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Abstract 

Conformational changes play an important role for many biomolecules to perform their 

functions. In recent years, Markov State Model (MSM) has become a powerful tool to 

investigate these functional conformational changes by predicting long time-scale dynamics 

from many short molecular dynamics (MD) simulations.  In MSM, dynamics are modelled by 

a first-order master equation, in which a biomolecule undergoes Markovian transitions among 

conformational states at discrete time intervals, called lag time.  The lag time has to be 

sufficiently long to build a Markovian model, but this parameter is often bound by the length 

of MD simulations available for estimating the frequency of interstate transitions. To address 

this challenge, we recently employed the generalized master equation (GME) formalism (e.g., 

the quasi-Markov State Model or qMSM) to encode the non-Markovian dynamics in a time-

dependent memory kernel. When applied to study protein dynamics, our qMSM can be built 

from MD simulations that are an order-of-magnitude shorter than MSM would have required.  

The construction of qMSM is more complicated than that of MSMs, as time-dependent 

memory kernels need to be properly extracted from the MD simulation trajectories. Here, we 

present a step-by-step guide on how to build qMSM from MD simulation datasets, and the 

materials accompanying this protocol are publicly available on Github: 

https://github.com/ykhdrew/qMSM_tutorial. We hope this protocol is useful for researchers 

who want to apply qMSM and study functional conformational changes in biomolecules.   
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A. Introduction 
Functional conformational changes refer to the dynamic transitions of a biomolecule between 

conformational states, which play an important role in a wide range of biological processes 

such as protein-protein interactions, catalysis, and cell signalling (1). While experimental 

techniques, such as X-ray crystallography and Cryo-EM, can provide high-resolution structures 

of biomolecular complexes to better understand their functions (2), these structures only 

capture a static metastable state of the biomolecule and provide limited information on the 

dynamics of functional conformational changes (3). Although other experimental methods, 

such as nuclear magnetic resonance spectroscopy and single-molecular fluorescence resonance 

energy transfer (smFRET) can be applied to monitor conformational changes in biomolecules, 

they only provide the dynamic information pertaining to one or a few parameters, e.g., the 

distance between the FRET donor and acceptor (4).    

Complementing experimental techniques, Molecular Dynamics (MD) simulation is a powerful 

tool to model the dynamics of biomolecular complexes at atomistic resolution (2, 5). While 

functional conformational changes in large biomolecules, such as the translocation of RNA 

polymerases II (6), can span across milliseconds-to-seconds timescales (7), MD trajectories of 

biomolecular systems are often limited to microsecond timescales unless specialized 

supercomputers, such as Anton3, are used (8). To bridge this timescale gap, Markov State 

Models (MSM) were developed as a powerful statistical mechanics framework that extracts 

long-timescale kinetics from short MD simulations initiated from different parts of the free 

energy landscape (9-19). 

In MSM, the conformational space of a biomolecule is discretized into metastable states, and 

each frame in an MD trajectory is assigned to a state. By counting the number of transitions 

from one state to another after a discrete-time interval (i.e., lag time), we can estimate the 

probability of the transitions between states and obtain the transition probability matrix (TPM) 
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(10, 11, 20). At a Markovian lag time, at which the transition probability no longer depends on 

the states previously visited by the system, dynamics can be modelled by propagating TPM 

with the first-order master equation (Eq. 1) (9-11, 20). TPM also yields equilibrium state 

populations and other thermodynamic properties underlying the functional conformational 

changes of interest. MSM has been extensively applied to elucidate the mechanisms of 

functional conformational changes in biological processes(17, 21-30), such as translocation in 

DNA repair enzyme Alkylpurine glycosylase D (AlkD) (31), backtracking (32), and 

translocation (6) in RNA polymerase II (Pol II). 

To allow relaxation of the intrastate dynamics within the lag time, a MSM often contains a 

large number of states such that each state is sufficiently small (33, 34). For example, Pande 

and co-workers showed that they need an MSM containing 2,000 states (with a lag time of 

12ns) to model the millisecond folding of the NTL9 peptide (35). Additionally, in our previous 

work regarding a 37-residue intrinsically disordered peptide, we showed that an MSM 

consisting of as many as 10,000 states was needed to build a Markovian model (36). This 

limitation also applies to MSMs that study functional conformational changes. In particular, 

our previous work on backtracking in RNA Pol II led to an MSM composed of 800 states (32). 

However, MSM containing hundreds of states often hinder human interpretation of the 

biological mechanisms underlying functional conformational changes.  

To address this bottleneck in MSM, we have developed a new theoretical framework called the 

quasi-Markov state model (qMSM) that goes beyond the Markovian dynamics in MSMs. 

Through the Generalized Master Equation (GME) framework (34), qMSM encodes non-

Markovian dynamics in a generally time-dependent memory kernel, whose characteristic decay 

timescale corresponds to the kernel lifetime (34). We showed that qMSM can accurately 

predict the long-timescale dynamics of several peptide systems using significantly shorter MD 

simulations compared to those required by a memoryless MSM (34). This, thereby, reduces the 
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number of states in a model. We have successfully applied qMSM to model the gate opening 

dynamics in Thermus aquaticus (Taq) RNA Polymerase (RNAP) (37) and the mRNA 

recognition mechanism in the human Argonaute-2 (hAgo2) protein (38).  

In this protocol, we will provide a step-by-step walkthrough, with sample input and detailed 

commands, for the construction and analysis of qMSM. Using alanine dipeptide as the model 

system, this guide is building upon a recently published review on studying functional 

conformational changes with qMSM (33) (see Figure 1). Apart from the computation of 

memory kernels, we highlight another key step in our protocol – to properly identify molecular 

features using a machine learning algorithm (i.e., Spectral oASIS) (39). We hope this protocol 

can provide a hands-on guide for researchers who are interested in using qMSM to understand 

functional dynamics in biological systems. 

 

 Figure. 1 Workflow for building qMSM 

 



 

 5 

B. Theory  

B.1 Markov State Model (MSM)  

In MSM, interstate transitions at a Markovian lag time 𝜏	are described as memoryless, meaning 

that transitions only depend on the current state of the system and not the history of the states 

previously visited (10, 20, 40-42). Hence a master equation can be used to propagate long-

timescale dynamics (10, 11, 40-43):  

 𝑷(𝑛𝜏) = [𝑻(𝜏)]!𝑷(0) (Eq. 1) 

, where 𝑷(𝑛𝜏) is a vector of state population at the n-th lag time 𝑛𝜏 and 𝑻(𝜏) is the transition 

probability matrix. We can also calculate the implied timescale 𝑡"(𝜏)	using the following 

equation (10, 11, 40-43): 

 𝒕"(𝜏) = −
𝜏

log 𝜆"(𝜏)
 (Eq. 2) 

, where 𝜆"(𝜏)  is the i-th eigenvalue of 𝑇(𝜏) . Each implied timescale corresponds to the 

timescale of a transition mode encoded in an eigenvector that represents the transition between 

two subsets of states. For a more detailed theory on MSMs, we refer readers to a review by 

Wang et al. (44) and a book by Pande et al. (45). 

B.2 quasi-Markov State Model (qMSM) 

In qMSM, the memory kernels of conformational dynamics are explicitly considered, and the 

dynamics is propagated using a Generalized Master equation (GME) (34): 

 𝑻̇(𝑛∆𝑡) = 𝑻(𝑛∆𝑡)𝑻̇(0) + 7 𝑻(𝑛 −𝑚(∆𝑡))𝑲(𝑚∆𝑡)𝑑𝑡
#$%{',)!/∆'}

-
 (Eq. 3) 

, where memory kernels 𝑲(𝑚∆𝑡) can be calculated iteratively based on TPMs (𝑻(𝑛∆𝑡)) and 

their derivatives (𝑻̇(𝑛∆𝑡)) at t=0, ∆𝑡, 2∆𝑡 … 𝑛∆𝑡.  
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 𝑲(𝑛∆𝑡) =
𝑻̇(𝑛∆𝑡) − 𝑻(0)𝑻̇(𝑛∆𝑡)

∆𝑡 − ; 𝑻(𝑛 −𝑚(∆𝑡))𝑲(𝑚∆𝑡)
!./

01/

 (Eq. 4) 

The obtained memory kernel 𝑲(𝑛∆𝑡)	is a transition tensor, where a memory kernel relaxation 

function is associated with the transition between a pair of states. From the memory kernels at 

different time intervals (i.e. at 𝑡 = 	0, ∆𝑡, 2∆𝑡, 3∆𝑡 …𝑛∆𝑡) , we can calculate the mean 

integration of the memory kernel (MIK) using the following expression (34): 

 𝑀𝐼𝐾(𝑡) =
1
𝑁E; F7 𝐾"2(𝑡3)𝑑𝑡3

'

-
G
45

",21/

 (Eq. 5) 

We define the memory kernel lifetime (𝜏6) as the time at which the 𝑀𝐼𝐾(𝑡) converges.  With 

𝜏6 , we can apply the GME (Eq. 3) to propagate the dynamics. The detailed theory of qMSM is 

available in ref. (34). 

C. Outline for building a qMSM 

qMSM relies on the same state assignments as those used in MSMs. Hence, several key steps 

to build qMSM are the same as in the MSM construction. Our workflow presented below is 

adapted from our recently published MSM protocols (1, 33, 44):  

1) Modelling and generating the initial path between functional states  

Structures resolved from experiments, such as Cryo-EM and X-ray crystallography, often 

represent the free energy minima of the conformational space and the starting 

conformations for an MD simulation. When studying functional conformational changes, 

we will have at least two structures (green and blue dots on Figure 1A) representing either 

the starting or ending states of a biological process. For example, in our qMSM that depicts 

the gate opening motion in Taq RNAP (37), the two modelled starting structures are a 

closed DNA loading gate and an open DNA loading gate. To prepare the system for MD 
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simulations, modelling tools such as SwissModeller (46) and MODELLER (47) are 

commonly used to fill in missing protein residues and nucleotides in the starting structures. 

Packages, such as Propka3, (48) are frequently used to calculate the protonation state of 

individual residues in the local environment. 

Various tools can be used to obtain an initial pathway (Figure 1A) for the transition between 

these functional states, including Climber (49), Steered MD/Targeted MD (50, 51), Coarse-

grained MD simulations (CG-MD (52)), and Metadynamics simulations (53). Optimization 

of the initial path is recommended using tools such as the String method (54) and traveling-

salesman-based automatic path searching (TAPS) (55). 

2) All-atom MD sampling  

To build a qMSM, MD simulations are conducted from seed conformations selected from 

the initial pathways (Figure 1B). These simulations are often run in parallel to sample the 

free energy landscape extensively. This approach reduces the computational time compared 

to conducting individual ultra-long MD simulations. For the alanine dipeptide system used 

in this tutorial, GROMACS (56) was used to perform MD simulations. A detailed tutorial 

to conduct MD simulation in GROMACS can be referred to in ref. (57). 

3) Automatic feature selection 

To correctly identify slow dynamic modes, the selected structural features should 

preferably correlate with the conformational changes being studied. Internal coordinates 

(such as pairwise distances and dihedral angles) are calculated from MD trajectories and 

used as the structural features. In a large biological system, complete featurization is 

impractical and redundant. For instance, the Taq RNAP system used for qMSM 

construction has ~3300 residues (37). If all residues were considered, it would provide a 

sizeable feature set of ~5 million pairwise distances between all Cα atoms. Thus, for 
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studying functional conformational changes, we recommend pre-selecting the atoms that 

may be involved in the conformational changes based on prior knowledge and biological 

intuition as the initial feature set.  

To further reduce the number of features, we recommend an automatic feature selection 

algorithm called Spectral oASIS (39) (implemented in PyEMMA 2.5.7), which is based on 

the Nyström matrix operation theory to reconstruct the leading eigenvalues and 

eigenvectors of the full time-lagged covariance matrix from a subset of the matrix (Figure 

1C). Spectral oASIS can be employed to select a subset of features that can approximate 

the timescale of the time-lagged covariance analysis obtained from the initial feature set 

(39). 

4) Dimensionality reduction 

Time-lagged independent component analysis (tICA) is commonly used to reduce the 

dimension of the input features selected in the previous step and obtain the collective 

variables (CVs) used for clustering (Figure 1D). tICA identifies the slow modes by finding 

the optimal linear combination of the input features corresponding to the maximal time-

lagged autocorrelation (42, 58, 59). The first few eigenvectors, or tICs, identified by the 

tICA analysis can be regarded as a linear approximation of the slowest collective variables, 

providing reaction coordinates for state decomposition. 

5) Clustering MD conformations into microstates 

If MD conformations belong to the same energy basin in the tlCA subspace, where the 

system can transition in between these conformations rapidly, they are clustered into the 

same microstate (Figure 1E). Commonly used clustering methods for the MSM 

construction include centered-based algorithms (e.g., k-means (60) and k-centers (61)) and 

density-based clustering methods (e.g., DBSCAN (62) and APLoD (63) ). 
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6) Selection of hyperparameters for the microstate MSM construction 

To avoid overfitting and to find the optimum hyperparameters to build MSMs, Cross-

validation can be employed, where the model is constructed in the training dataset and 

validated using the test dataset. MSM hyperparameters include the feature sets, the tICA 

relaxation time, the number of tlCs, and the number of microstates. The models constructed 

from different hyperparameter sets are scored by objective metrics such as generalized 

matrix Rayleigh quotient (GMRQ) (64) and VAMP-2 scores (65). GMRQ and VAMP-2 

evaluate the quality of MSMs based on their ability to capture the slowest dynamic modes 

via the variational principle.  

7) Kinetic lumping to obtain macrostates and the construction of qMSMs 

In a microstate-MSM, the large number of microstates (hundreds to thousands) often 

hinders the comprehension of the molecular mechanisms underlying functional 

conformational changes. Kinetic lumping methods such as PCCA+(66), Spectral clustering 

(67) and Gibbs clustering (68) can further group microstates into a few ‘macro’-states 

(hereafter macrostates) for the interpretation of biological mechanisms.  

In qMSM, we will use the macrostate-TPMs and their derivatives at different lag times as 

an input to calculate memory kernels and determine their lifetime 𝜏7 according to (Eq. 5). 

The memory kernels are then used to construct qMSM, which can be further validated using 

the Chapman-Kolmogorov test. In this test, a good model should demonstrate the 

consistency between the residence probabilities predicted by the qMSM and the ones 

obtained directly from MD simulations.  

8) Calculation of the mean first passage time (MFPT)  

One useful kinetic property to describe the functional conformational changes is the mean 

first passage time (MFPT). MFPT refers to the average time for the first transition from a 
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starting state i to the final state j (69). Unlike implied timescales that describe an aggregated 

transition time across groups of states, MFPT represents the transition time between a pair 

of specific conformational states. It contains contributions from both direct transitions from 

state i to j and indirect transitions from state i to state j bypassing other intermediate states.  

D. Protocol to Build a qMSM  

D.1 Materials and Prerequisite  

In this protocol, we will use alanine dipeptide to demonstrate how to build a qMSM. The MD 

trajectories of the alanine dipeptide system (100 10ns-long trajectories, with a total size of 

~2.2GBs) and other materials needed for this protocol can be downloaded from the following 

website: https://github.com/ykhdrew/qMSM_tutorial. 

We will use two popular Python packages to build MSMs and qMSMs: MSMbuilder (70) and 

PyEMMA (71). On the Github page, the folder ‘notebook’ contains a series of Jupyter 

notebooks at different stages of the model construction. Please do not move the Jupyter 

notebooks out of the folder, or the path string will be incorrect when loading input/output files 

at different stages of this demonstration. 

To install these packages, we recommend using Anaconda that cross-checks for package 

dependencies and automatically installs missing programs. Please install Anaconda if not 

already done so. 

After installing Anaconda, running the following shell commands will create a conda 

environment named “msmbuilder” that contains MSMbuilder and other libraries (e.g., Jupyter) 

used throughout this protocol: 

For the installation of PyEMMA, the readers may refer to http://pyemma.org.  

$conda env create -n msmbuilder -f environment.yml 
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D.2 Feature selection with Spectral oASIS 

In the alanine dipeptide system, we will generate an initial feature set composed of 45 pairwise 

distances between all heavy atoms. We will then reduce the feature set size with Spectral oASIS. 

D.2a Featurization 

The Jupyter notebook Featurization.pynb contains the scripts for featurization in the example 

system. Opening the notebook, we first import the libraries to be used e.g.: 

and indicate the folder path for MD trajectories: 

Running the function create_pairwise_index() will generate an atom pair index from the 

selected list of atoms (i.e., AtomIndices.dat): 

Meanwhile, feat () uses the featurizer module in MSMBuilder to calculate the pairwise 

distances from our MD data: 

This will output a folder named “features” that contains the numpy binary files for the pairwise 

distances calculated from each MD trajectory. 

 

 

 

>>>from msmbuilder.featurizer import AtomPairsFeaturizer 

>>>import mdtraj as md 

>>>trajlist=glob(trajDir+"*.xtc") 

>>>trajlist.sort(key=lambda f: int(re.sub('\D', '', f))) 

 

>>>for n,i in enumerate(trajlist): 

... feat_ = feat(atom_pairs_feat,i,topfile) 

... np.save("{}features/{}.npy".format(flatirons), feat_) 

 

>>>atom_set =featdir+"AtomIndices.dat" 

>>>atom_pair_list=create_pairwise_index(atom_set) 
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D.3b. Spectral oASIS 

Important features are then chosen from this initial feature set using Spectral oASIS (39),  as 

implemented in PyEMMA. Before running this part of the demonstration, please make sure 

PyEMMA is installed in the current conda/python environment. 

Opening Spectral oASIS-Parallel.ipynb, we first import the Spectral oASIS library: 

At a particular tICA lag time (0.2ps in this example), Spectral oASIS selects the features for 

different sizes (number of features) of feature sets. After running the second cell, it should print 

out a series of feature set sizes to be tested: 

Spectral oASIS may take a long time to finish and we include a wrapper SpectralOasis() for 

running different conditions in parallel: 

This gives an index for the raw feature set (i.e., selected_feature_column(feature set size).txt). 

Please note that the output from Spectral oASIS is stochastic in nature and the features selected 

vary slightly for every run. 

Plotting the 1st timescale against the sizes of feature set, we can select a feature set of 24 

pairwise distances for dimensionality reduction, as the timescale becomes invariant from this 

point onwards (Figure 2A). 

Notes on feature selection: 

1. The initial atom set for feature selection (the atom set in AtomIndices.dat) largely depends 

on the conformational change to be studied, e.g., the interdomain distance and ligand-

protein distance.  

>>>from pyemma.coordinates.transform.nystroem_tica import * 

>>>no. of features tested: [4,8,12,16,20,24,28]  

>>>with Pool() as pool:  

... t_timescales=dict(pool.imap_unordered(SpectralOasis, columns)) 
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2. For demonstration purposes, we only show one tICA lag time for running Spectral oASIS. 

In practice, Spectral oASIS using several tICA lag times should be performed and the 

quality of the selected feature sets should be tested using GMRQ. We will cover this more 

in the “Selection of Optimal Hyperparameters by GMRQ” section 

Figure 2. (A). tlCA timescale (at tICA lag time=0.2ps) against number of features. (B). 
Box and Whisker plot for GMRQ test scores with different MSM hyperparameters. 
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D.4 Dimensionality reduction with tICA 

In this example, tICA is performed on the selected features to obtain a conformational subspace 

composed 3 tICs. 

Opening TICA.ipynb, we first import the tICA module from MSMbuilder:  

Here, the tlCA lag time used for model construction was 0.2ps. To compare the quality of 

qMSM built from different parameters, we will also test different tICA lag times (0.4ps and 

0.6ps) and several feature sets (20 features and 28 features): 

Under each output directory named after the features and tlCA lag time used, there is a folder 

containing the tlCA coordinates for the MD trajectories as well as a pickle file (tica.pickl) 

containing the parameters for tlCA. 

Notes on performing tICA:  

1. After performing tlCA, we can project MD conformations along the first few tlCs to check 

if they are relevant to the protein conformational change being studied. 

2. Since a MD trajectory can be trapped in certain local minima and disconnected from the 

rest of the MD conformations on the tlCA subspace, performing tlCA is one way to check 

for the quality of MD sampling. Projection of MD conformations onto the first few tICs 

provides a way to visualize the data and identifies disconnected trajectories.  

3. When a MD trajectory is indeed disconnected, additional MD sampling (either by 

extending the MD trajectories or running MD simulations with a new random seed) or 

adaptive sampling with packages such as FAST (72) and HTMD (73) can be performed. 

>>>from msmbuilder.io import load_trajs, save_trajs, save_generic 

>>>from msmbuilder.decomposition import tICA 

>>>tica=tICA(n_components=10, lag_time=tica_lagtime[n][m]], 
             kinetic_mapping=True) 

>>>tica.fit(ftrajs.values()) 
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D.5 Clustering MD conformations using KCenters 

MD conformations are then grouped into microstates according to their kinetic similarity on 

the reduced dimensional space. Here, we employed K-Centers (61) algorithm and used 800 

clusters for clustering. 

In the Clustering.ipynb notebook, a wrapper run_KCenters_parallel() parallelly performs 

clustering with different parameters (See the comments in the Jupyter notebook for details): 

This will output the clustering assignment (saved as clustering_assignments.npy) for each set 

of the parameters tested.  

D.6 Selection of the optimal hyperparameters by GMRQ 

After clustering, cross-validation with GMRQ scoring is performed. This step aims to select 

hyperparameters that lead to a model with the highest test score. Using the KFold algorithm 

from scikit-learn (74), the MD data can be split into a training and testing dataset for cross-

validation 

In the GMRQ.ipynb notebook, the GMRQ test scores for models built using a different number 

of features, number of tlCA components, tlCA lag time, and number of clusters are calculated. 

Here, we vary these parameters one at a time. For instance, models are built from a different 

number of features (20, 24 and 28 features) while the rest of the parameters are kept the same 

(i.e., number of tlCA component=3, tlCA lag time=0.2ps and number of K-Centers=800).  

>>>if __name__=="__main__": 

... run_KCenters_parallel(no_of_features,no_components, 
                          no_clusters ,tica_lagtime)                
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Below, we first import relevant modules from scikit-learn and MSMbuilder : 

The function of GMRQ() is to accept lists of parameters as arguments and load the 

corresponding clustering assignment: 

KFold cross-validation will be performed 10 times, giving 60 GMRQ scores for each parameter 

set. In the next cell of the notebook, we can display the test scores as a Box and Whisker Plot 

with the function GMRQ_Plot(). Since the splitting of the dataset is performed randomly, the 

GMRQ test scores vary slightly every time the program is run. 

In our calculation, the median score is the highest when the number of tlCA component=3, 

tlCA lag time=0.2ps and number of K-Centers clusters=800 (Figure 2B). Hence, we are using 

these parameters to generate a microstate MSM. 

Notes on GMRQ 

1. In this tutorial, we only tested a subset of hyperparameters and generated their GMRQ test 

scores. When building a microstate MSM, all possible combinations of the 

hyperparameters should be tested. 

2. GMRQ scores across different MSM lag times are not comparable. Hence, multiple MSM 

lag times should also be tested.  

 

 

 

>>>GMRQ(no_of_features,no_of_components, 
        no_clusters ,tica_lagtime,parameter,gmrq_dir,aplod_dir) 

>>>from msmbuilder.msm import MarkovStateModel 

>>>from sklearn.cross_validation import KFold 

>>>from sklearn.pipeline  import Pipeline 
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D.7 Construction of microstate MSM and kinetic lumping 

D.7a . Microstate MSM 

After selecting the hyperparameters, we can now construct a microstate MSM. Opening the 

microstate_MSM&PCCA.ipynb notebook, we first import the library for MSM construction: 

The function its_bootstrap() subsamples the cluster assignment for constructing an MSM and 

calculates the implied timescales at different MSM lag times: 

This returns a pandas DataFrame object containing the raw data. Then, load_its() calculates the 

average and standard deviation of the implied timescales: 

Plotting the implied timescale against the MSM lag time shows that the implied timescales 

become invariant from 10ps onwards (Figure 3A): 

Figure 3. (A). Implied timescale against MSM lag time plot. (B). Projection of MD trajectories 
on the torsional angles of alanine dipeptide. Each dot represents a MD conformation, with the 
color indicating its macrostate assignment. 

>>>from msmbuilder.msm import MarkovStateModel 

 

>>>data=its_bootstrap(lagtimes,no_of_traj)  

>>>data.to_pickle(“timescales.pickl') 

 

>>>av_dict,error_dict=load_its(msm_dir+'timescales.pickl', 
                               n_timescales=4,lagtimes=lagtimes) 

>>>fig, ax = plt.subplots(figsize=(7,5)) 

>>>plot_timescales(ax,4,lagtimes,av_dict,error_dict) 
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D.7b. Kinetic Lumping and Generating Macrostate TPM 

To facilitate biological interpretation of the model, the microstates are further lumped into 

macrostates using PCCA+ (66). Eigen-decomposition of the microstate transition matrix shows 

a stable gap between the 3rd and the 4th slowest timescales (Figure 3A). Hence, 4 macrostates 

are chosen for our model. The following scripts in micorstate_MSM&PCCA.ipynb perform 

lumping at lag time = 10ps: 

This will output a pickle file containing the parameters for lumping and a numpy binary file 

with the macrostate assignment for the MD trajectories. 

Here, we are visualizing the lumping results with seaborn (75) by projecting the metastable 

states onto the two torsional angle, ϕ and ψ, of alanine dipeptide: 

On the Ramachandran plot, PCCA+ groups the microstate into four different metastable states 

(Figure 3B). Note that the macrostate indices may change every time you run the PCCA+ 

module in MSMbuilder but the microstate mapping to macrostate should be consistent. 

>>>from msmbuilder.lumping import PCCAPlus 

>>>msm=MarkovStateModel(verbose=True,lag_time=100, 
                        reversible_type='transpose', 
                        ergodic_cutoff='off') 

>>>pcca = PCCAPlus.from_msm(msm, n_macrostates=4) 

>>>lumped_trajs = pcca.fit_transform(assignments) 

>>>lumped_trajs=np.concatenate(lumped_trajs) 

>>>save_generic(pcca,"{}pcca.pickl".format(msm_dir)) 

>>>np.save("{}lumping_assignment.npy".format(qmsm_dir),lumped_trajs) 

>>>sns.lmplot(data=df,x='psi',y='phi',hue='macrostate’,    
              palette=macrostate_color,fit_reg=False,legend=True, 
              legend_out=False) 
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After obtaining the macrostate assignment from PCCA+, a series of macrostate TPMs at 

different lag times can be generated for MIK calculation (Eq. 5) in the next section. In the fifth 

cell of the notebook, prep_macroTPM() generates 500 TPMs constructed at different lag times, 

𝜏	 = ({0.1ps,0.2ps,0.3ps…50ps}.Note the unit used in this function is in picosecond) :  

 

D.8. The qMSM construction  

D.8a Memory kernel and MIK calculation  

After obtaining the macrostate TPM, we can start building our qMSM. 

Opening the qMSM.ipynb notebook, the qMSM libraries and the macrostate TPM are loaded: 

In this part of the tutorial, the time unit is 0.1ps, as defined in the variable delta_time. 

The following scripts calculate the derivative of TPM 𝑻̇	(Eq.2): 

Then, the memory 𝑲 kernel and the Mean Integration of Memory Kernel (MIK) are also 

calculated using the following scripts: 

>>>km = qmsm.Calculate_K_matrix(cal_step=400) 

>>>qmsm.MeanIntegralKernel(MIK_time=50 , figure=True,   
                           outdir=qmsm_dir)  

 

>>>qmsm = QuasiMSM(input_len=500, delta_time=0.1, dimension=4) 

>>>qmsm.GetData(input_data) 

>>>qmsm.Pre_SetData() 

>>>qmsm.Get_dTPM_dt() 

 

>>>import sys 

>>>sys.path.append('./qMSM') 

>>>from QuasiMSM_ModuleBuilder import * 

>>>input_data = np.load("./qMSM/qMSM_TPM.npy",   
                        dtype=float) 

 

>>>prep_macroTPM(initial_lagtime=1,ending_lagtime=500, 
                 delta_time=1, md_timestep=0.1) 
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Plotting the MIK against lag time, MIK converges at 𝑡 =15ps, giving the memory lifetime, 𝜏7 

(Figure 4A): 

Hence, a qMSM can be built from 𝑲(𝑡 = 15𝑝𝑠): 

The output is a file containing 200 propagated TPMs constructed using lag time = {0.1ps, 

0.2ps, …, 20ps}. The TPMs for extended lag time, which is longer than the length of the MD 

simulation (e.g.: 20ns), can be obtained by modifying the end_point (e.g.: to 200,000 steps). 

Generating TPMs at extended lag time may be needed to calculate the slow dynamics between 

the metastable states as discussed in section C.8 calculation of MFPT. 

Calculating the time-averaged root mean squared error (RMSE, the formula is in ref. (34) ) for 

qMSM dynamics serves as another way to validate the choice of 𝜏7: 

Figure 4C shows the RMSE for qMSM-predicted dynamics that converge at 15ps.  

8b. Chapman Kolmogorov Test 

To validate the qMSM, a Chapman Kolmogorov Test can be performed (20, 76) to compare 

the kinetics predicted by qMSM with that from MD trajectories and MSM (Figure 4B): 

This will generate four plots each representing the residence probability of a macrostate against 

lag time (Figure 4B). In the plot, qMSM reproduces the kinetics (red lines) predicted by MD 

trajectories (grey dots) while MSM does not (green lines). 

>>>qmsm.CK_figure(qMSM_TPM=qmsm_tpm_time, MSM_TPM=msm_tpm_time, 
                  add_iden_mat=True, diag=True, grid=[4,4],        
                  slice_dot=10, outdir=qmsm_dir) 
                   

 

>>>qmsm_tpm, qmsm_tpm_time=qmsm.QuasiMSMPrediction(kernel_matrix=km,  
                                                   tau_k=20,  
                                                   end_point=200,  
                                                   outasfile=True, 
                                                   outdir=qmsm_dir)                                                     

 

>>>qMSM_RMSE, MSM_RMSE=qmsm.RMSE(kernel=km, end_point=200, 
                                 figure=True,  
                                 outasfile=False,outdir=qmsm_dir) 

>>>qmsm.KernelPlot(km) 
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Figure 4. (A). Mean Integration of Memory Kernel (MIK) against lag time. (B). CK test on 
macrostate residence probability. (C). Root mean square errors (RMSEs) between the qMSM-
predicted dynamics and MD simulations. 

D.9. Analysis 

D.9a. MFPT calculation 

At this part of the tutorial, we can calculate MFPTs between each pair of macrostates from the 

4-state qMSM to understand the kinetics for interstate transitions. 

Opening the Analysis notebook, there is a function to calculate MFPT from 𝑻(𝜏 = 20𝑝𝑠) : 

The output contains a matrix ∈ 	ℝ8×8, in which the ij-th element represents the MFPT (sharing 

the same time unit as the input TPM, 0.1ps in this tutorial) from the i-th marcostate to the j-th 

marcostate. 

Notes on MFPT calculation: 

1. The MFPT script provided here is solving a linear system of equations that describes 

MFPT from state 𝑖 to the final state 𝑓,	𝐹":	,where 𝐹": = 𝜏 + ∑ 𝑃"2𝐹2:";2 . A detailed theory 

can be referred to in ref (69). 

>>>mfpt=mfpt(tpm,lagtime=200) 
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2. When calculating MFPT, we should test TPMs constructed at different lag times and 

chose the lag time at which the MFPT converges. Supplementary Note 9 of Ref. (38) 

documents the workflow for calculating MFPT with the TPM constructed from qMSM. 

D.9b.Macrostate sampling 

In the second cell of the notebook, we can also sample the conformations in each macrostate: 

From these conformations, one can perform residue-residue contact analysis and Pearson 

Correlation coefficient calculations among residues of interest. This helps to understand the 

biological significance of the macrostates. 

E. Concluding Remarks 

In this procotol, we showcased the workflow for quasi-Markov State Model construction using 

the alanine dipeptide system as an example. Using a GME to propagate dynamics, we 

demonstrated that our qMSM framework is advantageous over MSM since it greatly reduces 

the number of metastable states required to describe a biological event. Among existing 

variants of MSM (e.g., core-set MSM (77) and Hidden MSM (78) ), we believe that qMSM 

holds promise in studying functional dynamics of biomolecules. 
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>>>sample_macrostate(trajDir,topfile,lumped_assignment, 
                     analysis_dir,no_of_sample) 
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