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Abstract

Motivation: In silico prediction of protein-ligand binding is a hot topic in computational chemistry and
machine learning-based drug discovery, as an accurate prediction model could reduce the time and
resources required to detect and identify and prioritize potential drug candidates. Proteochemometric
modelling (PCM) is a promising approach for in-silico protein-ligand binding prediction that utilises both
compound and target descriptors. However, in its original form PCM model cannot separate multiple
assays associated with the same target. Therefore, a practitioner applying PCM approach to modelling
experimental data has either to select only one assay for each target, and thus exclude potentially significant
amount of data, or pull measurements from different assays together effectively mixing possibly very
different functional dependencies between (protein, ligand) pairs and experimental measurements.
Results: We describe two modifications of PCM models that increase its flexibility allowing to separate
multiple assays associated with the same target. Evaluated on a subset of internal Bayer dose-response
data and ChEMBL, these approaches result in improved performance compared to standard PCM models.
Our results demonstrate importance of disentangling multiple assays associated with the same target when
using PCM methodology in pharmaceutical environment.
Availability: Source code is made publicly available on GitHub for non-commercial usage after publication.
Contact: anastasia.pentina@bayer.com
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Computational methods play an important role in improving efficiency of
the drug discovery process. Quantitative Structure-Activity Relationship
(QSAR) models allow estimating interactions between ligands and
biological targets without the need for performing in vitro experiments and
are therefore a promising approach to reduce time and costs of identifying
active compounds in early drug discovery.

Building a reliable QSAR model from scratch requires a significant
amount of experimental data which is problematic when working on new
targets. The multi-task approach [5] compensates for limited data available
for any individual target by modelling multiple targets jointly and thus
sharing information between them. A typical example of this approach,
which was a part of the winning solution to Merck challenge [16], is a
feed-forward neural network that takes as input a compound descriptor
and has as many outputs as there are targets being modelled. Other
examples of using multi-task learning in QSAR modelling include linear
models for drug response prediction [11], graph convolutional networks for
ADMET property modelling [17, 10] and graph-regularized support-vector
regression for kinase models [19].

Multi-task learning reduces the amount of data required per target for
building a reliable model by taking advantage of correlations between
compounds’ affinities to different proteins that are present in the data.

However, it doesn’t account for known structural similarities between
targets. Proteochemometric (PCM) approach [20, 8], on the other hand,
models compound-protein interactions directly in the ligand-target space.
By using as inputs not only descriptors of compounds, but also feature
representations of targets, it allows modelling multiple targets using a
single-output function. In addition to efficient utilisation of data for
multiple targets, PCM approach provides other advantages, such as
improved interpretability - usage of target’s features allows tracking which
of them were most important for concluding compound’s (in)activity.
Moreover, PCM models can be used to predict activity on completely
new targets for which no experimental data is available. These properties
make PCM approach an attractive modelling tool that has been applied
to different targets using various machine learning methods ranging from
random forests [4] to neural networks [15].

In practice PCM and QSAR models are built using historical
experimental data and as such merely model assays’ outcomes rather than
true compound’s activity. In many cases information about the target is
not sufficient to fully identify an assay, because, for example, employed
experimental protocols have been changing over the years, or because there
are multiple assays each addressing a different aspect of compounds-target
interaction. This forces a researcher wishing to employ PCM modelling
to select which of potentially many assays corresponding to one target to
include in the model and thus to ignore substantial amounts of knowledge
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Fig. 1. A schematic representation of proteochemometric modeling PCM/PCM-ext (left), multi-task MT (middle) and multi-task proteochemometric modeling MT-PCM (right) architectures
for predicting protein–ligand binding. The input units at the bottom receive combinations of compounds, proteins or assays embeddings, which first goes through a dedicated bottleneck
layer (CMP, PRT, ASY), then concatenated and fed into a fully connected unit. Single- or multi-task output units are shown on the top.

present in the data for the left out assays. An alternative solution is to
use all available data ignoring assays’ specifics, effectively modelling
all assays associated with one target as one. This is a viable strategy if
merged assays are only marginally different, however, in practice multiple
assays associated with one target are typically designed so that to provide
maximal information about the studied protein-ligand interaction and thus
are expected to have minimal correlations, if any.

In this work we study hybrid approaches that combine multi-task
learning and PCM modelling using fully-connected neural networks. We
demonstrate importance of being able to disentangle multiple assays
associated with the same target and propose two approaches to achieve
it. The first one is a modification of PCM model that in addition to
compound and target embeddings takes as input a one-hot-encoding of
assay identifier. The second approach is a multi-task PCM model that
utilises compound and target embeddings as inputs and has a separate
output for every modelled assay. These methods, like a PCM model,
benefit from information about structural similarities between targets.
At the same time, like a multi-task model, they have the flexibility to
simultaneously model multiple assays per target. We test these approaches
on internal Bayer data of 1364 dose-response assays and analyse under
which circumstances they are more effective than the individual parts -
MTL and PCM.

2 Data
For experimental evaluation we use a subset of internal Bayer dose-
response data and ChEMBL. We convert endpoints values to pIC50
(negative log of the IC50 concentration) and keep only those between 0

and 15. We aggregate repetitive measurements by keeping the maximum
value and the corresponding qualifier. If measurements with qualifier <
are present, only they are used for aggregation. All considered assays have
at least 100 uncensored data points. For validation purposes we cluster
compounds into 5 groups. The clusters were obtained by first computing
the MACCSkey fingerprint [9] using RDKit, and then utilizing sklearn’s
KMeans clustering implementation[18] on the MACCSkey fingerprints.
Finally, we ensure that every assay contains measurements for compounds
in each of 5 clusters. Further statistics about the dataset can be found in
Table 1.

Kim et al. [12] have shown that using unsupervised-learned
representations for both compounds and targets leads to superior
performance compared to hand-crafted features. Therefore, in this work
we also employ this approach.

We represent every compound using Continuous and Data Driven
Molecular Descriptors (CDDD) [21]. These are 512-dimensional
descriptors learned in an unsupervised way using a recurrent autoencoder
to translate between non-canonical SMILES and their canonical form.
They have been shown to be very effective in QSAR modeling, as well
as PCM modelling [21, 12], inverse molecular problems such as optical
chemical structure recognition [7] or reverse-engineering of molecular
structures [14].

For protein representation we use UniRep [3] embeddings as they
performed the best in previous work [12]. They are trained using LSTM
on predicting the next amino acid in the sequence given the previous ones.
A fixed-length embedding for a given protein is obtained by averaging
the hidden states of the model during the forward pass. Depending on the
architecture, embeddings of different dimensionality are available. In our
experiments we use the 256-dimensional version.

Table 1. Data used in this study were extracted from the ChEMBL25 database
and PubChem. The final number of compounds in each task after preprocessing
is mentioned.

Total number of data points 3,003,764
Number of uncensored data points 1,569,629
Number of assays 1,364
Number of targets 534
Number of compounds 561,495

3 Methods
All used methods are feed-forward neural networks with ELU
activations [6]. Every type of input - CDDD embedding of compounds,
UniRep embedding of proteins or assay description - first goes through
a dedicated bottleneck (see CMP, PRT, ASY in Table 2). The outputs of
the bottlenecks are concatenated and fed into a fully connected unit. A
dropout is applied after every layer with a fixed rate.

Our starting point are a proteochemometric and a multi-task learning
models. The first one, PCM, takes 3 types of inputs - CDDD embedding of
a compound, UniRep embedding of a protein and a description of an assay
- biochemical assays are encoded as (1, 0) and all the others as (0, 1).
MTL uses only CDDD embedding of compounds and has 1364 outputs,
one for each modelled assay.

The first proposed modification is PCM-ext - it is analogous to PCM,
but uses a representation of every modelled assay by a one-hot-encoding.
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Table 2. Specifications of the network architecture and hyperparameters of the
models were selected using Optuna that was run for 150 trials with median
pruner and 10 warm-up steps.

Method
Bottlenecks

Layers Dropout
Learn

CMP PRT ASY rate

PCM 1024 1024 8 4096, 4096, 16 0.3 10−4

MT 256 - - 4096, 4096, 512, 256, 256 0.2 10−4

PCM-ext 1024 1024 8 4096, 4096, 2048 0.1 10−4

MT-PCM 1024 8 - 4096, 2048, 64 0.2 10−4

The second modification - MT-PCM - is a combination of PCM and MTL in
that it utilises both compound and target embeddings (like PCM) and has as
many outputs as there are assays being modelled (like MTL). A schematic
representation of all considered models can be found in Figure 1.

All models were trained using Adam optimiser [13] for 50 epochs with
batch size of 1024. Multi-task models are based on censored squared loss
that takes into account prefixes of censored value[1] :

`(y, ŷ) =


(y − ŷ)2, if prefix is =

(y − ŷ)ReLU(y − ŷ), if prefix is >

(ŷ − y)ReLU(ŷ − y), if prefix is <

For training PCM models we used regular squared loss as it gave better
results.

All inputs and outputs, except for CDDD embedding and assay
embeddings in PCM-ext were whitened. During training, we applied
N (0, 0.05) Gaussian noise to protein embeddings and to CDDD
embeddings we applied the following transformation to preserve their
geometry:

cddd = tanh(arctanh(cddd) + ξ), ξ ∼ N (0, 0.05). (1)

Hyperparameters of the models were selected using Optuna [2] that
was run for 150 trials with median pruner and 10 warm-up steps. Widths
of compound and protein bottlenecks were sampled uniformly from the set
{22, 23, . . . , 210} and assay bottleneck width was fixed to 8. Number of
layers in the fully connected unit was selected from 1 to 6 and their widths
were sampled uniformly from {22, 23, . . . , N}, whereN is the minimum
value between the width of the previous layer and 212. This ensured a
pyramidal structure of the networks. Dropout rate was selected uniformly
from {0, 0.1, . . . , 0.5} and the learning rate from {10−5, 10−4, 10−3}.
As training data for Optuna trials we used 4 folds and the fifth was used as
the validation set. Quality of a trial was estimated usingR2 measure based
on uncensored values from the validation fold. Resulting architectures are
summarised in Table 2.

4 Results

4.1 Overall comparison

We evaluate all methods using leave-one-fold-out evaluation and only use
uncensored data for metric computation. During the training of all methods
we weight all data points equally (without any normalisation with respect
to assay/task size) and the evaluation is done in the similar manner - by
computing performance on test data as if it is all coming from one task.
Results are summarised in Table 3. Note that we used one of the clusters
for selecting hyper-parameters with Optuna. Potentially this could lead
to overfitting on that cluster 4, however Figure 2 shows that this is not
the case. Performances across all clusters are comparable and ranking of
different methods is generally stable.

Fig. 2. Spearman correlation as a function of compound cluster. Despite the fact that
cluster 4 was used to select models’ hyperparameters with Optuna, one doesn’t observe
any overfitting effects on that cluster and ranking of considered methods is stable across all
folds.

Fig. 3. Performance of PCM and MT-PCM for different protein embeddings used in
test set. "Scrambled" embeddings were obtained by randomly shuffling coordinates of
UniRep protein embeddings, while "shuffled" correspond to randomly substituting correct
embedding with embedding of another target.

Results reported in Table 3 and Figure 2 demonstrate that three methods
- MT, MT-PCM and PCM-ext - perform superior to PCM across all
considered performance measures - root mean squared error (RMSE),R2,
Spearman and Pearson correlations, as well as fraction of well-modelled
assays for which R2 > 0.5 . This shows the importance of being able to
disentangle multiple assays associated with the same target. Indeed, this
flexibility is the distinct feature of these three methods, not shared by the
standard proteochemometric approach.

Table 3. Performance measures at computed using all uncensored data from
test fold. From left to right: root mean squared error (RMSE), coefficient of
determination (R2), Spearman and Pearson correlations, as well as fraction of
well-modelled assays for which R2 > 0.5

Method RMSE R2 SpearCorr PearCorr % assays R2 > 0.5

PCM 0.665 0.632 0.768 0.816 9.9
MT 0.629 0.670 0.789 0.834 11.4
PCM-ext 0.628 0.672 0.792 0.835 12.8
MT-PCM 0.632 0.667 0.788 0.832 11.5

In contrast to MT, MT-PCM and PCM-ext models have access
to information about the structure of the targets provided by UniRep
embeddings. This allows them to use structural similarities between
proteins to model their binding behaviours. As a result, these models are
able to exploit not only correlations in compounds’ affinities to various
targets, but also the intuition that small molecules interact similarly with
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Fig. 4. Difference in PCM and PCM-ext performances as a function of difference between
pairs of assays, associated with the same target. Orange markers correspond to selected
targets analysed in details in Figure 6.

structurally similar targets. In principle, MT-PCM and PCM-ext could use
to not utilise this information, by either selecting a very narrow protein
embedding layer during the Optuna run, or by assigning negligibly low
weights to it during the final training. In our experiments this is observed
for MT-PCM approach: as reported in Table 2, Optuna run for this method
resulted in the smallest possible bottleneck for protein embeddings. We
additionally asses the role of target information on performance of all
three models - PCM, PCM-ext and MT-PCM - by evaluating them using
modified protein embeddings. Results in Figure 3 demonstrate that while
performance of all methods deteriorates when protein embeddings are
modified, MT-PCM exhibits a relatively low drop, especially for "shuffled"
modification.

Note that non of the three methods - MT, MT-PCM and PCM-ext - can
be expected to always provide superior performance compared to the other
ones, because they are based on different relatedness assumptions about
the data. MT method assumes that there exists a feature representation,
under which all targets can be modelled using a linear function and its
last layer provides such an embedding. MT-PCM, on the other hand,
assumes that there is such a beneficial embedding for (compound, target)
pairs. PCM-ext represents in fact a very similar relatedness assumption.
Consider a splimplified scenario, where instead of all bottleneck and
fully-connected layer on uses just one linear layer. Then MT-PCM would
result in independent solving of every task n with a weight vector wn =

(wcmp
n , wprt

n ) as:

(wcmp
n )T xcmp + (wprt

n )T xprt. (2)

At the same time PCM-ext would correspond to solving all tasks with the
same weight vector, but different biases:

(wcmp)T xcmp + (wprt)T xprt + (wasy)T en = (3)

(wcmp)T xcmp + (wprt)T xprt + wasy
n , (4)

where en = (0, . . . , 0, 1, 0 . . . , 0) is a vector with only one non-zero
element in position n. In this simplistic case it’s evident that PCM-ext
relies on a stronger dependence between tasks, however in non-linear case
the differences between MT-PCM and PCM-ext are more subtle.

4.2 Per assay performance comparison

The main advantage of MT, MT-PCM and PCM-ext over PCM is in that
they have access to assay identifiers and are capable of modelling multiple
assays associated with the same target. If in the data being modelled,
every target is associated with only one assay/task, this flexibility might
not bring any benefit and even hurt the performance by making the training

Fig. 5. Delta in R2 performance as a function of assay size. Every dot corresponds to
one modelled assay and only assays with standard deviation of at least 0.05 units based on
uncensored pIC50 measurements are depicted.

data more sparse. However, in the data used in this work 52% of targets are
associated with more than one assay and they account for 88% of all data
points. PCM model attempts to overcome this limitation by taking into
account assay type, however, in the dataset we consider it is not sufficient,
as 47% of (target, assay type) pairs are associated with more than one
assay. Therefore a clear boost in performance of MT, MT-PCM and PCM-
ext compared to PCM, as reported in Table 3, is predictable. At the same
time the differences in modelling quality between these three methods
are rather limited. For simplicity in our subsequent discussion of model
performances on individual assays we will be focusing on PCM-ext as it
has the best overall performance.

Intuitively, one expects PCM-ext to outperform PCM on assays which
are not uniquely identifiable by their target protein. To quantify this
intuition we selected targets which are associated with at least 2 different
assays and those assays overlap on at least 10 compounds. For each
of the resulting 25 targets we compute average R2 over two assays.
Figure 4 shows that there is a monotonous dependence (except for one
outlier) between difference in assays measured by RMSE on overlapping
compounds and benefits that PCM-ext demonstrates compared to PCM. On
the other hand, if two assays correspond to the same target and at the same
time can be well modelled using just one function, modelling them using
PCM-ext might have no benefit compared to PCM. In fact, merging data
for such assays, as de facto is done in PCM, could even be advantageous,
especially in small data regime. This intuition is supported by per-assay
performance analysis demonstrated in Figure 5: all the endpoints for which
PCM provides better predictions than PCM-ext are small in size.

For further illustration we select 4 targets that are highlighted by orange
color on Figure 4. We report differences between original measurements
for pairs of tasks corresponding to these targets, as well as predictions of
PCM and PCM-ext on overlapping compounds in Figures 6. The first one
- Target A (Figure 6) - is an example of a case in which there is no clear
dependence between measurements of two assays. Performance of PCM
demonstrates that one of the assays dominated its learning process, leaving
the second one very poorly modelled (with negativeR2). In contrast, PCM-
ext has the capacity to model both assays reasonably well. The second
example - Target B (Figure 6) - illustrates a situation in which there is
clearly a dependence between two assays, but it is not an identity. As a
result, PCM-ext results in overall better model quality compared to PCM.
The last two examples - Target C and Target D (Figure 6) - illustrate a
situation in which difference between two assays is quite small. For Target
C, PCM was able to produce reasonable predictions, at the same time
Target D is an outlier in the overall trend, for which PCM predictions are
poor for no obvious reason. We attribute superiority of PCM-ext in this
case to overall different model specifications.
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Target A

Method Assay 0 Assay 1

PCM 0.494 -0.476
PCM-ext 0.532 0.556

Target B

Method Assay 0 Assay 1

PCM 0.616 0.710
PCM-ext 0.708 0.819

Target C

Method Assay 0 Assay 1

PCM 0.606 0.717
PCM-ext 0.629 0.768

Target D

Method Assay 1 Assay 2

PCM 0.204 0.195
PCM-ext 0.585 0.580

Fig. 6. Illustration of 4 selected targets (A-D) that are highlighted by orange color on Figure 4. Every dot corresponds to one compound, representing either the true experimental pIC50
across two assays (left plots) or the pIC50 model predictions (right plots) for PCM-ext (blue) or PCM (orange). The RSME between the experimental pIC50 values of the two assays is
reported on the left plot. Tables report performance of PCM and PCM-ext on these two assays as measured by R2 on uncensored data only.

5 Conclusion
In this work we examined proteochemometric modelling on internal
Bayer data. We demonstrated that in realistic scenarios, when multiple
assays in historical experimental data might correspond to the same target,
PCM models suffer from inability to disentangle such endpoints. Our
results show that usage of more flexible models - either through multi-
task approach (like MT-PCM) or by encoding assays identifiers in the
model input (PCM-ext) - leads to superior modelling quality. Our in-
depth analysis of four exemplar targets shows that the benefits of more
flexible models are most pronounced in case readouts from multiple assays
associated with the same target have a complex dependence, if any.

In silico protein–ligand binding prediction might further be improved
by developing more powerful protein descriptors that contain binding site
information, which we believe are relevant directions for future research
in this area.
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