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Abstract  

A systematic comparison is demonstrated for the predictions of frontier orbital energies – 

HOMO (EH), LUMO (EL), and energy gap (ΔEHL) of the molecules in QM9 dataset, where it 

contains 120k-plus three-dimensional organic molecule structures determined by first-principle 

simulations. The target molecular properties (EH, EL, and ΔEHL) are predicted using the linear 

regression (LR), machine learning (random forest, RF), and continuous-filter convolutional 

neural network (SchNET) approaches. LR and RF models built upon various knowledge-based 

descriptors, being derived from SMILES of the molecules, can provide predictivity of the target 

properties with the mean-absolute-errors (MAEs) at 4-6 times of chemical accuracy (0.043 eV). 

The best approach – SchNET, using the graph representation derived from molecular Cartesian 

coordinates, is confirmed to provide MAEs of EH, EL, and ΔEHL at 0.051, 0.041, and 0.076 eV, 

respectively. With the introduction of bond-step matrix representation with SchNET model, the 

computational cost of dataset preparation can be substantially reduced, and the corresponding 

MAEs increases moderately to 2-3 times of chemical accuracy. The chemical interpretation of 

the important descriptors identified in the LR and RF models appear to align with the chemical 

knowledge of describing these molecular electronic properties, however, being accompanied 

with tolerable prediction errors. The combination of bond-step representation and SchNET 

model can provide an assessable-and-balanced option for the high-throughput screening of 

organic molecules and the preparation of data science approach.   
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Introduction   

The energy difference between the highest molecular orbital (HOMO annotated as EH) and the 

lowest unoccupied molecular orbital (LUMO annotated as EL), being abbreviated as ΔEHL, is 

commonly used to characterize the fundamental electronic properties of molecules. For instance, 

the electrical resistivity of molecules is generally considered to be directly proportional to ΔEHL. 

The size of ΔEHL could be quantitatively determined by the various experimental or theoretical 

approaches – the electrochemical oxidation/reduction potential measurements or the optimized 

wavefunctions governed by ab initio electronic structure calculations. The absolute values of EH 

and EL are derived by the explicit inter-particle interactions between electrons and atomic nuclei. 

Synthetic chemistry has a long history in developing the molecular structure diversity, leading to 

the ideal molecular electronic properties for the specific chemical applications. Understand the 

interplay between molecular structures and electronic properties plays a critical role to the pace 

of these scientific developments. Despite the quantum chemical calculation based approaches 

have been popularly adopted to investigate the insights of the molecular structure diversities, a 

computationally efficient-and-interpretable approach is the interest of chemistry community for 

addressing the unlimited possibility of molecular architectures. 

Machine learning based approaches for describing the electronic properties of molecules and 

materials have been recently approached by several pioneering reports in the literature.
1-36

 

Pereira et al. used various nonlinear regression models including neural network (NN) method to 

predict the orbital energies of 111k molecules consisted of several main group elements.
8
 

Ramakrishnan and Lilienfeld introduced a property-invariant kernel for the machine learning 

models in predicting the various electronic and thermodynamic properties, including EH, EL, and 

ΔEHL, out of 110k organic molecules.
3
 Both Coulomb matrix

1
 and bag-of-bonds

2
 descriptors, 

being in conjunction with supplying three dimensional molecular structures, were adopted to 

represent the chemical space, and the results were close to the level of chemical accuracy at 1 

kcal/mol (~0.043 eV). Huan et al. developed a class of hierarchal motif-based fingerprints to 

represent the molecular structures, and the fingerprints were classified as the zeroth- to third-

order expressions, as being described in the format of multi-dimensional vectors.
4
 The average 

predicted error of ΔEHL was reported to be about 0.2 eV.
4
 Browning et al. introduced the generic 

algorithm optimization of training set approach, in which the training set was categorized as 10 

classes subject to the targeted property, and the average predicted error was improved as 0.173, 

0.243, 0.317 eV for the energies of EH, EL, and ΔEHL, respectively.
6
 Faber et al. reported a 

comprehensive comparison using the various combination of regressor/representation/property, 

and the predicted results were shown to outperform the hybrid functional of Density Functional 

Theory (DFT) for describing the electronic ground-state properties of organic molecules in QM9 

dataset.
7
 Among their predicted 13 electronic properties, the mean absolute error (MAE) of EH, 

EL, and ΔEHL were up to 0.228, 0.373, 0.441 eV, respectively, using linear model with elastic net 

regularization (0.221/0.367/0.430 eV with linear Bayesian ridge regression model).
7
 It should be 

noted that MAE of EH, EL, and ΔEHL can be generally reduced to half in respect to the linear 
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results if the non-linear models (Kernel ridge regression or random forest) were adopted while 

the use of NN approach was shown to go well beyond the accuracy of hybrid DFT.
7
 

Gilmer et al. reported the message passing neural network (MPNN) models for the predictions of 

quantum chemistry properties.
37

 Schütt et al. introduced a deep learning model (SchNET) and 

provided the predictions of EH, EL, and ΔEHL to satisfy the level of chemical accuracy.
38

 Such an 

apparent improvement required the use of three dimensional Cartesian coordinates of molecules 

for generating atom embedding, and these atomistic coordinates were calculated at Density 

Functional Theory – a computational demanding theory level for constructing a dataset of 

thousands molecules.          

Ye et al. introduced a combinatorial quantitative structure-activity relationship (QSAR) and 

machine learning approach to predict the emission wavelength, the experimental measurable 

qualitatively equivalent to EHL, of 11,460 organic fluorescent molecules against the 

corresponding experimental measurements.
15

 The authors reported the training results of R
2
 = 

0.663 (MAE = 0.2449 eV) and R
2
 = 0.923 (MAE = 0.1253 eV) using the linear and nonlinear 

(random forest) models, respectively. The emission wavelength prediction was further refined by 

the inclusion of solvent effect with using 3000 distinct experimentally-recorded compounds.
23

 

Based upon these aforementioned studies, one can see that the nonlinear models always provide 

more accurate electronic property predictions than the linear models. However, the 

corresponding interpretation generated by these property predictions still cannot be 

straightforwardly presented in terms of the intuitive chemical terminology, and that is due to the 

complex formulation in these models. Having the pros and cons addressed in the literature, we 

aim to demonstrate a progressive comparison in terms of model complexity, accuracy of the 

predictions, and the results interpretability. Such a comparison could provide an insightful 

perspective to benefit the field of virtual molecular design.    

 

Methods 

Sample generation 

The present study totally used 132,180 molecules out of QM9 dataset,
39, 40

 and these molecules 

were randomly partitioned as 88560 and 43620 for the training and testing sets (about 2:1 ratio), 

respectively. The details of molecule selection are noted in the electronic supplementary 

information (ESI). All of the molecular structures were previously optimized at B3LYP/6-

31G(2df,p) level of theory in the vacuum. These molecules contain up to nine heavy atoms, i.e. 

carbon, oxygen, nitrogen, and fluorine. The molecular electronic structure properties – EH, EL, 

and ΔEHL, being predicted at DFT level are adopted as the target properties. The SMILES files 

and the DFT optimized Cartesian coordinates were used as the input information for the 

subsequent machine learning and deep learning NN approaches. The energetics distributions of 

EH, EL, and ΔEHL are schematically shown in Figures 1a-1c. EH appears to be a symmetric 
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distribution among these three properties while EL and ΔEHL generally contains three maximum 

peaks due to the linear relationship of ΔEHL = EL – EH. In Figure 1d, the sorted EH is plotted with 

the corresponding EL, and that distribution appears to suggest the independence between EH and 

EL.  

 

(a) (b) 

  

(c) (d) 

  
Figure 1. (a-c) EH, EL, and ΔEHL distribution of the training and testing sets. (d) The energetic 

distribution of EL in respect to the sorted EH.   

    

Descriptor Generation 

The SMILE file of each molecule is used as the input for the descriptor generation using 

PaDEL,
41

 and each molecule is described by 17,957 descriptors including 1444 1D & 2D 

descriptors, 431 3D descriptors, and 16092 fingerprints. All of these descriptors are, however, 

considered as the discrete chemical knowledge elements that have been introduced in the 

numerous early literatures. This descriptor generation scheme requires the interatomic valence-

bonding connectivity being represented by SMILES format, not requiring the 3D molecular 

structure information (3D molecular structures are typically prepared in advance by the empirical 
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potentials or assessable quantum chemistry calculations). The details for the categories of the 

descriptors are summarized in Table S1 of ESI. 

 

Mathematical Model Specification 

Each linear regression model is solved by ordinary least squares method of sklearn with the 

default convergence criteria. Each random forest model is consisted of 100 decision tress where 

each tree could grow up to 15 layers. The minimum number of samples in a leaf is set to 1, and 

the minimum number of samples in a branch is set to 2. The minimum of impurity is set to 0 for 

the stop of the branch growth. For the SchNET model, exactly same parameter setup was used as 

the original report,
38

 except the interatomic distance cutoff is set to 10Å . 

 

Results and Discussion 

Descriptor dimension reduction 

The variance threshold selection (VTS) approach is applied to remove the descriptors containing 

negligible variance σ
2
 < 0.01, and the descriptor dimension is reduced from 17957 down to 4533. 

The 4533 descriptors, being denoted as VTS ensemble, include 938 topological descriptors and 

3609 fingerprints. In order to reduce the dimension of VTS ensemble, the molecules of training 

sets were categorized into three distinct sample-subsets using mean shifted clustering method as 

shown by the color dots in the inset of Table 1. Each sample-subset was treated with the least 

absolute shrinkage and selection operator (Lasso) regression, being subject to the selection of 

target properties and the pre-determined penalty parameter, for the extraction of the target-

property-dependent representative descriptors from VTS ensemble. For a particular target 

property, these extracted descriptors from three sample-subsets were emerged together (without 

double counting the duplicated ones) and formed the final X_LasY descriptor ensembles as 

summarized in Table 1, where X = H, L, or G denoting the target property – EH, EL, or ΔEHL and 

Y denotes the value of penalty parameter (0.1 or 0.5). The penalty parameter of 0.1 resulted in 

the dimension of descriptor space with more than 1200 descriptors for all target properties, and 

the other case – 0.5 penalty could reduce VTS ensemble down to about 500 descriptors. 
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Table 1. The number of extracted descriptors by Lasso regression from each sample-subset 

(red, green, and blue) classified by mean-shift clustering. 

Subgroups H_Las01 L_Las01 G_Las01 
Colored subsets  

by mean shifted clustering 

Red 316 388 447 

 

Green 426 577 593 

Blue 741 794 894 

2
Resultant 

descriptors 
1250 1431 1559 

Subgroups H_Las05 L_Las05 G_Las05 

Red 119 150 184 

Green 139 211 223 

Blue 292 261 313 

2
Resultant 

descriptors 
477 531 625 

1
H, L, and G labels denote the target properties  – EH, EL, and ΔEHL, respectively. The Las01 

and Las05 labels denote the penalty parameter at 0.1 or 0.5 of Lasso regression. The larger 

penalty results in a smaller descriptor space. 
2
Duplicated descriptors found in the three sample-subsets were merged. 

 

Linear regression (LR) and random forest (RF) methods were applied, being with VTS and 

X_LasY descriptor ensembles, to predict EH, EL, and ΔEHL. The mean absolute errors (MAE) of 

the testing sets are summarized in Tables 2 and S2, and the corresponding training set results are 

provided in Table S3. The nonlinear RF models using X_Las05 descriptor ensembles, denoted as 

X_Las05_RF, appear to provide better MAEs in all three target properties than the corresponding 

linear models (X_Las05_LR). Current X_Las05_RF models also provide comparable 

predictivity in respect to the early RF results using extended connectivity fingerprints (ECP4) 

representation, however, demonstrated higher learning efficiency with using 88k training 

molecules (vs. 118k molecules for the ECP4_RF model).
7
 In Table 2, current linear models 

labeling as X_Las05_LR appear to be noticeably more accurate than the previous linear models 

using Elastic Net and Baysian Ridge methods coupled with ECP4 representations. ).
7
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Table 2. The mean absolute errors of testing set (in eV) for EH, EL, and ΔEHL predictions using 

the linear regression and random forests models 

Models 
This study (X_Las05)

1 
Previous study

2 

LR RF EN BR RF 

EH 0.161 (0.88) 0.141 (0.90) 0.224 0.224 0.143 

EL 0.198 (0.96) 0.151 (0.97) 0.344 0.344 0.145 

ΔEHL 0.246 (0.93) 0.177 (0.96) 0.383 0.383 0.166 
1
R2 values are reported in parentheses. The present study contains 88560 and 43610 compounds 

for the training and testing sets, respectively.  
2
The training set used ~118k compounds in reference 7. EN and BR denotes Elastic Net linear 

model and Baysian Ridge regression model, respectively. 
 

 

With lowering the penalty parameter to 0.1 during the process of descriptor extraction, one can 

generate substantially larger descriptor ensembles, being labeled as X_Las01, over X_Las05 as 

shown in Table 1. Consequently, all X_Las01_LR and X_Las01_RF models provide enhanced 

predictivity than the corresponding models using X_Las05 descriptor ensembles due to larger 

degrees of freedom in the descriptor space (see Table S2). By examining the difference between 

R
2
 and Q

2
 of the training results in Table S2, all LR and RF models using VTS, X_Las01, and 

X_Las05 ensembles can be considered statistically meaningful due to the absence of overfitting 

(|R
2 

– Q
2
| < 0.1).

42
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Figure 2. The flow charts of machine learning and deep learning approaches using QM9 

dataset  

 

Despite all LR and RF models provide reasonable predictions for EH, EL, and ΔEHL of the 

organic molecules in QM9 dataset, the conventional chemical accuracy was still not reached 

using these linear and RF approaches. The current LR and RF models can achieve 3-6 times of 

chemical accuracy in terms of MAEs of EH, EL, and ΔEHL predictions. Faber et al. demonstrated 

that combining NN models with the graph representations, being derived from the three 

dimensional (3D) Cartesian coordinates, could significantly reduce MAEs of EH, EL, and ΔEHL 

predictions down to less than 0.1 eV.
7
 In Table 3, the results reported by Schütt et al. using a 

deep learning NN model (SchNET) provided the most accurate results for the EH, EL, and ΔEHL 

predictions where MAEs of EH and EL were less than 0.043 eV, except that of ΔEHL was at 0.063 

eV. In this study, we reproduced the SchNET approach using fewer molecules for the training set 

(88k vs. the original size of 110k), and the corresponding models (annotated as Schnet-3d) can 

provide MAEs of EH, EL, and ΔEHL at 0.051, 0.041, 0.075 eV, respectively. Only minor 

deterioration was observed for the performance of these models in comparison with the original 

case.  

Table 3. The mean absolute errors of testing set (in eV) for EH, EL, and ΔEHL predictions using 

SchNET deep learning model with graph and bond-steps representations 

 This study
1
 Early studies 

Models 
Schnet GGNN

2 
GCNN

2
 MPNN

3a
 

Original 

SchNET
3b

 

3D Bond-step 3D 3D 3D 3D 
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EH 0.051 (0.99) 0.090 (0.96) 0.057 0.055 0.043 0.041 

EL 0.041 (1.00) 0.088 (0.99) 0.063 0.062 0.037 0.034 

ΔEHL 0.076 (0.99) 0.125 (0.98) 0.088 0.087 0.069 0.063 
1 

R
2
 values are reported in parentheses. The present study contains 88560 and 43610 compounds 

for the training and testing sets, respectively.  
2 

The training set used ~118k compounds of QM9 dataset in reference 7. GG and GC denote 

gated graph neural network and graph convolutional neural network models, respectively. 
3 

Both models used training set of ~110k molecules of QM9 dataset in reference 41 (MPNN) and 

reference 38 (SchNET).
 

 

In order to reduce the computational expense in dataset preparation, SchNET model combining a 

bond-step representation is introduced in this study (annotated as Schnet-bs models), where the 

interatomic distances of all molecules in QM9 dataset are replaced by the bond counting rule. 

The interatomic bond-step matrixes can be directly generated from SMILES files without pre-

determined three-dimensional molecular coordinates by classical or quantum mechanics 

simulations. A schematic presentation of bond-step representation is demonstrated by the 

example of C6H6 in Figure 3. The Schnet-bs models appear to provide better predictivity than all 

X_LasY_RF models, reaching the accuracy close to 0.1 eV levels, however, generating about 

two-times larger MAEs in respect to the original SchNET model. The schematic representations 

for systematically comparing X_Las05_LR, X_Las05_RF, Schent-3d, and Schnet-bs models are 

summarized in Figure 4.     
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Figure 3. Schematic comparison of interatomic distance (black) and bond-step (red) matrixes. 

The empty matrix elements are internally omitted due to the symmetric nature of these matrixes. 

The original Cartesian coordinates of C6H6 are in Å . 

 

Interplay of ΔEHL and real-world emission wavelength 

Chemical-intuitively, ΔEHL can qualitatively align with the photon emission energies of 

fluorescent molecules.  Ye et al. reported a RF model combining the knowledge-based molecular 

representations from PaDEL and predicted the experimental emission wavelengths of 11k 

organic fluorescent molecules where MAE(testing) and R
2
(testing) were reported at 0.222 eV 

and 0.70, respectively (Table S4) without taking into account any solvent description. Without 

the necessity of describing solvation effect for QM9 dataset, current G_Las05_RF model 

improves the predictivity in ΔEHL of QM9 molecules with MAE(testing) and R
2
(testing) at 0.177 

eV and 0.96, respectively. This enhancement suggests that RF models can still provide 

reasonable predictivity and learning efficiency if the necessary information had been included in 

the descriptor space. However, the boundary of descriptor space needs to be pre-determined in 

according to mankind’s domain knowledge. The importance of solvent descriptor for 

successfully predicting the experimental optical properties has been demonstrated by the recent 

machine learning and deep learning approaches.
23, 43
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(a) EH (H_Las05_LR) (b) EL (L_Las05_LR) (c) ΔEHL (G_Las05_LR) 

   

(d) EH (H_Las05_ RF) (e) EL (L_Las05_ RF) (f) ΔEHL (G_Las05_RF) 

   

(g) EH (H_Schnet-3d) (h) EL (L_Schnet-3d) (k) ΔEHL (G_Schnet-3d) 

   

(l) EH (H_Schnet-bs) (m) EL (L_Schnet-bs) (n) ΔEHL (G_Schnet-bs) 

   
Figure 4. The prediction vs. reference comparison using the linear (a-c), and random forest 

X_Las05 models (d-f), Schnet-3d(g-k), and Schnet-bs(l-n) for predicting testing sets of EH, 

EL, and ΔEHL, respectively. The corresponding linear-fitting equations of predicted-vs-

reference are noted in the insets.  
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Chemical Interpretability 

Despite the apparent success of deep learning models in predicting the molecular electronic 

properties as shown above, the chemical essence embedded in the complex neural networks is 

still generally not easy to interpret. Comparatively, the important descriptors adopted in RF 

models can be described by Gini importance – the number of a particular descriptor used to split 

a node, being weighted by the number of the corresponding samples. Higher Gini scores imply 

more presence of the descriptor determining the classification of samples. Pubchem FP416 

denotes the presence of C=C fingerprint in the sample molecules, and that straightforwardly 

represents the existence of π-orbitals, resulting in increasing HOMO energy, between similar 

saturated and unsaturated molecular frameworks. SubFPC300 represents the count of 1,3-

tautomerizable conjugation, adding more subtle criteria for describing conjugated molecular 

structures. GATS1c denotes Geary autocorrelation weighted by atomic charges at topological 

distance of 1.  

For the linear dependent EL and ΔEHL, both L_Las05_RF and G_Las05_RF models 

independently identified nAtomP and R_TpiPCTPC as the important descriptors, the former one 

denoting the numbers of atoms in the largest π system and the latter denoting the ratio of total 

conventional bond order with total path count. These are straightforwardly consistent with the 

conventional chemical knowledge that a larger π system can result in lower EL energy. 

ETA_Beta_ns denotes the measure of electron-richness of the molecule. SubFPC287, as a 

similar descriptor like SubFPC300 identified for EH prediction, denotes the count of conjugated 

double bonds and poses a contribution of EH to the ΔEHL predictions.  

The chemical interpretability may be discretely represented by the use the interpretable 

descriptors as listed in Table 4. However, the interplay between these descriptors, being 

represented in the numerous tree structures, is too complicated to formulate analytically. Figures 

S1-S3 summarizes the top 50 descriptors of X_Las05_LR models where substantial cancellation 

effects are observed in these readable quantitative formulations. For the most accurate deep 

learning models, the underlying networks are even more challenging to connect with the 

conventional chemical knowledge.  

 

Table 4. The feature importance of X_Las05_RF models for EH, EL, and ΔEHL predictions
1
 

Property EH EL ΔEHL 

Feature 

importance 

PubchemFP416 

(0.191) 

nAtomP 

(0.199) 

nAtomP 

(0.310) 

SubFPC300 

(0.083) 

ETA_Beta_ns 

(0.197) 

R_TpiPCTPC 

(0.239) 



13 
 

GATS1c 

(0.079) 

R_TpiPCTPC 

(0.149) 

SubFPC287 

(0.083) 
1
Feature importance is estimated by Gini importance.  

 

Conclusion 

In this study, we demonstrated a fine balance between chemical property predictivity and 

chemical knowledge interpretability using linear, random forest, deep learning models. We 

applied a systematic approach to extract a few hundred critical knowledge-based molecular 

descriptors, from 17k-plus descriptors generated by PaDEL, using the linear and random forest 

models for predicting EH, EL, and ΔEHL of the organic molecules in QM9 dataset. Such a simple 

approach only requires the valence bond connectivity of the molecules, being encrypted in 

SMILES files, and does not require molecular structure optimizations, commonly being achieved 

by empirical potentials or quantum chemistry calculations. The predictivity provided by the 

current linear and random forest models can achieve MAEs at 4-6 times of chemical accuracy 

while the qualitative chemical interpretation, being represented by the identification of the 

leading descriptors, can be extracted from these numerical formulations.    

The MAEs of EH, EL, and ΔEHL predictions can be reduced to generally match the level of 

chemical accuracy if the complex deep learning model – SchNET is adopted. Nonetheless, the 

success of SchNET model builds upon the collection of physical-meaningful molecular 

structures (Cartesian coordinates), being typically optimized by quantum chemistry calculations. 

With replacing the molecular Cartesian coordinates by bond-step matrixes, MAEs of SchNET(bs) 

models are about 2-times of chemical accuracy in comparison with those of SchNET(3D) cases. 

Such a moderate demotion of model predictivity may be worthwhile compensated by the reduced 

workload of dataset preparation. This SchNET(bs) approach is finally recommended to couple 

with chemical graph generators for the virtual screening of new organic molecules containing 

novel properties.          
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