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Abstract N-functionalized aziridines, which are both useful intermediates and are present in 

important synthetic targets, can be envisioned as arising from the direct addition of nitrenes (i.e., 

NR fragments) to olefinic substrates. The exceptional reactivity of most nitrenes, in particular with 

respect to unimolecular decomposition reactions, prevents general application of nitrene-transfer 

chemistry to the synthesis of N-functionalized aziridines. Here we describe a strategy for the 

synthesis of N-aryl aziridines based on 1) olefin aziridination with N-aminopyridinium reagents to 

afford N-pyridinium aziridines followed by 2) Ni-catalyzed C–N cross-coupling of the N-

pyridinium aziridines with aryl boronic acids. The N-pyridinium aziridine intermediates also 

participate in ring-opening chemistry with a variety of nucleophiles to afford 1,2-

aminofunctionalization products. Preliminary mechanistic investigations indicate aziridine cross-

coupling proceeds via a noncanonical mechanism involving initial aziridine opening promoted by 

the bromide counterion of the Ni catalyst, C–N cross-coupling, and finally aziridine reclosure. 

Together, these results provide new opportunities to achieve selective incorporation of generic aryl 

nitrene equivalents in organic molecules. 
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Aziridines, which are three-membered nitrogen-containing heterocycles, are attractive 

synthetic intermediates en route to 1,2-aminofunctionalization products and are present in various 

naturally occurring alkaloids and pharmacologically active compounds. 1  Retrosynthetically, 

aziridines can be envisioned as arising from the combination of a nitrene equivalent with an 

olefinic substrate. In practice, aziridination via nitrene transfer is severely limited by the 

promiscuous reactivity of unstabilized nitrenes: 2  For example, attempts to access N-

phenylazidines from phenylnitrene (generated by thermolysis or photolysis of phenyl azide) result 

in polymeric tars instead of the desired aziridine.3 Since Evans’s report of Cu-catalyzed olefin 

aziridination,4 myriad transition metal-catalyzed methods have been developed for nitrene transfer 

to olefins (Figure 1a).5  Metal-catalyzed nitrene transfer catalysis typically requires electron-

withdrawing groups, such as N-sulfonyl substituents, to activate the nitrogen equivalent for 

transfer;6,7 there are limited reports of metal-catalyzed nitrene transfer from aryl azide precursors.8 

The resulting N-protected aziridines can be challenging to utilize in downstream N-

functionalization chemistry. For example, exposure of N-sulfonyl aziridines to metal-catalyzed 

cross-coupling conditions typically results in aziridine opening, not N-functionalization.9 N–H 

aziridines can be accessed by either deprotection of N-protected aziridines10 or by direct synthesis 

of olefinic precursors (Figure 1b).11 While derivitization of the N–H valence can provide access to 

some N-functionalization products, arylation of these compounds is not broadly developed.12,13  

N-aminopyridinium reagents represent a burgeoning class of bifunctional reagents14 which 

combine a nucleophilic N-amino group with a low-lying pyridinium-centered LUMO that enables 

access to N-centered radicals via reductive N–N cleavage (LUMO = lowest unoccupied molecular 

orbital).15 In the context of amination chemistry, N-sulfonylaminopyridiniums have been utilized 

in photoredox-promoted olefin difunctionalization16 and aromatic C–H amination reactions.17,18 
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Broad application of N-aminopyridiniums as bifunctional reagents in amination chemistry is 

stymied by the limited methods currently available to prepare N-functionalized aminopyridiniums, 

which are accessed by either addition of hydrazines to pyrylium salts or by sulfonylation of N-

aminopyridiniums. 19  Here, we describe the first example of olefin aziridination with N-

aminopyridinium reagents (Figure 1c). Inspired by the Ni-catalyzed C–C coupling chemistry of 

N-alkylpyridinium electrophiles pioneered by Watson20 and others,21 we demonstrate that the 

resulting N-pyridinium aziridines are competent electrophiles for C–N bond-forming cross-

coupling with aryl boronic acids to afford N-aryl aziridines. This two-step protocol provides access 

to the products of formal aryl nitrene transfer to olefinic substrates and stands in contrast to 

classical methods of aziridine functionalization which are based on N-centered nucleophilicity. 

Initial mechanistic experiments suggest that the cross-coupling proceeds via a non-canonical 

mechanism involving halide-promoted ring opening, C–N bond-forming cross coupling, and 

aziridine reclosure. 

 

  

Figure 1. (a) Nitrene transfer to olefins provides access to aziridines but often requires the utilization of sulfonyl 
groups to activate the nitrogen. (b) N–H aziridines can be accessed directly from olefins and metal-catalyzed allylation 
methods enable functionalization of the N–H valence. (c) Here we advance N-pyridiniumaziridines as platforms for 
C–N cross coupling to provide access to N-substituted aziridines.    
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We began the development of a formal nitrene transfer sequence by developing robust 

conditions for olefin aziridination with N-aminopyridinium reagents as nitrogen sources. 

Combination of styrene and N-aminopyridinium triflate in the presence of iodobenzene diacetate 

(PhI(OAc)2) and MgO resulted in 1-(2-phenylaziridin-1-yl)pyridin-1-ium in 64% yield. 

Aziridination could also be accomplished using N-amino-2,4,6-triphenylpyridinium 

tetrafluoroborate (2) as the nitrogen source under these conditions (42% yield of the corresponding 

pyridinium aziridine (3a)). During subsequent studies of C–N cross coupling (vide infra), the 

triphenyl derivative was found to be superior and thus we optimized the aziridination reaction with 

compound 2 as the pyridinium source. Examination of the impact of various catalysts, solvents, 

reaction temperatures, and additives (see Supporting Information Section C.1 for details) identified 

optimized aziridination conditions based on iodide catalysis in the presence of 4Å molecular 

sieves, which affords aziridine 3a in 71% yield (Figure 2). 

An array of 4-substituted vinyl arenes participate in aziridination with the optimized 

conditions: hydrocarbyl substituents (3b and 3c), electron-donating alkoxy and Boc-protected 

amines (3d and 3e), as well as various electron-withdrawing substituents (3f–3k) are all well 

tolerated. Both meta- and ortho-substituents (3l–3p and 3q–3s, respectively) are compatible with 

the developed aziridination conditions and 2-vinylbenzothiophene undergoes aziridination to 3t in 

60% yield. For electron-neutral and -rich substrates, 5 mol% [TBA]I is utilized; for electron 

deficient substrates we increased the catalyst loading to 20 mol% to achieve efficient aziridination. 

Consistent with previous reports of iodide-catalyzed aziridination, functionalization of 1,2-

disubstituted olefins is not stereospecific:Error! Bookmark not defined.a aziridination of trans-b-

methylstyrene (trans-1u) affords a 45:55 cis:trans mixture of 3u; aziridination of cis-1u affords a 

35:65 cis:trans mixture of 3u. The developed conditions are effective for the aziridination on more 
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complex substrates, including 3v–3z, which are derived from pharmaceutically relevant isatin, 

estrone, ibuprofen, tufnil, and probenecid. 

 

Figure 2. Iodide-catalyzed olefin aziridination. Condition a, 1 (1.0 equiv), 2 (1.0 equiv), PhIO (1.0 equiv), TBAI (5 
mol%); condition b,  1 (1.0 equiv), 2 (1.6 equiv), PhIO (1.6 equiv), TBAI (20 mol%). 
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coupling of N-pyridinium aziridine electrophiles with appropriate organometallic nucleophiles 

(i.e., Grignard reagents, organolithiums, organostannanes, and boronic acids). We identified that 

treatment of N-pyridinium aziridine 3a with tolyl boroxine and NiCl2(dme) in MeCN afforded N-

arylaziridine 5b in 36% yield. The coupling efficiency is extremely sensitive to the Ni(II) counter 

anion: Under identical conditions, NiCl2 provided 5b in 36% yield while NiBr2 afforded 5b in 60% 

yield. Ni(OAc)2, Ni(acac)2 and NiSO4 salts were completely ineffective. Optimization of the cross-

coupling reaction (see Supporting Information Section C.2 for details) ultimately identified the use 

of NiBr2(phen) as catalyst in the presence of K3PO4 and 2,4,6-collidine provided N-tolylaziridine 

5b in 79% yield (Figure 3). The catalyst loading could be reduced to 10 mol% without significant 

loss of yield, but further reduction to 5 mol% resulted in substantial reduction in reaction 

efficiency. 
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Figure 3. Ni-catalyzed cross-coupling of N-pyridinium aziridines with aryl boronic acids provides access to N-
arylaziridines, which are the products of formal transfer of aryl nitrenes to olefins. aFor these substrates, K2CO3 was 
used in place of K3PO4. Yields reported are based on isolated products (based on 1H NMR integration). 
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(5m–5s). The developed aziridination reaction was also compatible with both complex boronic 

acids, such as those derived from thioflavin T (5t), indomethacin (5u), loratadine (5v), and 

chloropyramine (5w), and with complex pyridinium aziridine partners, such as those derived from 

estrone (5x–5y), probenecid (5z), and ibuprofen (5aa–5ab). Finally, fragment coupling reactions 

in which both complex boronic acids and complex pyridinium aziridine partners could be directly 

linked via an aziridine ring were efficient (5ac–5ad). 

In addition to direct C–N coupling with boronic acids, the developed N-pyridinium aziridines 

participate in ring-opening chemistry to access 1,2-difunctionalization products (Figure 4). 

Exposure of N-pyridinium aziridine 3a to halide sources (i.e. [TBA]Br, [TBA]Cl, or pyridine×HF) 

or H2O in the presence of BF3·OEt2 resulted in opening of the aziridine to afford haloamine 

derivatives 6a–6c or hydroxyamine 6d. Attempts to isolate 6a and 6b resulted in low isolated 

yields due to aziridine reclosure to N-pyridinium aziridine 3a (vide infra). A variety of other 

oxygen-, nitrogen-, and sulfur-based nucleophiles participate in aziridine opening to afford isolable 

aminopyridinium derivatives 6e–6j. These ring-opened compounds could be isolated as 

analytically pure materials and participate in efficient Ni-catalyzed cross coupling to generate 1,2-

aminofunctionalized compounds 7e–7j (the products of p-tolylboronic acid coupling), 

respectively. The ring-opened product 6g also participated in cross coupling with more complex 

boronic acids, as highlighted by the synthesis of 7k and 7l, which are derived from cross-coupling 

of ring-opened compounds with the boronic acid derived from indomethacin. 
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Figure 4. Nucleophilic opening of aziridine 3a provides access to 1,2-aminofunctionalization products 6. Ni-catalyzed 
cross-coupling of these ring-opened compounds provides opportunities to elaborate the resulting acyclic N-
aminopyridinium derivatives to generate anilines 7. *Yields determined by 1H NMR due to instability of these 
compounds towards intramolecular elimination. 
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bromide is reversible. This observation suggested the possibility that aziridine opening, followed 

by cross-coupling of an open-chain aminopyridinium intermediates, and finally aziridine reclosure 

may be operative (Figure 5a). Consistent with this hypothesis, treatment of aziridine 3a with 

NiBr2(dme) (with or without added phenanthroline) results in the observation of ring-opened 

compound 6a by 1H NMR (Figure 5b).22  Further, exposure of a sample of compound 6a to 

Ni(OTf)2 or Ni(BF4)2 and p-ethoxylcarbonylphenylboronic acid results in the formation of N-

arylaziridine 5j, which demonstrates the viability of cross-coupling and aziridine reclosure (Figure 

5c). The mechanistic scheme based on transient generation of open-chain intermediates 

rationalizes the particular activity of NiBr2 as catalyst: NiBr2 participates in efficient ring-opening 

chemistry and is an efficient catalyst for C–N coupling; Ni(OAc)2 does not promote ring opening 

and is ineffective in C–N coupling.   

 

  

Figure 5. (a) Reversible halide-promoted aziridine opening, cross coupling, and aziridine reclosure are proposed to 
mediate C–N cross coupling of N-pyridinium aziridines. Consistent with this mechanism (b) NiBr2 reacts with N-
pyridinium aziridine 3a to generate ring-opened 6a and (c) exposure of ring-opened 6a to Ni(OTf)2 or Ni(BF4)2 affords 
arylated aziridine 5j. *Yields determined by 1H NMR spectroscopy.  
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In summary, we report a strategy for the synthesis of N-aryl aziridines, which are the formal 

products of aryl nitrene addition to olefins. This method overcomes the inherent instability of free 

nitrene fragments by harnessing N-pyridinium aziridine intermediates that participate in Ni-

catalyzed C–N cross-coupling. By decoupling the aziridination from installation of the N-

substituent, this strategy overcomes the common requirement for difficult-to-remove N-

substituents in aziridination chemistry. The observed C–N cross-coupling chemistry contrasts the 

typical reactivity pattern of N-sulfonylaziridine cross-coupling, which typically participate in ring-

opening C–N activation, by taking advantage of a unique reversible ring opening / reclosure 

mechanism. These studies not only provide strategies to access products of formal nitrene transfer 

to olefins but significantly expand the synthetic scope of nitrene transfer by demonstrating N-

aminopyridinium to be a bifunctional amination reagent. 
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