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Computer-assisted design of small molecules has experienced a resurgence in academic and indus-
trial interest due to the widespread use of data-driven techniques such as deep generative models.
While the ability to generate molecules that fulfill required chemical properties is encouraging, the
use of deep learning models requires significant, if not prohibitive, amounts of data and computa-
tional power. At the same time, open-sourcing of more traditional techniques such as graph-based
genetic algorithms for molecular optimisation [Jensen, Chem. Sci., 2019, 12, 3567-3572] has shown
that simple and training-free algorithms can be efficient and robust alternatives. Further research
alleviated the common genetic algorithm issue of evolutionary stagnation by enforcing molecular
diversity during optimisation [Van den Abeele, Chem. Sci., 2020, 42, 11485-11491]. The crucial
lesson distilled from the simultaneous development of deep generative models and advanced genetic
algorithms has been the importance of chemical space exploration [Aspuru-Guzik, Chem. Sci., 2021,
12, 7079-7090]. For single-objective optimisation problems, chemical space exploration had to be
discovered as a usable resource but in multi-objective optimisation problems, an exploration of trade-
offs between conflicting objectives is inherently present. In this paper we provide state-of-the-art
and open-source implementations of two generations of graph-based non-dominated sorting genetic
algorithms (NSGA-II, NSGA-III) for molecular multi-objective optimisation. In addition, we provide
the results of a series of benchmarks for the inverse design of small molecule drugs for both the
NSGA-II and NSGA-III algorithms.

1 Introduction
Machine learning has recently assumed a prominent role1 in
chemistry: predicting ADMET properties2, supporting molecu-
lar dynamics simulations3, and assisting in the design of small
molecules without reverting to explicit rules or expert knowledge
4–12. However, training-free optimisation algorithms that compre-
hensively traverse and explore chemical space have been shown
to be more efficient13,14 than their machine learning counterparts
in discovering high-performing de novo molecules. Sometimes
this search in chemical space reduces to an optimisation for a sin-
gle property like melting point15 or protein binding affinity16, but
often there are additional requirements that make it necessary to
optimise for additional properties such as low toxicity17 or high
synthesizability18. In the case that multi-objective optimisation is
necessary, a trade-off between different (and possibly competing)
optimisation objectives has to be defined.

In current molecular generative model benchmarks13, typically
either the median or the geometric mean of the objective is cho-
sen as a stand-in aggregate fitness function. However, many fields
of science and engineering make use of an alternative and ar-
guably more sophisticated approach to multi-objective optimisa-
tion by searching for a set of so-called Pareto optimal solutions19.
All solutions in a Pareto optimal set are characterised by the fact
that there are no other individual solutions that have a higher
(or equal) fitness in all objective functions. Together, the set of
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Pareto optimal solutions form an optimal envelope in objective
space known as the Pareto front, see Figure 1. Over the past two
decades, a family of algorithms known as the non-dominated sort-
ing genetic algorithms20 (NSGA) have been developed for find-
ing Pareto fronts. In this paper, we provide the community with
state-of-the-art and open-source implementations of the NSGA-
II and NSGA-III algorithms21–23 based on a popular graph-based
genetic algorithm24 (GB-GA) for molecular optimisation.
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Fig. 1 Visualistion of a Pareto front (dark blue) and dominated solu-
tions (light blue). Example molecules shown at the Pareto front were
generated by NSGA-II for Tanimoto similarities with regard to lysergic
acid diethylamide (objective 1) and psilocybin (objective 2).
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A newer generation of NSGA algorithm, NSGA-III, which uses
a more complex means of ensuring coverage of the entire Pareto
front, was originally reported to be an improvement over NSGA-
II. However, later analyses25,26 have shown that for a wide range
of computational experiments NSGA-III does not consistently out-
perform NSGA-II in every use-case. Therefor we compare the
performance of NSGA-III and NSGA-II on a set of small molecule
multi-objective optimisation benchmarks, making use of the dom-
inated hypervolume as a novel measure of the effectiveness in
these type of problems. As a baseline, we make use of a state-
of-the-art single-objective optimisation algorithm that employs
the geometric mean as a surrogate aggregate fitness function.
Whereas proprietary applications of NSGA-II to molecular design
have been reported27,28, there is a lack of open-source imple-
mentations of both NSGA-II and NSGA-III for the inverse design
of small molecules. We anticipate that our results and the avail-
ability of the code will encourage the development of more pow-
erful Pareto optimisation algorithms for chemistry as well as their
widespread adoption in computer-assisted chemical design.

2 Algorithmic Methodology
NSGA-II and NSGA-III are genetic algorithms tailored to finding
Pareto fronts. In this section, we introduce the fundamentals of
genetic algorithms in the context of small molecule design and
discuss the importance of balancing quality with diversity. We
then describe the general framework of non-dominated sorting
genetic algorithms and elaborate upon the NSGA-II and NSGA-III
algorithms and their differences. In the remainder of the section,
we discuss technical aspects such as structural alert based chem-
ical filters, memoisation, the construction of reference directions
(only used in NSGA-III), positional analogue scanning, and paral-
lelism.

2.1 Genetic Algorithms

A genetic algorithm is, as the name suggests, a heuristic search
method29 inspired by the process of natural evolution. Genetic
algorithms30,31 can achieve highly effective single-objective opti-
misation by consistently and incrementally improving a selection
of trial solutions. The current set of the solutions used by the
algorithm is known as the (evolutionary) population. In each it-
eration of the algorithm – known as a generation – novel solutions
are generated by stochastically changing or combining the current
solutions. In the genetic algorithm community, these two opera-
tions for generating new solutions are known as mutations and
crossovers, respectively. At the end of each generation, the popu-
lation is reduced to its original size by selecting only the highest
performing molecules for survival. Eventually, the selection pres-
sure in this procedure forces the population of solutions towards
an optimum.

For small molecule optimisation, these ideas can be imple-
mented by representing solutions (i.e. molecules) by either their
molecular graphs, or by text representation such as the simplified
molecular-input line-entry system32 (SMILES) or self-referencing
embedded strings33 (SELFIES). The graph representation has
been used in the graph-based genetic algorithm (GB-GA) which

was shown to outperform machine learning approaches24. In Fig-
ure 2, we show examples of mutations and crossovers on molecu-
lar graphs. To rule out graphs that represent impossible chemical
configurations, only those that can be correctly translated to and
from SMILES are retained. The initial population of candidate
molecules is typically obtained from public databases like ZINC34

or ChEMBL35.

Fig. 2 Examples of mutations (left) and a crossover (right) as generated
by GB-EPI. Note that minor changes to chemical structure can be used
to efficiently achieve optimisation even for challenging objectives.

2.2 Quality-Diversity Algorithms

Unfortunately, genetic algorithms are known to be vulnerable
to evolutionary stagnation when encountering low-performing
valleys or local optima36. Enforcing diversity37 in the popula-
tion of molecules a genetic algorithm uses can alleviate these
issues. Quality-diversity algorithms38, such as the graph-based
elite patch illumination algorithm39 (GB-EPI), obtain this diver-
sity by splitting the population into niches based on their physic-
ochemical properties. In each generation, the best performing
molecule in each of the individual niches is retained, rather than
selecting the highest-scoring solutions regardless of their diver-
sity.

Alternatively, the superfast traversal, optimisation, novelty, ex-
ploration and discovery algorithm40 (STONED) leverages molec-
ular diversity through the use of SELFIES. In contrast to the more
traditionally used SMILES, SELFIES can be mutated arbitrarily
at any position in the string to produce new strings that repre-
sent valid molecular structures. The STONED algorithm uses this
property of SELFIES to preserve diversity in its population. By
varying the position of modification within the string, the algo-
rithm balances exploration and exploitation to avoid stagnation
in low-performing valleys or local optima.

2.3 Non-dominated Sorting Genetic Algorithms

In contrast to single-objective optimisation problems, in which
diversity had to be discovered as a usable resource, diversity is
inherently present in multi-objective optimisation problems. The
presence of diversity is most obvious when considering a Pareto
front, in which solutions to multi-objective optimisation problems
must involve trade-offs to satisfy the conflicting demands of dif-
ferent objective functions. Several algorithms with different prop-
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erties and varying levels of complexity have been proposed for
finding Pareto optimal fronts. The main class of algorithms used
for this task are the non-dominated sorting genetic algorithms,
NSGA-II and NSGA-III.

Algorithm: Non-dominated Sorting Genetic Algorithms
Input: N – number of generations, M0 – initial population
for i = 0→ N do

Fi← fitnesses(Mi);
M ′←mutation(Mi) + crossover(Mi);
F ′← fitnesses(M ′);
fronts← sorting(M ′+Mi, F ′+Fi);
for front in fronts do

if splitting_front(front) then
Mi+1 ← splitting_procedure(front);

else
Mi+1 ← front;

end
end
Result: MN – molecules, FN – fitnesses

Fig. 3 Pseudocode description of a generic non-dominated sorting ge-
netic algorithm adapted to the setting of molecular optimisation.

Non-dominated sorting genetic algorithms20 are, in essence,
genetic algorithms that evaluate and select on the Pareto domi-
nating status of each solution in the evolutionary population as
shown in Figure 3. Instead of selecting molecules based on a fit-
ness function, these algorithms sort all solutions into a series of
fronts, each front dominated by the previous fronts. The first front
is the set of completely non-dominated individuals in the current
population, the second front is the set of individuals dominated
only by the individuals in the first front, and so on for all other
fronts formed by the remaining individuals in the population. The
algorithm accepts the fronts, with all of its individuals, into the
evolutionary population in ascending order, until the maximum
size of the evolutionary population has been reached.

The final front accepted by a non-dominated sorting genetic
algorithm might, and often will, contain more individuals than
can be added to the surviving evolutionary population without
exceeding its size limit. This set of individuals is known in the
multi-objective optimisation community as the splitting front20.
Because there is no difference between the individuals in the split-
ting front in terms of Pareto dominance, further criteria are used
to select which individuals are retained and which are discarded.
In the splitting front selection procedure for non-dominated sort-
ing genetic algorithms, this criteria is typically a measure of diver-
sity. The NSGA-II and NSGA-III algorithms both rely on a diversity
criteria, but differ significantly in how they enforce this diversity,
see Figure 4.

2.4 NSGA-II
NSGA-II21 makes use of a crowding distance to differentiate
within the splitting front. The crowding distance is calculated for
each individual, and indicates how closely the individual is sur-
rounded by the other members of the splitting front. For NSGA-II,
the crowding distance used is the Manhattan distance41 in objec-

tive space. A larger crowding distance indicates a less crowded
individual. Within a splitting front, NSGA-II orders all individ-
uals by their crowding distances, and subsequently accepts the
molecules with the largest crowding distance into the evolution-
ary population until the maximum size is reached. The outer so-
lutions in the splitting front are assigned an infinite crowding dis-
tance to ensure that they are retained in each generation.

2.5 NSGA-III

In contrast to NSGA-II, the NSGA-III algorithm22,23, uses refer-
ence directions42,43 instead of a crowding distance to enforce
diversity in the selection of solutions within the splitting front.
Reference directions are determined by a predefined set of points
on the unit simplex in fitness space. Each reference direction is
defined as a ray originating from the origin and passing through
exactly one of these points. NSGA-III assigns a reference direction
to each solution in the population based on the nearest perpendic-
ular distance (in normalised fitness space) to the corresponding
direction. In the splitting front selection procedure, the NSGA-
III algorithm prioritises reference directions that are underrepre-
sented in the current surviving evolutionary population.

If a reference direction does not have any solution assigned to
it after reaching the splitting front, then the molecule in the split-
ting front with the smallest perpendicular distance to this direc-
tion is selected for survival. If all underrepresented reference di-
rections have been assigned one surviving solution, and the max-
imum size of the surviving population has not been reached, the
remaining solutions are selected by a stochastic procedure. Note
that NSGA-III selects the solutions in the fronts before the split-
ting front in its entirety, like in NSGA-II. However, contrary to
NSGA-II’s crowding distance which is calculated within the split-
ting front, the reference directions used in NSGA-III take into ac-
count the diversity of the entire surviving population.

2.6 Reference Directions

The reference directions determine the diversity in the selection
of solutions from the splitting front, so these directions are typ-
ically chosen to be well distributed over the unit simplex. Tra-
ditionally the reference direction generation method of Das and
Dennis has been used for NSGA-III. Unfortunately, due to the
highly structured (combinatorial) nature of the Das-Dennis ref-
erence direction generating procedure42, the method cannot pro-
duce an arbitrary number of directions. In addition, it has been
shown that most of the reference directions generated by the Das-
Dennis method cross through the boundaries of the unit simplex
rather than the interior44, inducing a bias in the selection of so-
lutions from the splitting front.

To alleviate the issues of the Das-Dennis method, an energy-
based approach has recently been proposed43 in the multi-
objective optimisation literature. Inspired by methods in physics,
a generalisation of the potential energy called the Riesz s-energy45

is calculated for a given number of reference points on the unit
simplex. The Riesz s-energy Us is defined between two points
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(c) NSGA-III

Fig. 4 Visualisation of the splitting front procedure of non-dominated sorting genetic algorithms: (a) The Pareto dominant front is shown in dark
blue, the splitting front is light blue, and the remaining solutions are white. For this example, the second front is chosen as the splitting front, and it
is assumed that five more solutions need to be picked to complete the population. These solutions will be indicated with a dark blue circumference.
(b) The selection procedure of NSGA-II calculates a distance in objective space to the nearest neighbours in the front. The outermost solutions are
picked by default, the remaining solutions are chosen according to the furthest distance from neighbours. (c) The selection procedure of NSGA-III
calculates the orthogonal distance to predefined reference directions in objective space and selects the closest solution for each axis. Note that the
two objective axes are also used as reference directions so that the outermost solutions are picked by default.

p1, p2 in s-dimensional Euclidean space as,

Us(p1, p2) =
1

‖p1− p2‖s . (1)

The location of the points along of the unit simplex are then op-
timised to minimise the combined Riesz s-energy of all the refer-
ence points. This allows for the construction of an arbitrary num-
ber of well-spaced reference directions. The results in this paper
were obtained using the Riesz s-energy method to generate the
reference directions for NSGA-III, with s equal to the square root
of the number of objective functions as suggested in the original
paper43.

2.7 Shared Technical Properties

We follow the example of GB-EPI39 and include a series of mi-
nor but important technical features to our NSGA-II and NSGA-III
implementations, focused on improved chemical optimisation or
higher relevance and better quality of the generated molecules.
For instance, our NSGA-II and NSGA-III implementations make
use of decoupled crossovers and mutations. As shown in GB-EPI,
early on in an evolutionary algorithm, crossovers support the ef-
ficient exploration of chemical space, while later on local muta-
tions are beneficial in improving the nearly-converged solutions.
Therefore it is beneficial to apply both operators separately rather
than in sequence.

Similarly, we follow the example of GB-EPI to apply the com-
putational equivalent of in vitro positional analogue scanning46

by repurposing the mutation operator to systematically return not
just a single mutation of a molecule, but all of its positional ana-
logues. To offset the the computational overhead introduced by
positional analogue scanning and to improve efficiency in gen-
eral, we store a record of obtained fitness calculations. This ap-
proach is known as memoisation47 and ensures that an algorithm

does not unnecessarily repeat calculations. To further reduce
clock time, we also implemented concurrency for the objective
function evaluations and remove undesirable compounds based
on structural ADMET filters48–50 before they enter the evaluation
step of the algorithm.

3 Benchmarks

To the test the potency of our open-source implementations of
NSGA-II and NSGA-III for multi-objective optimisation in drug de-
sign, we extend the use of tasks devised in the GuacaMol bench-
marking suite13 by the bioinformatics company BenevolentAI.
From the suite we selected multi-parameter optimisation (MPO)
tasks with three or more objectives that aim to fine-tune the struc-
tural or physicochemical properties of five FDA-approved drugs:
Cobimetinib (a mitogen-activated kinase inhibitor), Fexofenadine
(a second-generation antihistamine), Osimertinib (a Tyrosine ki-
nase inhibitor), Perindopril (a long acting ACE inhibitor), and Ra-
nolazine (an anti-anginal drug). We search for a set of molecules
that span the entirety of the Pareto front instead of trying to opti-
mise a single value like the geometric mean.

The objectives in these benchmarks, as shown in Table 2, are
either similarity metrics that measure the distance to the corre-
sponding drug molecule, or specific properties such as the amount
of rotatable bonds in a molecule, the topological polar surface
area52 (TPSA) or the lipophilicity partition coefficient53 (log(P)).
The similarity metrics are calculated using the Tanimoto similar-
ity54,55, of the fingerprints of the target and the generated can-
didate molecule. The fingerprints used here are either extended-
connectivity fingerprints56,57 (ECFP/FCFP) which encode molec-
ular structures in terms of concentric atomic neighbourhoods, or
atom-pair fingerprints58 (AP) which encode molecules based on
their atom pairs and their bond distance. The main advantage of
fingerprint-based similarities compared to more involved similar-
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Table 1 Overview of the multi-objective optimisation benchmarks adapted from the Guacamol suite. The upper row of each task represents the values
calculated for each objective. The lower rows show the modifiers applied to each of these values. The fingerprints used to calculate the similarities are
denoted as arguments of the Tanimoto function, the parameters used for the modifiers are displayed as arguments of the corresponding functions. The
CNS function calculates the central nervous system desirability score (high blood-brain-barrier permeability and low toxicity potential) as proposed by
Pfizer51.

Task \ Objective I II III IV V
Cobimetinib

Tanimoto(FCFP4) Tanimoto(ECFP6) Rotatable Bonds Aromatic Rings CNS(0.5)
Clipped(0.7) MinGaussian(0.75, 0.1) MinGaussian(3.0, 1.0) MaxGaussian(3.0, 1.0) -

Fexofenadine
Tanimoto(AP) TPSA log(P) - -
Clipped(0.8) MaxGaussian(90.0, 10.0) MinGaussian(4.0, 1.0) - -

Osimertinib
Tanimoto(FCFP4) Tanimoto(ECFP6) TPSA log(P) -
Clipped(0.8) MinGaussian(0.85, 0.1) MaxGaussian(95.0, 20.0) MinGaussian(1.0, 1.0) -

Pioglitazone
Tanimoto(ECFP4) Molecular Weight Rotatable Bonds - -
Gaussian(0.0, 0.1) Gaussian(356, 10) Gaussian(2.0, 0.5) - -

Ranolazine
Tanimoto(AP) log(P) TPSA Fluorine Count -
Clipped(0.7) MaxGaussian(7.0, 1.0) MaxGaussian(95.0, 20.0) Gaussian(1.0, 1.0) -

ity measures is that they can be rapidly calculated and inherently
represent the presence or absence of molecular substructures or
atom pairs.

The raw scores obtained from similarity or property mea-
surements are post-processed by modifier functions that map
the scores to the [0, 1] interval and allow the objective to
be fine-tuned. The modifier functions used in this paper are
Clipped(value), Gaussian(mean, variance), MinGaussian(mean,
variance), and MaxGaussian(mean, variance). The Clipped mod-
ifier is a thresholded modifier in which values above a given
threshold are mapped to one, while values below threshold de-
crease linearly to zero. The Gaussian modifiers target a specific
value, returning high scores when the underlying value is near the
target. The Min and Max versions of this modifier map the input
value to one if it is lower or higher than the target value, respec-
tively. For example, in the Fexofenadine benchmark a molecule
with a Tanimoto similarity higher than 0.8, a TPSA above 90.0
and a log(P) below 4.0 would score perfectly on each objective.
More information on the modifiers can be found in the supple-
mentary information accompanying the Guacamol paper13.

3.1 Dominated Hypervolume

In multi-objective problems, tracking the evolution of an algo-
rithm or measuring the quality of a Pareto front with respect to a
single parameter can be challenging. In previous benchmarking
efforts for optimisation algorithms of small molecules, the geo-
metric mean of the objectives has traditionally been used as both
an aggregate objective and as a metric. From a technical point
of view, the geometric mean is the exponential of the arithmetic
mean of the log-transformed set of objective scores. As a conse-
quence, the geometric mean for strictly positive values is sensi-
tive to severe underperformance in any single objective, making
it a relevant measure for many multi-objective optimisation prob-
lems. However, other indicators of the quality of Pareto fronts

have been developed by the multi-objective optimisation commu-
nity. One such metric is the dominated hypervolume59, which we
introduce to the domain of chemical optimisation as an alterna-
tive measure for multi-objective optimisation benchmarks.

The dominated hypervolume (also known as Lebesgue mea-
sure60 or S-metric61) maps a set of points in objective space to
the size of of the region Pareto dominated by that set. The hy-
pervolume has to be bounded from below by a reference point,
which for the purposes of this paper will systematically be cho-
sen to be the origin of objective space. The dominated hyper-
volume simultaneously takes into account the proximity of the
points to the ideal Pareto front and their spread over the ob-
jective space. For problems with less than five objectives, the
dominated hypervolume can be calculated exactly. However, for
higher-dimensional multi-objective optimisation problems, calcu-
lating the dominated hypervolume precisely can be computation-
ally expensive and hence a smorgasbord of efficient approxima-
tion methods62,63 for the dominated hypervolume has been de-
veloped.

3.2 Internal Similarity

In comparing the performance of the different algorithms dis-
cussed in this paper, it is useful to differentiate whether algo-
rithms encourage a significantly different amount of chemical
diversity in their evolutionary populations. In cheminformatics,
similarity between two molecules is usually quantified based on
metrics applied to binary fingerprints that featurise chemical sub-
structures. To calculate the diversity of molecules, the pairwise
similarity of each combination of molecules in a set has been
traditionally calculated using a binary similarity index, like the
Tanimoto similarity54,55, and summarised in an aggregate met-
ric. However, the recent development of extended similarity met-
rics64,65 enables the simultaneous and straightforward compari-
son of an arbitrary number of bitvectors such as molecular finger-

Journal Name, [year], [vol.],1–9 | 5



0 20 40 60 80 100 120 140
generation

0.4

0.5

0.6

0.7

0.8

0.9

do
m

in
at

ed
 h

yp
er

vo
lu

m
e

Algorithm
NSGA3
NSGA2
GB-EPI

(a) Cobimetinib - Dominated Hypervolume

0 20 40 60 80 100 120 140
generation

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

m
ax

 g
eo

m
et

ric
 m

ea
n

Algorithm
NSGA3
NSGA2
GB-EPI

(b) Cobimetinib - Geometric Mean

0 20 40 60 80 100 120 140
generation

0.502

0.504

0.506

0.508

0.510

0.512

0.514

in
te

rn
al

 si
m

ila
rit

y

Algorithm
NSGA3
NSGA2
GB-EPI

(c) Cobimetinib - Internal Similarity
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(d) Fexofenadine - Dominated Hypervolume
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(f) Fexofenadine - Internal Similarity

Fig. 5 Timeseries plots with variance bands of the dominated hypervolume, the maximum geometric mean, and internal similarity for the Cobimetinib
(a,b,c) and Fexofenadine (d,e,f) tasks as a function of generations of the evolutionary populations. The mean value (solid line) and the 95% confidence
interval (variance bands) over twenty runs of NSGA-II (orange), NSGA-III (blue), and GB-EPI (green, optimising the geometric mean) are shown.
Details of the experimental setup for these results, including hyperparameters, initial population and chemical filters are discussed in subsection 4.

prints.
In this paper we make use of extended similarity indices to

calculate and track the internal similarity of evolutionary popu-
lations. Extended similarity metrics, which compare a stack of
bitvectors, have the advantage64 that they do not require the full
similarity matrix of the compound pool or aggregate metric. In
addition to being more efficient, extended similarity metrics re-
duce to the traditional binary similarity metrics if applied to a
set of two molecules. According to computational experiments,
two newly proposed extended similarity metrics65 are highly ad-
vantageous compared to the extended Tanimoto similarity: the
extended Baroni-Urbani-Buser similarity index and the extended
Faith similarity index. Throughout this paper will make use of the
extended Faith similarity index.

4 Results
To increase the real-life relevance of the benchmarks used here,
we run each algorithm 20 times for 150 generations per bench-
mark. We also reject molecules that either trigger the structural
alerts from GSK66, or those that contain ring allenes, macrocy-
cles, an abundance of hologenicity (#F > 6, #Br > 3, #Cl > 3),
rotatable bonds (>10) or hydrogen acceptors/donors (>10). In
addition, the initial populations used in this paper consist of a
hundred molecules randomly sampled from the Guacamol13 sub-
set of ChEMBL35. All these molecules are neutral, do not contain
salts and have Tanimoto similarities below 0.323 to any of ten
FDA approved drugs (Celecoxib, Aripiprazole, Cobimetinib, Os-
imertinib, Troglitazone, Ranolazine, Thiothixene, Albuterol, Fex-

ofenadine, Mestranol). In contrast, other datasets like ZINC34

or QM967,68 contain virtual molecules that are likely to be syn-
thesizable but have not yet been seen in the lab. In addi-
tion these datasets are often biased and contain predominantly
smaller molecules.

Based on previous work comparing single objective optimisa-
tion methods, we choose GB-EPI (with geometric mean as sur-
rogate fitness function) as a representative baseline to compare
against NSGA-II and NSGA-III. For GB-EPI, we choose four medic-
inally relevant features of interest to span the archive: molecular
weight (ranged from 140 to 555), log(P) (0.0 to 7.0), TPSA (0
to 140), and molar refractivity (40 to 130). For fair comparison,
molecules exceeding these ranges are excluded from the evolu-
tionary populations of NSGA-II and NSGA-III during the bench-
marks. Based on previous experience with GB-EPI, the archive
size for was set to 150 and the batch size to 20. For NSGA-II, we
used a population size of 100 (corresponding to the initial pop-
ulation) and a batch size of 20. For NSGA-III, we used the same
batch size but experimentation guided us towards a smaller to-
tal evolutionary population: we settled on the use 25 reference
directions, and a population size of 35 molecules.

In Figure 5 the evolution of the dominated hypervolume, max-
imum geometric mean and internal similarity of the NSGA-II,
NSGA-III, and GB-EPI algorithms is shown for two representa-
tive benchmarks (Cobimentib and Fexofenadine). Throughout
the computational experiments GB-EPI, which optimises directly
for the geometric mean, is used as a baseline comparison method.
For both benchmarks, NSGA-II and NSGA-III successfully out-
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Table 2 The dominated hypervolume, maximum geometric mean, internal similarity, and cumulative fitness calls after 150 generations, for five
multi-objective optimisation tasks averaged over 20 runs of the GB-EPI, NSGA-II, and NSGA-III algorithms. Details of the experimental setup for
these results, including hyperparameters, construction of the initial population, and chemical filters are discussed in subsection 4. Mean average values
for each of the measures are given with standard deviations.

Algorithm Task Dominated Hypervolume Geometric Mean Internal Similarity Fitness Calls (Cumulative)
GB-EPI

Cobimetinib 0.77±0.05 0.93±0.01 0.50±0.00 13577±1224
Fexofenadine 0.67±0.07 0.87±0.03 0.50±0.00 17985±1398
Osimertinib 0.54±0.04 0.85±0.01 0.50±0.00 12982±1351
Pioglitazone 0.98±0.04 0.99±0.01 0.50±0.00 13160±3104
Ranolazine 0.46±0.04 0.81±0.02 0.50±0.00 16859±1537

NSGA-II
Cobimetinib 0.94±0.02 0.94±0.01 0.51±0.00 17784±1753
Fexofenadine 0.78±0.10 0.92±0.04 0.52±0.00 20268±2909
Osimertinib 0.66±0.03 0.89±0.01 0.52±0.00 16848±2655
Pioglitazone 1.00±0.00 1.00±0.00 0.51±0.00 19944±4765
Ranolazine 0.68±0.06 0.87±0.02 0.51±0.00 21259±2181

NSGA-III
Cobimetinib 0.92±0.03 0.93±0.02 0.51±0.00 14224±1807
Fexofenadine 0.79±0.00 0.91±0.03 0.52±0.01 12950±2326
Osimertinib 0.66±0.03 0.89±0.01 0.52±0.00 11052±2337
Pioglitazone 1.00±0.00 1.00±0.00 0.51±0.01 10639±2736
Ranolazine 0.63±0.06 0.85±0.02 0.51±0.00 17949±2732

compete the GB-EPI baseline in terms of dominated hypervolume.
The geometric mean follows trends similar to the dominated hy-
pervolume in the benchmarks. However, the values of the max-
imal geometric mean lie close to each other and the 95% con-
fidence interval of GB-EPI overlaps with NSGA-II and NSGA-III
during the latter stages of the Cobimentib task.

An overview of the results for the multi-objective benchmarks
is shown in Table 2 in terms of averages and standard deviations.
NSGA-II and NSGA-III perform better than the baseline on each
of the benchmarks for both dominated hypervolume and max-
imum geometric mean. For the Fexofenadine and Pioglitazone
benchmarks, GB-EPI lies within one standard deviation of either
NSGA-II or NSGA-III for both metrics. In contrast to single objec-
tive optimisation problems, where a lower internal similarity has
been regarded as beneficial, for multi-objective optimisation the
algorithms which encourage greater internal similarity are better
performing.

To study the comparative efficiency of each algorithm, we track
the cumulative number of function calls over the full 150 gener-
ations for the twenty individual runs of each algorithm. This has
the advantage that it does not interrupt the splitting front proce-
dure, as might be the case when working with a fixed and limited
function call budget. An overview of the mean and standard de-
viation of the cumulative fitness calls of each algorithm is shown
in Table 2. NSGA-III consistently outperforms NSGA-II in terms
of efficiency, and is more efficient than GB-EPI in all benchmarks
where they have similar performance for dominated hypervolume
and geometric mean.

5 Conclusion and Outlook
This paper introduces two novel open-source and graph-based
implementations of non-dominated sorting genetic algorithms,
NSGA-II and NSGA-III, for small molecule multi-objective optimi-

sation. The performance of these algorithms is compared to a sin-
gle objective quality-diversity algorithm (GB-EPI) on four metrics:
dominated hypervolume, maximal geometric mean, internal sim-
ilarity and efficiency. Previous benchmarks for generative models
of small molecules focused on the maximal geometric mean as
a sole aggregate indicator of success in multi-objective optimisa-
tion. However, the Pareto front – the collection of optimal points
in objective space – is not solely characterised by the geometric
mean of a single molecule. In this paper we show that the size
of the hypervolume dominated in objective space (with respect
to the origin) is a useful, often more discriminative, alternative
metric in generative model benchmarks.

The performance of NSGA-II and NSGA-III for graph-based op-
timisation of molecules is encouraging. Both algorithms specialise
in finding the optimal Pareto front and our benchmarks show that
this approach is superior compared to GB-EPI (which optimises
the geometric mean directly). In line with analyses of purely nu-
merical benchmarks found in the literature, NSGA-III does not
always outperform NSGA-II in our chemical benchmarks, indicat-
ing that the two algorithm produce similar results according to
this metric. Throughout all the benchmarks presented in this pa-
per however, NSGA-III seems to be the most efficient in its use of
function calls. Notably, and in contrast to single objective opti-
misation, the higher performing algorithms NSGA-II and NSGA-
III have a higher and faster increasing internal similarity in their
evolutionary populations than the baseline.

The above discussed efficiency, performance, and flexibility of
the graph-based implementations of NSGA-II and NSGA-III for
small molecule multi-objective optimisation as provided with this
paper, allows the community to use these algorithms for practi-
cal use. In addition, these implementations can be used as future
baselines and as starting points for future developments in this
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field. One such possible development would be to further reduce
the amount of function calls through the use of contextual multi-
armed bandits69, or Gaussian processes70 to prune the amount
of molecules presented to the evaluation step of the algorithms.
Finally, the algorithms presented here can be integrated into the
workflow for multi-objective tasks given to self-driving laborato-
ries71 or other set-ups making use of active learning72.
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