Model for Air Pollution (InMAP; Tessum et al., 2017) has proven useful in 

health impact assessment and environmental justice applications (Goodkind et al. 2019; Tessum 

et al. 2019; Tschofen et al. 2019; Hill et al. 2019; Thind et al. 2019; Liu et al. 2019, Tessum et al. 

2021) owing in part to its use of a variable spatial resolution computational grid which focuses 

computational effort on areas with high population density. The recent creation of a global-

through-urban version of the InMAP model (Thakrar et al., 2021) now provides the opportunity 

to estimate the exposure consequences of primary and secondary PM2.5 concentrations at high 

spatial resolution in nearly all densely populated areas globally. 

Metropolitan-level policy can play an important role in urban air quality (Friedman et al. 

2001; Streets et al. 2007; Tonne et al. 2008; Slovic and Ribeiro 2018; Izquierdo et al. 2020), but 

policymakers in many global cities have not previously had access to detailed information 

regarding where their ambient PM2.5 pollution comes from. Common initial questions from 

policy makers, in considering how to address air pollution, include (1) Source apportionment: 

which sources (electricity generation, transportation, industry, etc.) contribute substantially to 

ambient pollution levels? and (2) Local influence and authority: how much pollution is generated 

within the city versus transported in from outside? Previous globally-scoped studies have 

provided this information at national or subcontinental resolution (e.g., Lelieveld et al. 2015; 

Anenberg et al. 2019), which is of limited use for decision-making at the urban level, or have 

provided information on the sources contributing to pollution in cities based on a relatively low-



resolution emissions inventory but no information regarding whether those sources are located 

within or external to the city boundaries (McDuffie et al. 2021).  

Here, we use InMAP to provide scoping-level answers to the two questions above for 96 

global cities. Specifically, we estimate the contribution of 12 emission source sectors, both 

within and outside of the city boundaries, for primary (i.e., directly emitted) and secondary (i.e., 

formed in the atmosphere from primary emissions of gaseous pollutants) PM2.5. We additionally 

provide an evaluation of model performance in these urban areas and discuss opportunities for 

future improvements in model accuracy. For many of the cities we study, information provided 

herein is the only quantitative information that exists regarding the within-city vs. out-of-city 

contribution of ambient PM2.5. Results reported here provide both information for stakeholders 

and an analysis of opportunities to improve their accuracy in future work. 

2. Methods 

2.1 PM2.5 Emission Source Estimation Inventory Data 

We study 96 cities that are members of C40, a network of mayors of global cities dedicated 

to delivering action on climate change (C40, 2021). For each city, we consider anthropogenic, 

biogenic, mineral dust, soil denitrification, and biomass burning emissions. For anthropogenic 

emissions, we use data from the Community Emissions Data System (CEDS) for year 2014 with 

eight sectors (Table 1): non-combustion agriculture (AGR); energy transformation and extraction 

(ENE); industrial combustion and processes (IND); surface transportation (road, rail, other) 

(TRA); residential, commercial, and other (RCO); solvents (SLV); waste disposal and handling 

(WST); and international shipping (SHP) (Hoesly et al., 2018). The CEDS emission species used 

here and their mappings to InMAP species are summarized in Table S1. The CEDS emissions 

dataset is available at 0.5×0.5 degree spatial resolution, meaning that a single emissions grid cell 

is larger than many of the cities we study. Section 2.2 describes our methods for downscaling 

these emissions data to produce higher-resolution estimates.  

We use biogenic volatile organic chemical (VOC) emissions generated by the MEGAN 

model (Guenther et al. 2006), including the individual VOC components that are considered 

secondary organic aerosol (SOA) precursors by GEOS-Chem. We use mineral dust emissions 

generated by the “DustDead” GEOS-Chem algorithm (Zender et al. 2003). The DustDead model 

simulates emissions of mineral dust that are mobilized by wind (excluding road dust). The 

“EMIS_DST1” and “EMIS_DST2” variables were used in this study to represent primary PM2.5 

emissions. We use soil NOx emissions from the GEOS-Chem soil NOx extension (Hudman et al. 

2012). These emissions are at 0.25×0.3125 degree spatial resolution and for year 2016, 

downloaded from the GEOS-Chem FTP website (GEOS-Chem authors, 2019).  

We use biomass burning emissions from the fourth generation Global Fire Emissions 

Database (GFED4; Giglio et al. 2013) at 0.25×0.25 degree spatial resolution for year 2016. 

These emissions are separate from domestic biomass burning for residential energy use, which is 

included in the CEDS dataset. 

 



2.2 Spatial Surrogates 

We downscale anthropogenic emissions from the native 0.5×0.5 degree CEDS spatial 

resolution to InMAP grid cells—which vary in size with a minimum edge length of 

0.039×0.03125 degrees—using surrogate spatial data, which allows us to represent the spatial 

distribution of emissions within each CEDS grid cell. We do not apply additional spatial 

processing to non-anthropogenic emissions. To spatially downscale anthropogenic emissions, we 

employ spatial datasets that are global in scope and freely available, allowing us to scale our 

approach to a large number of cities. In cases where the datasets provide no information for a 

given surrogate within a given city—for example, some cities do not have agricultural areas 

within their boundaries—we assume emissions are evenly distributed throughout the city area. 

We also assume all emission sources except electricity generation occur at ground-level. Spatial 

surrogates used for each CEDS emission sector are as follows: 

For energy transformation and extraction, we use a database of SO2 emissions from 

global electricity generating units (EGUs) (Tong et al. 2018). We use the spatial distribution of 

SO2 emissions (rather than another pollutant) because SO2 emissions are responsible for the vast 

majority of overall health impacts from EGUs (Fann et al. 2012). EGUs typically have tall 

emissions stacks, and their emissions plumes often continue to rise after release, owing to their 

upward velocity exiting the stack and their higher temperature relative to surrounding air. To 

incorporate stack height and plume rise, we assume that EGUs have stack parameters equal to 

mean values for EGUs in the year-2014 US EPA National Emissions Inventory (US EPA, 2016) 

as processed by Tessum et al. (2019): 63.5 m stack height, 4.1 m stack diameter, 519.2 K 

emission temperature and 24.7 m/s emission velocity. (There is no global database of EGU stack 

properties.) 

For surface transportation, we create a spatial surrogate using a weighted average of 

roadway lengths of OpenStreetMap (OSM) roadways in each CEDS grid cell. We use the 

following weighted average of OSM roadway types: 36% motorways, 21% trunk roads, 18% 

primary roads, 9% secondary roads, 1% tertiary, unclassified, and service roads, and 14% 

residential roads. This weighting is derived from U.S. data on urban road uses (US DOT FHA, 

2017); the taxonomy of roadway types is described in Table S2 (OSM, 2019). 

For international shipping, we create a spatial surrogate from the combined length of 

OSM features tagged as river, riverbank, pier, ferry, ferry terminal, boat, and mooring. For non-

combustion agriculture, we create a spatial surrogate from the combined length of OSM features 

tagged as farm, farmland, or vineyard (OSM, 2017). For industrial combustion and processes 

and solvents, we create a spatial surrogate from the combined area of OSM features tagged as 

industrial buildings or “industrial” or “quarry” land use. For the remaining categories 

(residential, commercial, and other, and waste disposal and handling), we assume a spatial 

distribution similar to population density, which we represent using the year-2020 projected 

population from the WorldPop database (Tatem, 2017). 

2.3 InMAP Air Quality Modeling  

Air quality model description: The Intervention Model for Air Pollution (InMAP) is a 

mechanistic reduced-complexity air quality model (RCM) that estimates annual-average changes 



in primary and secondary PM2.5 concentrations attributable to annual changes in emissions of 

PM2.5 and its precursors. In addition to the emissions and population data described in Section 

2.1, InMAP requires information on meteorological characteristics and on chemical transport and 

reaction rates. We use meteorological and background chemistry inputs generated from the 

outputs of the GEOS-Chem global atmospheric chemical transport model (CTM) simulation for 

the year 2016, with a base spatial resolution of 2×2.5 degrees and regional nests over Asia, 

Europe, and North America at 0.5×0.625 degree spatial resolution. The GEOS-Chem simulation 

uses the SOA_SVPOA chemical mechanism with standard emissions inputs as processed by the 

HEMCO emissions processor. Further details regarding the GEOS-Chem configuration are 

described by Thakrar et al. (2021). 

The InMAP configuration used here leverages pre-processed physical and chemical 

information from the output of GEOS-Chem and uses a variable spatial-resolution computational 

grid to perform simulations that are several orders of magnitude less computationally intensive 

than conventional CTMs, yet with spatial resolution that is higher than is typically possible using 

a conventional CTM for a given domain. Conventional CTMs create a three-dimensional 

Eulerian grid and simulate changes in pollutant concentration in each cell at a high temporal 

resolution (<1 hour) based on physical transport via wind flow and plume rise, emissions, 

physical removal (e.g., deposition), and interdependent non-linear physico-chemical 

transformation pathways. In contrast, InMAP uses time-averaged transport and reaction rates in 

its algorithms for emission, plume rise, transport, transformation, and removal of atmospheric 

pollution. To reduce computational intensity, the algorithms are in some cases simplified relative 

to similar algorithms in a conventional CTM; these simplified representations are calibrated 

using output from a conventional CTM (GEOS-Chem). This is the first detailed application of 

InMAP to global cities, but it has previously been used to study PM2.5 air pollution in the US, 

including racial-ethnic disparities in exposure (Tessum et al., 2019; Tessum et al., 2021), and 

exposure to air pollution from agriculture (Hill et al., 2019), electricity (Thind et al. 2019), and 

freight (Liu et al. 2019). Further details regarding the InMAP model, including model 

formulation and performance evaluation, for the US and globally, are described in detail 

elsewhere (Tessum et al., 2017; Thakrar et al. 2021). 

Air quality model application: First, we estimate, for each city, the total PM2.5 

concentrations and the contributions from each of the 12 source sectors. Here, our spatial domain 

is global, so we refer to these as the “global” simulations. We configure InMAP to use a 

variable-resolution grid with 2×2.5 degree resolution for the largest cells, each of which are 

allowed to split into 4 smaller cells up to 6 times recursively, for a minimum grid cell size of 

0.031×0.039 degrees (about 3×4 km2 at the equator). The resulting grid (Figure S1) was created 

by recursively splitting any grid cell containing more than 100,000 people or containing more 

than 55 million people per square degree in any part of the cell. These 12 simulations (one per 

source sector), each require ~36 hours on a circa-2019 computer with 32 CPU cores. 

Next, we estimate, for each city, the same two parameters as in the first step (total PM2.5 and 

contributions from each sector) but in this case only considering within-city emissions (i.e. 

emissions originating within a city boundary developed in partnership with city officials for each 

of the 96 cities). For these city simulations, we use a different InMAP configuration designed to 



take advantage of the fact that all emissions are in the relatively small area of one city; this 

allows us to reduce computational expense while maintaining high spatial resolution in areas 

where it is beneficial. Specifically, for each city we use a modeling spatial domain of 20×25 

degrees (~2220×2775 km2, which is ~1% of the surface area of the earth), centered at the center 

of the city in question. This size was chosen with the expectation of capturing >90% of the total 

exposure to PM2.5 pollution resulting from emissions originating in the city (Goodkind et al., 

2019). We use maximum and minimum grid cell sizes of 2×2.5 degrees and 0.01×0.013 degrees 

(~220×280 km2 and ~1.2×1.4 km2 at the equator). As expected, these individual city simulations 

often end up with higher spatial resolution in the city in question (relative to the global 

simulations) owing to the decreased overall population in the model spatial domain as compared 

to the global simulation. The resulting 1,152 individual-city simulations (i.e., 96 cities × 12 

source sectors) each take ~2-30 hours on a circa-2019 computer with 8 CPU cores, depending on 

the population density of the region in question. 

2.4 Data Analysis  

For each source sector, we estimate exposure impacts from emissions originating outside of 

each city by subtracting population-weighted concentrations caused by emissions within the city 

from total population-weighted concentrations. In this manner we obtain the fraction of total 

PM2.5 concentrations caused by within-city emissions as well as the fraction of total PM2.5 

concentrations caused by different emission sources located either within or outside of the city.  

However, because the individual city simulations are typically at higher spatial resolution (as 

described above), in ~3% of the 1152 city-sector combinations the simulated concentrations 

caused by within-city emissions are greater than the simulated concentrations caused by all 

emissions, resulting in a negative contribution from out-of-city emissions. The median of those 

negative values is -0.0098 μg m-3, and the largest value is -1.7 μg m-3. In these cases, we set the 

concentrations caused by all emissions equal to the concentrations caused by within-city 

emissions, so that the contribution from out-of-city emissions equals zero.   

Because the air quality model simulations we perform here require a substantial amount of 

expertise, time and computational resources, we investigate whether patterns exist in the 

underlying results that could potentially allow extrapolation beyond the 96 cities we studied. To 

do so, we analyze the relationship between the fraction of PM2.5 originating from within city 

sources and various city characteristics such as city population, gross domestic product (GDP), 

city area, and “population buffer fraction”. We define population buffer fraction as the city 

population divided by the total population within a radius of 200-km from the city centroid. The 

goal of this supplementary analysis is to explore whether there might exist a straightforward 

method to reproduce the results shown here without extensive air quality modeling. 

2.5 Model Evaluation 

We evaluate InMAP model prediction accuracy on total PM2.5 concentration by comparing 

against measurements from the WHO ambient (outdoor) air pollution database (WHO, 2016), 

which provides PM2.5 measurements for 53 of the 96 cities studied here. We assess performance 

using metrics including mean bias (MB), mean error (ME), mean fractional bias (MFB), mean 

fractional error (MFE), and coefficient of determination (r²). Definitions of these metrics are in 



Table S3. We also use the same metrics to evaluate the global GEOS-Chem model predictions as 

configured and run by Thakrar et al. (2021) against the same PM2.5 measurements in the same 

cities. In addition, we compare InMAP model predictions of total PM2.5 concentrations against 

satellite-based predictions of PM2.5 concentrations in 91 global cities (Southerland et al. 2021), 

and predictions by McDuffie et al. (2021) in 43 global cities.    

Although there do not exist city-specific estimates of PM2.5 source apportionment for all of 

the cities studied here, we compare our estimates for fractional contributions of six similar 

emission sources with those reported by McDuffie et al. (2021) among 43 global cities. We also 

compare our estimates for fractions of total PM2.5 and fractions caused by four emission sources 

generated by within-city emissions with those reported by Thunis et al. (2017) among 17 

European cities estimated by the European Commission.  

3. Results  

3.1. InMAP PM2.5 concentration and sources analysis   

InMAP model results provide estimates (population-weighted concentrations) for each city of 

primary and secondary PM2.5, chemically-speciated by source type for within-city versus 

outside-city emissions. Results are summarized next, with full results for each city in supporting 

dataset S1.  

The median (interquartile range [IQR]) predicted concentration among the 96 cities is 17 (7-

43) μg/m3, of which we estimate 57% (37%-73%) is primary (the rest is secondary), and 49% 

(33%-70%) comes from within-city emissions (the rest comes from sources outside the urban 

boundary; Table S4).  

Concentration estimates for each city (Figure 1) demonstrate substantial variability among 

urban areas, in terms of concentrations as well as the proportion that is primary vs secondary 

particulate matter. The highest levels of total PM2.5 as predicted here are mainly in Asian cities. 

As described in Section 3.3, InMAP and other mechanistic model predictions of total PM2.5 

concentrations in global cities are often substantially different from measured concentrations. 

Some studies (for example McDuffie et al. (2021)) calibrate their mechanistic model predictions 

to measurement and remote sensing data, but we do not do that here to provide a more accurate 

sense of the level of uncertainty surrounding our predictions. 

The largest contributors to both total PM2.5 concentrations (Figure 2) and PM2.5 

concentrations caused by within-city emissions are most commonly industry, energy 

transformation and extraction and residential and commercial activities. For example, 49% and 

38% of cities have industry ranked the largest for total PM2.5 and PM2.5 concentrations caused by 

within-city emissions, respectively; 26% of cities have energy transformation and extraction 

ranked the largest for both total PM2.5 and PM2.5 concentrations caused by within-city emissions; 

and 9% and 22% of cities have residential and commercial activities ranked the largest total 

PM2.5 and PM2.5 concentrations caused by within-city emissions, respectively. The two largest 

sources of PM2.5 caused by out-of-city emissions are the same as total PM2.5 and PM2.5 caused by 

within-city emissions; however, the third largest source of PM2.5 caused by out-of-city emissions 

is dust, which is the largest out-of-city source in 21% of cities. Only 9% of cities have surface 



transportation listed as the largest PM2.5 source caused by within-city emissions. Although 

industrial combustion/processing and energy transformation/extraction are the top PM2.5 sources 

in many cities, there is substantial variability in which emission sources contribute the most 

across all 96 cities. Thus, an important implication of these findings is that one-size-fits-all 

approaches to air quality management are unlikely to work across urban areas. Instead, 

management practice likely needs approaches tuned to local context, including which sources 

dominate for that city. 

3.2 Fraction of within-city emitted PM2.5 and city characteristics   

As described in Section 2.4, we tested correlations between the fraction of PM2.5 caused by 

within-city emissions and city characteristics such as city size and urban GDP (Figure S2). The 

results suggest low correlation between fraction of within-city emitted PM2.5 and city population, 

GDP and city area for total, primary and secondary PM2.5. However, there are positive 

correlations between the fraction of within-city emitted PM2.5 and population buffer fraction for 

total and secondary PM2.5. 

There is no statistically significant difference in total PM2.5 concentration, city population, 

GDP or area among cities that have different top ranking emission sources (ANOVA p= 0.29, 

0.69, 0.10, and 0.68, respectively). However, there is a statistical difference in fraction of within-

city generated PM2.5 among cities that have different top sources (p= 0.00), where cities with 

high fraction of within-city generated PM2.5 have top PM2.5 sources as residential and 

commercial, industrial and energy, indicating these sources are likely generated locally. 

Additionally, there is a statistical difference in population buffer fraction among cities having 

different top sources (p= 0.03), where residential and commercial, dust, industrial and energy 

sources tend to be the top PM2.5 sources among cities with higher population buffer fractions, 

while agricultural, international shipping and surface transportation tend to be the top PM2.5 

sources among low population buffer fraction cities. Along with the results shown in Figure S2, 

our findings suggest if a city does not have other densely-populated areas nearby, it tends to have 

the most locally-generated PM2.5, whereas if a city has other densely populated areas nearby, it 

tends to have a smaller proportion of PM2.5 generated locally. The level of population buffer 

fraction is strongly associated with certain sources, as well as with total and secondary PM2.5 

concentration. None of the urban parameters we investigated are well-correlated with the top 

PM2.5 source for a city. This finding suggests that atmospheric modeling holds value for 

understanding the local context of which sources contribute the most to local pollution.   

3.3 Comparison of InMAP results with measurements and other studies  

We evaluate the InMAP predicted total PM2.5 concentrations against measured total PM2.5 

concentrations. There are 53 global cities that have both InMAP predictions and measured data 

collected by WHO (WHO, 2016); results are shown in the first panel of Figure 3.  The r2 is 0.47 

and bias and error are listed in Table S5. For the same cities, the model-measurement agreement 

is better for GEOS-Chem than for InMAP (r2= 0.57; Figure 3, second panel) and GEOS-Chem 

has lower error but larger bias (Table S5).  

We additionally compare the InMAP predicted total PM2.5 concentrations using satellite 

derived PM2.5 concentrations (Southerland et al. 2021) among 91 cities in Figure S3 (r2= 0.22), 



as well as using modeled total PM2.5 concentrations reported by McDuffie et al. (2021) in the 

first panel of Figure S4 (r2= 0.27). (Note that total PM2.5 concentrations reported by McDuffie et 

al. (2021) are calibrated to measurement and remote sensing data, which explains their good 

agreement with measurement data.) We compare our estimates for fractions of total PM2.5 caused 

by six common emission sources with those reported by McDuffie et al. (2021) in Figure 4. Most 

fractions of these emission sources show good correlations (r2: 0.21-0.53) between the two 

studies except the fraction of PM2.5 from residential, commercial and other (r2= 0.01). We also 

compare InMAP fractions of total PM2.5 concentrations caused by within-city emissions with 

these fractions from 17 European cities (Thunis et al. 2017) as shown in Figure S5 (r2= 0.17). 

Additionally, we compare the fractions of total PM2.5 caused by four common emission sources, 

as well as the fractions of total PM2.5 concentrations caused by these four emission sources 

generated by within-city emissions to that study in Figures S6 and S7. There are no correlations 

between InMAP predictions and predictions by Thunis et al. (2017), except the fractions of total 

PM2.5 caused by agricultural and residential sources (the differences in emission source 

categories are listed in Table S6). We also evaluate the InMAP within-city fractions for total 

PM2.5 against zero-out simulations with GEOS-Chem conducted in five cities and find good 

agreement (r2 = 0.67) when InMAP is run at the coarser resolution used by GEOS-Chem. Model 

comparison is described in more detail in the supporting information. 

4. Discussion  

In this study, we have produced estimates of PM2.5 concentration, its source composition, and 

contribution of in-city vs. out-of-city sources—the latter of which was not previously available in 

many global cities—that can be useful as a screening tool and in many cases may be robust 

enough to inform policy action to enact more effective strategies for improving public health. 

We find that although industrial- and energy-related sources are the largest contributors to PM2.5 

in a plurality of cities, there is considerable diversity among cities in which source types are most 

important (Figure 2). Because there is considerable uncertainty inherent in the results presented 

here, in some cases it may be advisable to leverage these results to obtain more precise estimates 

using a more mechanistically detailed air quality model and locally produced emission 

inventories before taking policy action, to the extent that resources are available to support the 

additional analysis. 

Beyond the specific results for individual cities archived in the supporting information and 

summarized above, we would like to call the reader’s attention to several salient points that 

emerge from this analysis. 

The first point is that we did not find any strong patterns among cities that could predict 

which emission sources contribute most to a city’s PM2.5 concentrations, or how much of a city’s 

ambient PM2.5 concentration originates from emissions within the city boundary (Figure S2). To 

some extent, this contradicts previous findings by Apte et al (2012); this discrepancy may be 

explained by the more detailed model of the atmosphere used here. The implication of this point 

is that it is necessary to perform atmospheric modeling in a given city to get a realistic estimate 

of the sources of that city’s pollution—there don’t seem to be any shortcuts. Since it may not be 

practical to carry out urban-level air quality simulations in a large number of cities using a 



comprehensive model like GEOS-Chem, this underscores the utility of reduced-complexity 

models such as InMAP. 

The second point is that urban air quality analyses require urban emissions inventories. As 

described above, we use spatial surrogates—mainly based on OpenStreetMap data—to allocate 

0.5×0.5 degree CEDS emissions to much smaller InMAP grid cells. This spatial downscaling is 

important: in an analysis comparing InMAP and GEOS-Chem predicted contributions of within-

city emissions for a subset of five of the 96 cities studied here (i.e. Johannesburg, Buenos Aires, 

Addis Ababa, Chengdu, and Guadalajara), we found that the r2 value between GEOS-Chem and 

InMAP predictions when InMAP used emissions at their native resolution was 0.67, but when 

InMAP used the same emissions downscaled with the spatial surrogates described above, the r2 

value decreased to 0.2 (Figure S8, methods in supporting text). This implies that the use of high-

resolution emissions provides information that couldn’t be reproduced by—for example—

applying a correction factor to simulation results based on low-resolution emissions. 

Building on the second point, the third point is that in this analysis the emission inventory 

appears to be a larger source of potential error than the choice of air quality model. For example, 

the r2 value for total concentration predictions in five cities between GEOS-Chem and InMAP 

when using the same emission inventory is 0.98 (Figure S8), but the r2 value between GEOS-

Chem and InMAP for the fractional contribution of Residential, Commercial, and Other 

emissions in 43 cities when using different versions of the CEDS inventory (Hoesly et al. 2018 

vs. McDuffie et al. 2021) at different spatial resolutions is 0.01 (Figure 4). 

As described above, high-resolution emissions estimates are important for urban-scale 

analysis. The fourth point is that downscaling existing inventories using spatial surrogates can 

only yield improvements up to a certain point. The global CEDS inventory used here is mainly 

based on national emissions estimates that are themselves downscaled to a 0.5×0.5 degree grid 

using mainly population density estimates. This can lead to spatial misallocations that cannot be 

fixed by further downscaling. For example, using the national-population-based spatial allocation 

method above in a country with substantial residential coal emissions could allocate a plurality of 

those emissions to the cosmopolitan capital city, where in reality there were relatively few 

residential coal emissions owing to the capital’s relatively high level of affluence. The next 

generation of global emissions inventories may benefit from the emergence of new streams of 

relevant data—for example from smart phones and satellites—in combination with local 

expertise facilitated by networks of cities like C40. 
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Table 1. Sectors of anthropogenic emissions from the Community Emissions Data System 

(Hoesly et al. 2018) 

Sector Specification Spatial Surrogate 

Non-combustion 

agricultural sector (AGR) 

manure management, soil emissions, rice 

cultivation, enteric fermentation, and other 
Agricultural sector 

Energy transformation and 

extraction (ENE) 

electricity production, heat production, other 

energy transformation, related fugitive 

emissions, and fossil fuel fires 

Energy generation 

Industrial combustion and 

processes (IND) 

combustion for manufacturing of goods and 

minerals and for and construction, production 

of cement, lime, and “other minerals”, mining, 

chemical production, paint application, wood, 

pulp, and paper products 

Industrial sector 

Surface transportation 

(road, rail, other) (TRA) 
air, road, rail, and water transportation Roadways 

Residential, commercial, 

and other (RCO) 

commercial-institutional, residential, 

agriculture-forestry-fishing, and other-

unspecified emissions 

Population 

Solvents (SLV) used in degreasing and cleaning Industrial sector 

Waste disposal and 

handling (WST) 

solid waste disposal, waste combustion, 

wastewater handling, and other 
Population 

International shipping 

(SHP) 
VOCs from oil tanker loading/leakage Waterways 

  



 

Figure 1. Fractions of PM2.5 originating from within city sources for A) total PM2.5, B) primary 

PM2.5 and C) secondary PM2.5 among 96 global cities. Color scales represent PM2.5 concentration 

(μg/m3). 



 

Figure 2.  Proportions of total PM2.5 from 12 sources among 96 global cities, grouped by the 

largest sources: A) Industrial combustion and processing, B) Energy transformation and 

extraction, C) Residential, commercial, and other, and D) Other sectors.  



 

Figure 3. Comparison of InMAP predicted total PM2.5 concentrations and measured total ambient 

PM2.5 concentrations (WHO 2016, left) and GEOS-Chem predicted total PM2.5 concentrations 

and measured total ambient PM2.5 concentrations (right) among 53 global cities. The blue line is 

a least-squares model fit and blue shaded areas indicate the 95% confidence interval of a least 

squares fit. The black line represents a 1:1 relationship.   



 

Figure 4. Comparison of fractions of total PM2.5 caused by different emission sources between 

InMAP (this study) and McDuffie et al. (2021) among 43 global cities.  
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