1	Got Coke? Self-Limiting Poisoning Makes an Ultra Stable and Selective Sub-
2	nano Cluster Catalyst
3	Guangjing Li ^{1†} , Patricia Poths ^{2†} , Tsugunosuke Masubuchi ¹ , Harry W. T. Morgan ² , Anastassia N.
4	Alexandrova ^{2‡*} , Scott L. Anderson ^{1‡*}
5	Affiliations:
6	¹ Department of Chemistry, University of Utah; 315 S 1400 E, Salt Lake City, UT, 84112, USA
7	² Department of Chemistry and Biochemistry, University of California Los Angeles; 607 Charles
8	E. Young Drive East, Los Angeles, CA 90095, USA
9	[†] Equal contributions
10	[‡] Senior authors
11	*Corresponding authors. Email: ana@chem.ucla.edu, anderson@chem.utah.edu
12	
13	Abstract:
14	Supported sub-nano clusters hold great promise as economical and highly active
15	catalysts. However, they tend to deactivate rapidly by poisoning and sintering, impeding their
16	widespread use. We find that self-limiting poisoning can stabilize and promote cluster catalysis,
17	i.e., poisoning is not always detrimental, but can sometimes be exploited. Specifically, Pt-Ge
18	alloy clusters supported on alumina undergo slow coking (carbon deposition) under conditions of
19	thermal dehydrogenation, yet preserve strong binding sites. For the case of Pt ₄ Ge/alumina,
20	theory shows a number of thermally populated isomers, one of which catalyzes carbon
21	deposition. Because the clusters are fluxional at high temperatures, this isomer acts as a
22	gateway, slowly converting all the clusters to Pt4GeC2. The surprising result is that Pt4GeC2 is
23	highly catalytically active and selective against further coking, i.e., coking produces functional,
24	stable catalytic clusters. Ge and C ₂ have synergistic electronic effects, leading to efficient and

- 25 highly selective catalytic dehydrogenation that stops at alkenes, and improving stability. Thus,
- 26 under reaction conditions, the clusters develop into a robust catalyst, suggesting an approach to
- 27 practicable cluster catalysis.

28	There is a great drive to go sub-nano in precious metal catalysis, because in sub-nano
29	clusters, nearly all the expensive metal atoms are exposed to reactants, increasing cost-
30	effectiveness. Clusters can also have better catalytic activity than the bulk metal ¹ , provide a
31	parameter for catalyst tuning (size), and can break scaling relations that can limit the activity of
32	larger catalytic centers ² . Pt-based catalysts are widely used in refining, transforming chemicals,
33	and converting environmentally harmful products ³⁻⁷ , and the challenge to the use of sub-nano Pt
34	catalysts in such applications relates to stability: deactivation via thermal sintering, and by
35	poisoning. For example, in alkane dehydrogenation for alkene production, sintering may be
36	rapid at operating temperatures, as can poisoning by carbonaceous side products ("coking").
37	Past research showed that sintering and coking can be inhibited by growing porous overcoatings
38	on nanometer catalyst particles ⁸ , but this approach partially blocks the catalytic sites, limiting
39	efficiency ^{3,9} . For sub-nano Pt clusters deposited on SiO ₂ supports, we showed that even a single
40	layer of overcoating completely blocked all Pt sites, rendering the clusters inert ¹⁰ . Another
41	strategy is to periodically regenerate catalysts by oxidizing away carbon deposits at high
42	temperatures, however that would tend to deactivate sub-nano clusters by sintering ^{11,12} . Alloying
43	sub-nano clusters to modify the chemical and thermal properties is another approach; for
44	example, alloying oxide-supported Pt cluster catalysts with tin or boron prevents carbon
45	deposition and inhibits sintering ¹³⁻¹⁶ , albeit at the cost of losing a substantial fraction of the
46	catalytically active Pt sites.
47	Germanium was recently suggested by Jimenez-Izal et al. ¹⁷ as a dopant for small Pt clusters
48	to inhibit coking and sintering under conditions of alkane dehydrogenation. Supported Pt_2Ge
49	clusters were predicted to be more sinter-resistant than Pt ₃ , Pt ₂ Sn, and Pt ₂ Si clusters, and to be
50	highly active for ethane dehydrogenation to ethylene, while resisting deeper dehydrogenation to

51 form coke. Although density functional theory (DFT) simulations were promising, previous

52	experimental work on Ge-containing catalysts was not always successful. For example, several
53	studies found that activity for dehydrogenation of cyclohexane was substantially lower for PtGe
54	catalysts than for analogous Pt catalysts ^{18,19} . Note, however, that these studies focused on
55	catalysts with particle sizes much larger than the sub-nano clusters examined here. Here we
56	report a novel approach to improving cluster catalyst stability, in which self-limiting coking
57	converts the alumina-supported Pt_nGe_x catalyst clusters to a $Pt_nGe_xC_y$ form that is catalytically
58	active and thermally and chemically stable.
59	Results
60	Pt4Ge/alumina characterization. As described in the Methods section, Pt4Ge/alumina
61	samples were prepared by soft-landing mass-selected Pt ₄ clusters on thin-film alumina supports,
62	followed by Ge addition by exposure to GeCl ₄ and H ₂ . The cluster coverage was 3.8×10^{13}
63	clusters/cm ² , equivalent to 0.1 ML Pt, in the form of Pt ₄ clusters. S/TEM imaging on both carbon
64	and alumina-coated aluminum grids is described in the supplementary information (Fig. S1).
65	Individual atoms were not resolved, but from the cluster spot densities, sizes, and stability under
66	the e-beam, we conclude that small Pt_n are stable on both carbon and alumina.
67	X-ray photoelectron spectra (XPS) were used to probe the electronic properties of the
68	PtnGe/alumina catalysts and measure the Ge:Pt stoichiometry, which was found to be 1.07:4, i.e.,
69	roughly one Ge atom was deposited per Pt ₄ cluster. In addition, there was some non-specific Ge
70	deposition on the alumina support, but as shown below and in the supporting information, this
71	alumina-bound Ge is not catalytically active itself, and has little effect on the catalytic properties
72	of Pt_n clusters deposited on a Ge-treated alumina support. As shown in Figure 1, the Ge $2p_{3/2}$
73	peak for Pt ₄ Ge is shifted slightly to lower binding energy compared to that for Ge bound directly
74	to the alumina support, reflecting the difference in electronic environment.
75	

76	Cluster structures from DFT. Figure 2 shows the thermally accessible isomers for (Fig.
77	2A) Pt_4/α -Al ₂ O ₃ and (Fig. 2B) Pt_4Ge/α -Al ₂ O ₃ calculated using global optimization at the DFT
78	level, as described in the methods section. The predicted isomer populations at 700 K, near the
79	upper end of the experimental temperature range, are given as P700K. For Pt4/alumina, the global
80	minimum structure (GM) is a spin-singlet, but all other thermally-accessible local minima (LM)
81	are spin-triplets. The structures have Pt atoms with both positive and negative charges, but in all
82	cases, there is net support-to-cluster electron transfer (ΔQ). For Pt ₄ Ge/alumina, the GM and all
83	thermally accessible LMs are singlets, with substantial Ge-to-Pt4 electron transfer, they also all
84	have net support-to-cluster electron transfer.
85	Ethylene TPD analysis. For selective alkane dehydrogenation, the desired product is the
86	alkene, and to avoid coking, it is critical that the nascent alkene product desorbs from the
87	catalyst, rather than undergoing further dehydrogenation that ultimately results in carbon
88	deposition. At the same time, it is desirable that the binding energy of the alkene on the catalyst
89	be high because it should lower the barrier for the alkane-to-alkene reaction. To probe the
90	branching between alkene desorption vs. unwanted dehydrogenation/coking, we have adopted
91	the strategy of adsorbing ethylene on the catalyst at low temperature, then measuring, using
92	temperature-programmed desorption (TPD), the branching between desorption of intact ethylene,
93	vs. hydrogen desorption, which signals dehydrogenation and carbon deposition. To directly
94	examine the propensity toward carbon deposition, we have also measured the C 1s XPS
95	intensities after multiple ethylene adsorption/desorption cycles.
96	Figure 3 shows TPD data collected for Pt4/alumina and Pt4Ge/alumina samples, both with
97	identical, 0.1 ML-equivalent of Pt deposited as Pt ₄ clusters. The data shown are from
98	experiments in which 21 sequential TPD runs were done for each sample. For each run, the
99	sample was first exposed to a saturation dose of C_2D_4 (10 L) at 150 K, and then heated at 3 K/sec

100	to 750 K while mass-spectrometrically monitoring desorption of C_2D_4 and D_2 . No signal was
101	observed for desorption of acetylene or other hydrocarbon species, and no additional D_2
102	desorbed in test experiments in which the samples were ramped to higher temperatures,
103	indicating that ethylene either desorbed intact, or dehydrogenated to 2 $C_{(ads)}$ + 2 $D_{2(gas)}$.
104	For comparison, the figure also shows the desorption signals observed from the alumina and
105	Ge-treated alumina (Ge/alumina) supports with no Pt/PtGe clusters. For both supports, C2D4
106	corresponding to a few percent of a monolayer adsorbed during the 150 K dose, desorbing below
107	250 K when heated. This support-bound C_2D_4 might be bound at defects in the alumina film, for
108	example. No D ₂ desorption was observed, showing that neither the alumina nor Ge/alumina
109	supports were active for ethylene dehydrogenation, and as might be expected, the desorption
110	signals in repeated runs were unchanged.
111	During the 1st TPD from the Pt ₄ /alumina sample, there was substantial C ₂ D ₄ desorption in
112	the $250 - 450$ K range, corresponding to ethylene binding to the Pt ₄ clusters, in addition to a
113	lower temperature feature attributed primarily to weak binding to the alumina support. D_2
114	desorbed in a broad feature extending from 250 K to 750 K, implying that many of the C_2D_4
115	molecules dehydrogenated, liberating D_2 and depositing carbon. During the 2^{nd} run there was
116	substantially less C_2D_4 desorption above 250 K and a general shift to desorption at lower
117	temperatures, implying fewer and weaker C ₂ D ₄ binding sites. The amount of D ₂ desorption also
118	decreased, suggesting that dehydrogenation occurs primarily for strongly bound C2D4, but the
119	number of such sites was much smaller in the 2 nd TPD cycle. As additional cycles were carried
120	out, the decrease in C ₂ D ₄ desorption at high temperatures, and the reduction in D ₂ desorption
121	continued, with the rate of change slowing as the clusters were mostly deactivated.
122	The 21 TPD run experiments took >20 hours each, making repetition impractical and raising
123	the possibility that surface contamination might have influenced the results in later cycles.

124	Therefore, we also carried out repeated experiments studying the effects of the first six TPD
125	runs, which, indeed, were responsible for most of the change in catalyst properties. Quantitative
126	analysis of the desorption is based on these six-TPD experiments. As described elsewhere ¹³ it is
127	possible to calibrate the absolute sensitivity of the TPD system, and Table S1 gives the numbers
128	of C ₂ D ₄ and D ₂ molecules desorbing <i>per</i> Pt ₄ cluster in each of the 6 TPD runs, averaged over the
129	four available data sets. Because there was no evidence of adsorbed hydrogen remaining at 750
130	K, the number of C atoms deposited should be equal to the number of D ₂ molecules desorbing,
131	and the total number C_2D_4 molecules adsorbed during each 150 K dose can be estimated as the
132	number C_2D_4 desorbing + half the number of D_2 desorbing. During the 1 st TPD, an average of
133	${\sim}2.9~C_2D_4/Pt_4$ were adsorbed, of which ${\sim}56\%$ desorbed intact, with the remainder
134	dehydrogenating to liberate D_2 and deposited an average of ~2.5 C atoms/cluster. Because of the
135	cluster isomer distribution, some cluster-to-cluster variation is expected, but we interpret the 1st
136	TPD desorption numbers as indication that three C ₂ D ₄ molecules typically adsorbed per cluster
137	at 150 K, two of which typically desorbed intact upon heating, the other one decomposed to
138	liberate 2 $D_2(gas)$ and deposited 2 C per cluster, on average. By the 6 th TPD cycle, the number
139	of C_2D_4 adsorbed <i>per</i> Pt ₄ had dropped ~58% to just ~1.23, of which ~82% desorbed intact, with
140	the remainder decomposing to deposit C and liberate D ₂ . For the Pt ₄ /alumina sample, the total
141	D_2 desorption during the 6 TPD runs corresponded to the deposition of ~5.75 C atoms <i>per</i>
142	deposited Pt ₄ cluster.
143	Pt ₄ Ge/alumina presents a striking contrast. As described in the Methods, the final step in
144	Pt4Ge/alumina preparation involved 750 K heating to desorb residual Cl and hydrogen (as HCl
145	and $H_2 - Fig. S2$), and to emphasize the point that the $Pt_4Ge/alumina$ samples had already been
146	heated once prior to the initial C_2D_4 TPD runs, the TPD cycles in Fig. 3 D and E are numbered
147	starting with "2nd TPD". The C2D4 desorption observed in this 2nd TPD for Pt4Ge/alumina was

148	quite similar in both intensity and structure to that in the 1 st run on Pt ₄ /alumina, with a low-
149	temperature component at least partly due to desorption from the Ge/alumina substrate, and a
150	high-temperature component attributed to sites on the Pt ₄ Ge clusters. In contrast, D ₂ desorption
151	(i.e., carbon deposition) was much weaker for Pt ₄ Ge than in either the 1 st or 2 nd TPD runs for
152	Pt_4 /alumina, and had a bi-modal temperature dependence, suggesting that what little D_2
153	desorbed, was produced by two processes with different activation energies. The D ₂ desorption
154	features can, in principle, be fit to extract E_a values, requiring some assumption about the kinetic
155	order of the rate-limiting step. We previously examined D_2 TPD from small Pt_n /alumina under
156	conditions similar to those here ²⁰ , observing recombinative desorption starting at \sim 230 K,
157	peaking just below 300 K, and terminating at ~450 K. The fact that the desorption features for
158	D_2 generated by C_2D_4 decomposition do not match the recombinative feature observed in
159	D_2 TPD, suggests that some other step in the D_2 production pathway is rate-limiting. For
160	simplicity, we assume that this step follows 1 st order kinetics ²¹ , and further assume a prefactor of
161	10^{15} sec ⁻¹ . This crude approximation gives effective (or averaged over multiple accessible
162	pathways) E_a values of ~1.1 V for the 350 K feature, and ~2.5 eV for the 500 K feature, in the
163	range observed for C-H activation in the DFT calculations. During subsequent TPD cycles, there
164	continued to be a small and reducing amount of D_2 production, and the C_2D_4 desorption behavior
165	evolved, but note that when a steady state had been reached after ~ 15 runs, the C ₂ D ₄ desorption,
166	particularly at higher temperatures, was substantially higher for Pt4Ge than for Pt4.
167	Again, quantitative desorption analysis was done for the first 6 TPD where multiple
168	experiments were available. The total number of C ₂ D ₄ molecules adsorbed <i>per</i> Pt ₄ Ge cluster in
169	the 2 nd TPD was ~1.71, of which ~86% desorbed intact, with the balance decomposing to
170	liberate D_2 and deposit ~0.5 C/cluster on average (Table S2). Given that C atoms deposit in
171	pairs, we interpret this to mean that the Pt4Ge clusters initially had one or two C2D4 molecules

172	adsorbed, and that on $\sim 25\%$ of the clusters, one ethylene decomposed to deposit two C atoms.
173	Thus, the probability of carbon deposition during this 1st TPD run was ~one-fourth that for the
174	Pt ₄ /alumina samples. By the 6^{th} TPD cycle, the number adsorbing C_2D_4 molecules was still
175	\sim 1.46/cluster, of which 91% desorbed intact, with the balance decomposing to liberate D ₂ and
176	deposit just ~0.28 C/Pt ₄ Ge cluster. Thus, during the 2 nd TPD for Pt ₄ Ge/alumina, the number of
177	ethylene adsorbing per cluster was ~41% lower than in the 1st TPD for Pt4/alumina, but by the 6th
178	TPD, the number was ~20% <i>higher</i> for Pt_4Ge . We interpret this to imply that addition of a Ge
179	atom reduced the initial number of ethylene binding sites, but the binding sites, and particularly
180	the catalytically important strong/high temperature binding sites, survived much better under
181	reaction conditions for Pt ₄ Ge than for Pt ₄ .
182	From the total D ₂ desorption during the 6 TPD runs, we estimate that the total carbon
183	deposition on Pt ₄ Ge/alumina amounts to ~1.8 C atoms <i>per</i> deposited Pt ₄ Ge cluster, which is less
184	than a third the total estimated for Pt ₄ /alumina (5.75 C/cluster). It should be noted that due to
185	uncertainties in the intensity calibration process, the absolute desorption numbers given here and
186	in Tables S1 and S2 are uncertain by \sim 50%, however, the relative uncertainties for comparing
187	TPD data in different experiments are smaller – on the order of $\pm 10\%$. Thus, the TPD data
188	indicate that Pt ₄ /alumina cokes more than a factor of three faster than Pt ₄ Ge/alumina.
189	Carbon deposition analysis. Carbon deposition was also probed directly by C 1s XPS after the
190	6 TPDs, as summarized in Figs. 3C and 3F. Also shown are the C 1s XP spectra measured for Pt-
191	free alumina and Ge/alumina samples after 6 C_2D_4 TPD. The signals are weak because the
192	coverage of clusters, responsible for most carbon deposition, was small, as is the C 1s
193	photoemission cross section. Nonetheless, it is clear that the C 1s signal for Pt ₄ /alumina is
194	substantially larger than the signal for the alumina support, and after subtracting the support
195	contribution, the net carbon deposition corresponds to $\sim 8 \pm 5$ C atoms/cluster. The C/Pt ratio

196was calculated assuming both C and Pt are in the surface layer, in which case C/Pt =197 $(I_C \cdot \sigma_{Pt})/(I_{Pt} \cdot \sigma_C)$, where I_C and I_{Pt} are the integrated intensities for the C 1s and Pt 4d peaks, and σ_C 198and σ_{Pt} are the sublevel photoemission cross sections²². The C 1s signal for the Pt₄Ge/alumina199sample is smaller, and after subtracting the support contribution, the carbon deposition is200estimated to be 3 ± 3 C atoms/Pt₄Ge cluster. Thus, both the absolute number of deposited201C atoms/cluster, and the ~3:1 ratio of C deposition on Pt₄ compared to Pt₄Ge, are consistent with202the values derived from analysis of D₂ TPD.

203 To provide additional insight into the carbon/Pt morphology, the samples were also probed 204 by low energy He⁺ ion scattering (ISS) before and after 6 TPDs (Fig. 4). Example ISS spectra 205 shown as insets have peaks due to He⁺ scattering from individual Pt, Ge, Al, and O atoms in the 206 top-most sample layer, superimposed on a smooth background from multiple or sub-surface 207 scattering processes. The background rises sharply at lower energies, preventing direct 208 observation of surface carbon. The main plots in Fig. 4 show how the background-subtracted Pt 209 and Ge peak intensities vary as a function of exposure to the $\sim 0.35 \,\mu\text{A}$ He⁺ beam, which slowly 210 sputters materials from the surface. To compensate for any He⁺ intensity variations, the Pt and 211 Ge intensities are normalized to the total (Pt+Ge+Al+O) intensity, which is nearly invariant 212 under He⁺ exposure.

For as-deposited Pt₄/alumina (Fig. 4A), the Pt ISS intensity initially increased slightly, then slowly declined at long exposures as Pt atoms were slowly sputtered from the surface. The slight increase was attributed to exposure of additional Pt due to sputter removal of a small coverage of adventitious adsorbates, e.g. H₂ or CO, which have partial pressures $\leq \sim 5 \ge 10^{-11}$ Torr in the UHV system. If an as-deposited Pt₄/alumina sample is briefly heated to 750 K to remove the adsorbates prior to ISS analysis (Fig. 4B), the Pt intensity is substantially higher than in the unheated sample, and simply decreases with exposure time as Pt is sputtered. Note that if the Pt₄

220	clusters had sintered at 750K to form larger, multilayer clusters on the surface, this would have
221	substantially decreased the Pt ISS intensity, thus such extensive sintering is ruled out by the
222	result in Fig. 4B, consistent with the conclusions from the TEM data. The initial Pt ISS intensity
223	for Pt ₄ /alumina after a single C_2D_4 TPD experiment (Fig. 4C) was ~18% smaller than that for the
224	750 K heated Pt ₄ /alumina sample in Fig. 4B, suggesting some attenuation of Pt signal by
225	deposited carbon, and the attenuation increased after 6 TPDs (Fig. 4D), as expected.
226	The as-prepared Pt ₄ Ge/alumina sample was probed both before (Fig. 4E) and after (Fig. 4F)
227	the 750 K heating used to remove residual H and Cl from clusters. For the unheated clusters, the
228	initial Pt and Ge intensities were small, increasing as the adsorbed H and Cl were sputtered,
229	exposing underlying Pt and Ge atoms, and then decreasing slightly at long exposures as Pt and
230	Ge were lost to sputtering. For the sample probed after 750 K heating (Fig. 4F), the initial Pt and
231	Ge intensities were similar to the maximum intensities seen for the unheated sample, i.e.,
232	removing the adsorbates by heating vs. He ⁺ sputtering had similar effects. The initial Pt ISS
233	signal for the heated $Pt_4Ge/alumina$ sample was ~37% smaller than the signal observed for
234	heated Pt ₄ /alumina, presumably reflecting some shadowing or blocking of He ⁺ scattering from Pt
235	by the Ge atom. The 37% lower Pt ISS intensity was quite similar to the 41% lower total
236	adsorbed C ₂ D ₄ measured in the initial Pt ₄ Ge/alumina TPD (Tables S1 and S2). For
237	Pt ₄ Ge/alumina samples that were heated to 750 K then subjected to 1 or 6 TPD runs (Fig. 4G and
238	H), the Pt intensities were attenuated compared to the heated sample, as expected from the fact
239	that some carbon deposition occurred.
240	The post-6-TPD initial Pt ISS intensity for the Pt4/alumina sample (Fig. 4D) was ~44%
241	attenuated, compared to the initial intensity of the 750 K heated Pt ₄ /alumina sample. It is not
242	surprising that there was attenuation, given the carbon deposition observed by TPD and XPS (~ 6
243	C/cluster from TPD, ~8 C/cluster from XPS). Indeed, the surprise is that the attenuation was not

244	much larger. For example, 5- and 20-fold attenuations of the Pt ISS signals were found to result
245	from adsorption of just a single layer of H or O atoms, respectively, on sub-nano Pt_n/SiO_2^{23} .
246	Thus, the much smaller Pt ISS attenuation indicates that the C atoms must be bound in sites
247	where they have little effect on He^+ scattering from Pt – such as cluster periphery or buried in the
248	cluster core. For the Pt ₄ Ge/alumina sample after 6 TPDs (Fig. 4H), the initial Pt signal was
249	~31% attenuated, relative to the heated Pt4Ge/alumina (Fig. 4F), which can be compared to the
250	amount of C deposition seen from TPD (~1.8/cluster) and XPS (~3/cluster). For both Pt_4 and
251	Pt4Ge samples, ISS indicates that a significant fraction of the Pt atoms remained accessible to
252	He ⁺ scattering after 6 TPD runs.
253	To summarize the experiments, adding a single Ge atom reduces carbon deposition by a
254	factor of ~three, but there is still significant carbon deposition for Pt4Ge, amounting to two or
255	three C atoms/cluster after 6 TPD runs. Nonetheless, the Pt4Ge clusters retain most of their
256	strong/high temperature ethylene binding sites, even after 21 TPD runs, while these the high
257	temperature sites are almost entirely suppressed for Pt4/alumina. Questions we seek to address
258	are: Why is carbon deposition only partly suppressed for Pt ₄ Ge/alumina? What is the nature of
259	the strong (high temperature) ethylene binding sites retained for Pt4Ge but lost for Pt4/alumina?
260	And why, despite retaining strong C ₂ D ₄ binding sites, does Pt ₄ Ge clusters nearly stop producing
261	D ₂ ? DFT was used to address these questions and also to examine the activity of the model
262	catalysts for the ethane-to-ethylene dehydrogenation reaction, which cannot be studied under
263	surface science conditions.
264	DFT of ethane, ethylene, and acetylene C-H activation barriers. Pt4Ge/alumina clusters
265	are found to strongly bind and activate ethane on all thermally accessible isomers (Fig. 2B), and

266 there are well over 50 configurations for C_2H_6 -Pt₄Ge/alumina with energies below 0.4 eV, i.e.,

267 with non-zero thermal populations at 700 K. All of the low-lying configurations appear to

268	activate ethane, as shown by C-H bond elongations ranging from 1.140 Å to 1.158 Å, compared
269	to the un-activated C-H bond length of 1.09 Å. Figure 5A illustrates two reactant configurations
270	and gives energies (horizontal lines) for a dozen more. The two illustrated are built on the GM
271	and on the second local minimum (LM2) for the bare Pt4Ge cluster. The LM2-based structures
272	are singled out for reasons that will be made clear shortly. Once adsorbates bind to LM2, the
273	structures are labeled LM', because their thermal accessibility is changed by the binding of
274	adsorbates. For all the lowest-energy configurations, the activation barriers for breaking the first
275	C-H bond are found to be ≤ 0.4 eV, well below the energy for desorption of ethane from the
276	clusters (≤ 0.6 eV, see Fig. S3 and text). Thus, DFT shows that ethane should bind to all isomers
277	of Pt ₄ Ge/alumina, and dehydrogenate in preference to desorbing. Another factor that tends to
278	promote dehydrogenation is that the H atom products readily recombine and desorb as H_2 at
279	moderate temperatures, as shown in Fig. 3E.
280	To examine the pathways that must ultimately lead to carbon deposition, we next performed
280 281	To examine the pathways that must ultimately lead to carbon deposition, we next performed DFT calculations of ethylene and acetylene binding and dehydrogenation on the thermally-
280 281 282	To examine the pathways that must ultimately lead to carbon deposition, we next performed DFT calculations of ethylene and acetylene binding and dehydrogenation on the thermally- accessible isomers of the Pt ₄ Ge clusters (Figs. 5B and 5C). Note that adsorbates can bind with
280 281 282 283	To examine the pathways that must ultimately lead to carbon deposition, we next performed DFT calculations of ethylene and acetylene binding and dehydrogenation on the thermally- accessible isomers of the Pt ₄ Ge clusters (Figs. 5B and 5C). Note that adsorbates can bind with different energies on different cluster isomers, which can significantly change isomer
280 281 282 283 284	To examine the pathways that must ultimately lead to carbon deposition, we next performed DFT calculations of ethylene and acetylene binding and dehydrogenation on the thermally- accessible isomers of the Pt ₄ Ge clusters (Figs. 5B and 5C). Note that adsorbates can bind with different energies on different cluster isomers, which can significantly change isomer populations, with important effects on the mechanism. We found that ethylene predominantly
280 281 282 283 284 285	To examine the pathways that must ultimately lead to carbon deposition, we next performed DFT calculations of ethylene and acetylene binding and dehydrogenation on the thermally- accessible isomers of the Pt ₄ Ge clusters (Figs. 5B and 5C). Note that adsorbates can bind with different energies on different cluster isomers, which can significantly change isomer populations, with important effects on the mechanism. We found that ethylene predominantly binds to the Pt ₄ Ge clusters (including the most abundant GM) in the π -mode, i.e. with the
280 281 282 283 284 285 286	To examine the pathways that must ultimately lead to carbon deposition, we next performed DFT calculations of ethylene and acetylene binding and dehydrogenation on the thermally- accessible isomers of the Pt ₄ Ge clusters (Figs. 5B and 5C). Note that adsorbates can bind with different energies on different cluster isomers, which can significantly change isomer populations, with important effects on the mechanism. We found that ethylene predominantly binds to the Pt ₄ Ge clusters (including the most abundant GM) in the π -mode, i.e. with the ethylene π bond coordinated to a single Pt atom, retaining the C sp ² -hybridization. The barriers
280 281 282 283 284 285 286 287	To examine the pathways that must ultimately lead to carbon deposition, we next performed DFT calculations of ethylene and acetylene binding and dehydrogenation on the thermally- accessible isomers of the Pt ₄ Ge clusters (Figs. 5B and 5C). Note that adsorbates can bind with different energies on different cluster isomers, which can significantly change isomer populations, with important effects on the mechanism. We found that ethylene predominantly binds to the Pt ₄ Ge clusters (including the most abundant GM) in the π -mode, i.e. with the ethylene π bond coordinated to a single Pt atom, retaining the C sp ² -hybridization. The barriers for such π -mode-bound ethylene to undergo C-H dissociation are higher than the desorption
280 281 282 283 284 285 286 287 288	To examine the pathways that must ultimately lead to carbon deposition, we next performed DFT calculations of ethylene and acetylene binding and dehydrogenation on the thermally- accessible isomers of the Pt ₄ Ge clusters (Figs. 5B and 5C). Note that adsorbates can bind with different energies on different cluster isomers, which can significantly change isomer populations, with important effects on the mechanism. We found that ethylene predominantly binds to the Pt ₄ Ge clusters (including the most abundant GM) in the π -mode, i.e. with the ethylene π bond coordinated to a single Pt atom, retaining the C sp ² -hybridization. The barriers for such π -mode-bound ethylene to undergo C-H dissociation are higher than the desorption energies, and thus π -mode-bound ethylene is predicted to mostly desorb intact, rather than
280 281 282 283 284 285 286 287 288 289	To examine the pathways that must ultimately lead to carbon deposition, we next performed DFT calculations of ethylene and acetylene binding and dehydrogenation on the thermally- accessible isomers of the Pt ₄ Ge clusters (Figs. 5B and 5C). Note that adsorbates can bind with different energies on different cluster isomers, which can significantly change isomer populations, with important effects on the mechanism. We found that ethylene predominantly binds to the Pt ₄ Ge clusters (including the most abundant GM) in the π -mode, i.e. with the ethylene π bond coordinated to a single Pt atom, retaining the C sp ² -hybridization. The barriers for such π -mode-bound ethylene to undergo C-H dissociation are higher than the desorption energies, and thus π -mode-bound ethylene is predicted to mostly desorb intact, rather than undergoing further dehydrogenation, consistent with the small D ₂ desorption branching observed
280 281 282 283 284 285 286 287 288 289 290	To examine the pathways that must ultimately lead to carbon deposition, we next performed DFT calculations of ethylene and acetylene binding and dehydrogenation on the thermally- accessible isomers of the Pt ₄ Ge clusters (Figs. 5B and 5C). Note that adsorbates can bind with different energies on different cluster isomers, which can significantly change isomer populations, with important effects on the mechanism. We found that ethylene predominantly binds to the Pt ₄ Ge clusters (including the most abundant GM) in the π -mode, i.e. with the ethylene π bond coordinated to a single Pt atom, retaining the C sp ² -hybridization. The barriers for such π -mode-bound ethylene to undergo C-H dissociation are higher than the desorption energies, and thus π -mode-bound ethylene is predicted to mostly desorb intact, rather than undergoing further dehydrogenation, consistent with the small D ₂ desorption branching observed for the Pt ₄ Ge/alumina catalyst. Importantly, however, one of the thermally-accessible isomers of

292	(Fig. 5B), and in this configuration the barrier to C-H dissociation is significantly lower than in
293	any of the π -mode-bound configurations. LM2 for the bare cluster has P_{700K} of only 0.3% – far
294	too small to account for the amount of D_2 desorption observed during TPD. However, the
295	ethylene di- σ bond in LM' is strong, stabilizing LM' and increasing its P _{700K} to ~3%.
296	We propose that dehydrogenation on an isomer with small, but significant population,
297	accounts for carbon deposition being only partly suppressed for Pt4Ge/alumina. Specifically,
298	during each TPD cycle, most of the Pt ₄ Ge would desorb C ₂ D ₄ intact, but the small fraction in
299	LM' configurations would dehydrogenate C_2D_4 , giving rise to the observed small D_2 signals.
300	Isomerization between the thermally accessible isomers within the ensemble ensures that LM' is
301	re-populated each TPD cycle, thus LM' acts as a "gateway" isomer that keeps dehydrogenating
302	ethylene on a fraction of the cluster population during repeated TPD cycling. We expect that all
303	of the clusters eventually pass through this gateway during repeated TPD cycling, and become
304	coked. The calculated population of the C ₂ D ₄ -LM' isomer (\sim 3%) is smaller than the population
305	(~25%) suggested by D_2 TPD signal, however, we note that isomer populations depend
306	exponentially on their energies, thus amplifying the effects of small DFT errors.
307	For coke to form, dehydrogenation must proceed further, beyond acetylene. With acetylene
308	bound to Pt ₄ Ge (Fig. 5C), the isomer populations adjust again: the LM' isomer drops even
309	further in energy relative to the GM, such that its P_{700K} increases to ~10% of the total population.
310	The population dehydrogenates acetylene with a high propensity, rather than desorbing it, as
311	suggested by the fact that in a number of the low-lying isomers of C ₂ H ₂ -Pt ₄ Ge/alumina,
312	acetylene dehydrogenates spontaneously (Fig. S5). For the thermally accessible isomers in
313	which C ₂ H ₂ remains intact, the computed first C-H dissociation barriers are well below the
314	desorption energies for intact acetylene, which exceed 2 eV from all isomers (Fig. 5C). Notably,
315	LM'-based isomers continue to dehydrogenate more aggressively than GM-based isomers,

316	judging by the computed barriers, and new Pt4Ge core isomers are stabilized due to the strong
317	binding of acetylene, provide lower-barrier routes for dehydrogenation (Fig. 5C, dashed lines).
318	Hence, theory predicts that once acetylene forms on the Pt ₄ Ge cluster, regardless of the isomer, it
319	will always dehydrogenate, though higher-energy isomers will dehydrogenate at lower
320	temperatures, some with dehydrogenation barriers less than 1 eV. This prediction is consistent
321	with the observation that no intact acetylene desorption is ever seen for Pt4Ge/alumina in the
322	experiments (Fig. S6). Thus, in ethylene TPD (and in the ethane-to-ethylene reaction), we
323	predict that Ge addition largely, but not completely, suppresses carbon deposition, such that in
324	repeated TPD cycles (or long reaction times) the clusters will slowly all become coked by at least
325	a pair of carbon atoms, with the LM' isomer serving as a gateway to coking.
326	To assess the favorability of dehydrogenation versus C-C bond breaking (cracking), we
327	computed the energetics (and barriers) of cracking compared to C-H activation. For the Pt4Ge
328	cluster, we found no cracking pathways that could compete with C-H activation either
329	thermodynamically or kinetically. The single structure that might compete is shown in Fig. S4,
330	however, but it is both thermodynamically more uphill than any C-H activated endpoints and has
331	a higher barrier than any of the LM' dehydrogenation barriers.
332	The next question posed by the experiments is how Pt ₄ Ge/alumina retains its high-
333	temperature ethylene binding sites after 21 TPDs, even though the C 1s XPS and ISS results
334	indicated significant carbon deposition. The DFT results indicate that once dehydrogenation has
335	gone beyond ethylene, it should proceed to completion, depositing a pair of C atoms. Therefore,
336	we study the Pt_4GeC_2 /alumina system with DFT, finding, surprisingly, that only a single Pt_4GeC_2
337	isomer was thermally accessible (Fig. 6A). This structure is recognizably a relative of LM' that
338	has incorporated two carbon atoms as an intact C_2 unit into the middle of the cluster, maximizing
339	the number of Pt-C bonds. Theory thus predicts that all the Pt4Ge clusters will eventually reach

this single Pt₄GeC₂ structure as they coke via the LM' gateway isomer. Because the carbon is
located in the center of the Pt₄ ring, it does not physically block any Pt sites, in agreement with
the observed minimal Pt ISS attenuation.

343 The presence of C₂ does, however, alter the electronic structure of the cluster, apparently 344 stabilizing the system, as it collapses the Pt₄Ge isomer distribution to just the one structure in 345 Fig. 6A - a thermodynamic sink. The C₂ unit acts as an oxidant, developing a net negative 346 charge of -0.42 e, while the Ge atom has a +0.80 e positive charge, i.e. it loses further electron 347 density compared to Ge in Pt₄Ge. The overall charge on the Pt₄ moiety remains negative, 348 decreased slightly from the values typical for Pt₄Ge isomers, but is still higher than that for 349 Pt₄/alumina (Figs. 2A and 6A). The interaction of C₂ with Pt₄Ge is strikingly different from its 350 interaction with Pt₄, as shown in Fig. S7. To investigate the electronic structure differences 351 between the Pt₄C₂ and Pt₄GeC₂ clusters in more detail we calculated the molecular orbitals 352 (MOs) of unsupported anionic gas-phase models in which the coordinates of all atoms were held 353 fixed at values determined for the supported clusters (Fig. S8 A and B). These minimal models 354 are validated by their Bader charge distributions, which show the same trends as their supported 355 counterparts^{24,25}. The MO diagrams (Fig. S8C) show that the Ge atom in Pt₄GeC₂ is in the +2356 oxidation state; the first three unoccupied MOs are all Ge-Pt antibonding combinations with 357 predominant Ge 4p character, while the Ge 4s-based MO is found far below the HOMO in 358 energy. Of further interest is the LUMO of Pt₄C₂, which corresponds to the HOMO in Pt₄GeC₂ 359 after accepting an electron pair from Ge. This orbital has clear C-C π bonding character, so the 360 effect of adding Ge to Pt₄C₂ is to strengthen the C-C bonding in the partially coked cluster. 361 While Pt₄C₂ and Pt₄GeC₂ are structurally similar, have similar total amounts of electron 362 transfer from the support, and feature the partially negatively charged C₂ unit, they differ in the

363 source of electron transfer to C₂: In Pt₄GeC₂, C₂ receives electrons largely from Ge, leaving Pt

364	still quite anionic. In Pt ₄ C ₂ , C ₂ draws electrons from Pt, leaving it closer to the charge neutral
365	state. Thus, it appears that in Pt ₄ Ge/alumina, Ge and C ₂ are in a synergistic electronic
366	relationship that preserves the net negative charge on the Pt ₄ moiety. Hence, Pt sites are neither
367	blocked nor significantly changed electronically in Pt ₄ GeC ₂ /alumina as compared to Pt ₄ Ge, and
368	therefore, it is not surprising that Pt ₄ GeC ₂ retains the C ₂ D ₄ binding properties seen in the TPD.
369	Hence, we expect Pt ₄ GeC ₂ /alumina to exhibit the catalytic activity and selectivity comparable to
370	those of Pt ₄ Ge/alumina.

371 The important remaining questions are whether Pt_4GeC_2 /alumina is still active for ethane-to-372 ethylene dehydrogenation, and whether it is selective against additional carbon deposition, 373 thereby resisting deactivation. Ethane dehydrogenation on Pt₄GeC₂ is addressed in Fig. 6B. 374 Binding of ethane and ethylene on the Pt₄GeC₂ cluster in various geometries was sampled (Figs. 375 S9 and S10), and then the barriers for C-H dissociation calculated. We again found that the 376 barriers to ethane C-H activation were generally lower than the desorption energies for ethane 377 from the cluster, suggesting that the Pt_4GeC_2 cluster should still be highly active for ethane to 378 ethylene dehydrogenation. To be stable with respect to further carbon deposition, it is necessary 379 that the resulting ethylene desorb instead of dehydrogenating further. For ethylene on 380 Pt_4GeC_2 /alumina (Figs. S10 and 6C), some configurations were calculated to have highly 381 endothermic (>1.2 eV) dehydrogenation, and in others, the activation barriers were high (>2 eV). 382 Some structures showed the possibility for dehydrogenation of ethylene, with barriers between 383 1.3-1.5 eV to access structures that are not highly endothermic, however, we note that these 384 barriers are higher than those for the dehydrogenation of ethylene on the Pt₄Ge cluster, indicating 385 that the Pt_4GeC_2 cluster is even more selective than the initial Pt_4Ge catalyst. Acetylene 386 dehydrogenation by Pt₄GeC₂ (Fig 6D) either retains very high barriers (>2 eV), or has such low 387 barriers for the reverse reaction of re-hydrogenation that dehydrogenation remains unlikely. We

388	note that there is only one thermally accessible acetylene binding mode (Fig 6D, left-most inset),
389	which involves the binding of acetylene to two Pt atoms, in a mixed π -/ σ -fashion, as well as
390	binding to a C in the C ₂ unit. This collapse of accessible modes is reminiscent of that of Pt ₄ Ge to
391	Pt ₄ GeC ₂ , which is likewise likely attributable to the formation of multiple Pt-C bonds, as well as
392	an additional C-C bond. It is therefore possible that the cluster cokes further, albeit at an even
393	slower rate once coke has begun to form, based on the heights of C-H activation barriers for
394	ethylene and acetylene on the Pt_4GeC_2 cluster.
395	In order to assess possible coke formation via cracking on Pt ₄ GeC ₂ , we also computed the
396	energetics of the C-C bond scission on relevant intermediates. A few of the pathways found are
397	thermodynamically viable, however the kinetics render them unlikely compared to either C-H
398	activation or desorption (Fig. S11), with the exception of acetylene cracking, where the barrier
399	remains ~ 0.3 eV higher than the lowest barrier for C-H activation.
400	Ultimately, however, DFT calculations suggest that while coke formation on the Pt4Ge
401	system is not avoided, the cluster nonetheless retains its active and selective nature towards
402	alkane dehydrogenation. Thus, the conclusion is that selectively-coked Pt ₄ GeC ₂ /alumina,
403	generated under reaction conditions by a self-limiting coking process, is the actual stable, active,
404	and selective catalyst for alkane-to-alkene dehydrogenation.
405	Conclusion
406	In summary, from the TPD, XPS, and DFT results, we found that Pt ₄ Ge/alumina promotes
407	intact desorption of ethylene in ethane dehydrogenation, largely, but not completely preventing
408	carbon deposition. There is one minority isomer of Pt ₄ Ge/alumina (LM2, or LM') that acts as a
409	gateway to carbon deposition on Pt4Ge/alumina, gradually resulting in all the Pt4Ge clusters
410	becoming coked. However, defying expectations, coking is not detrimental to catalytic activity,
411	and instead preserves the desired catalytic properties while dramatically enhancing cluster

412	catalyst stability. The coking is self-limiting: once Pt4GeC2/alumina forms, it dramatically				
413	decreases the further deposition of carbon by ethylene dehydrogenation via increased barriers for				
414	ethylene desorption, eventually reaching a steady-state catalyst where no further changes in the				
415	ethylene binding sites or D ₂ desorption are observed experimentally. Furthermore,				
416	Pt ₄ GeC ₂ /alumina still binds ethane strongly, with low activation barriers for ethane-to-ethylene				
417	conversion. Thus, the self-limiting coking of Pt4Ge improves the selectivity of the catalyst				
418	without degrading the activity. The Ge atom in the cluster interacts with the carbon in the coked				
419	cluster, stabilizing the cluster significantly, and prevents deactivation of the cluster via either				
420	physical blocking of sites, or dramatic change in electronic structure. This moderates the				
421	tendency of the cluster to coke, enabling the self-limiting behavior. The synergy between				
422	alloying and selective coking could be a way forward in creating ultra-stable sub-nano cluster				
423	catalysts for other reactions, solving the main limiting factor hampering wide-spread use of sub-				
424	nano clusters in catalysis.				
425	Methods				
426	Instrument design. Past publications detailed the instrument design and protocols used				
427	in this study 13,14,16 . Briefly, Pt_n^+ cluster ions were produced via laser ablation of a Pt target,				
428	collected by a series of quadrupole ion guides, mass selected by a quadruple mass filter, and then				
429	guided into the ultra-high vacuum system, where they were deposited on the catalyst support.				
430	The support consisted of a thin alumina film grown on a Ta (110) single crystal, which was				
431	mounted via heater wires to a cryostat allowing temperature control in the 120 K to 1000 K				

432 range. For cleaning, the sample could be heated by electron bombardment; from behind the

433 cryostat, a filament allowed bombardment of electrons to the single crystal, that could heat the

434 crystal to over 2100 K. At that temperature, the alumina film and any deposited clusters desorb,

435 and the sample was found to be clean by X-ray photoelectron spectroscopy (XPS).

436Alumina film growth. A fresh alumina film was grown on the clean Ta (110) single437crystal before each experiment, by evaporating Al in 5×10^{-6} Torr of O2 at sample temperature of438970 K. These growth conditions produce alumina with a distorted hexagonal lattice that439resembles both γ-alumina (111) or α-alumina (0001) 26,27 . Film thickness was monitored by XPS440and was in the 4 to 6 nm range, which we previously found to give chemistry independent of441film thickness 28 .

442 **Pt**₄/alumina sample preparation. Pt_n^+ clusters of the desired size, Pt_4 in this case, were 443 deposited on the alumina film with deposition energy of ~1 eV/atom and coverage equivalent to 444 ~0.1 monolayer (ML), corresponding to 1.5×10^{14} Pt atoms/cm². Just prior to deposition, the 445 sample was flashed to 750 K to desorb any adventitious adsorbates, and then cluster deposition 446 was carried out as the sample cooled, starting at 300 K.

447 Pt₄Ge/alumina sample preparation. The approach used to prepare alumina-supported 448 Pt_nGe_m clusters was similar to that used in previous studies of Pt_nSn_m/alumina and Pt_nSn_m/SiO_2 .^{13,29} In essence, the Pt clusters were used as seeds to obtain selective, self-limiting 449 450 deposition by exposing the Pt₄/alumina sample to a 60 L dose of GeCl₄ vapor, then to 6000 L of 451 H₂. The GeCl₄ preferentially binds to the Pt_n clusters, and the number of molecules that bind 452 depends on the size of the cluster. When exposed to H₂, Cl reacts and desorbs as HCl, which can 453 be detected mass spectrometrically. The final stage in the preparation was to heat the samples to 454 750K to desorb any remaining Cl atoms (as HCl) as well as to remove excess H atoms. The 455 samples were characterized by X-ray photoelectron spectroscopy (XPS). The Pt_n clusters were 456 found to "seed" preferential Ge deposition on the clusters, resulting one Ge atom for every Pt4 457 cluster deposited as discussed above. The non-specific Ge deposition at defects in the alumina 458 support film also occurs, but ethylene temperature programmed desorption, as shown above, of 459 the support-bound Ge atoms did not show evidence of any effects in the chemistry of ethylene

460dehydrogenation. To assess that the coke suppressing effects of Pt4Ge was not caused by the461presence of Pt4 clusters on the large amount of non-specific binding Ge on the alumina, 0.1 ML462Pt4 clusters were deposited onto the non-specific Ge dosed alumina surfaces (also 60 L of463GeCl4, then 6000 L of H2 dosed) followed by C2D4 TPD, dehydrogenation of ethylene was still464substantial and clear evidence of deactivation was observed with every TPD cycle, thus failing to465prevent sintering and coke formation as shown in the supportive information (Fig. S12).

466 **XPS quantification.** The Ge $2p_{3/2}$ peak intensity for Pt₄Ge was larger than that of pure 467 Ge, hence indicating Ge can be selective deposited on the surface of Pt₄ clusters. Samples were 468 analyzed via Al K α XPS and the raw intensities were corrected to account for the slight changes 469 in spectrometer sensitivity and X-ray intensity using the Al 2s intensities from the alumina 470 support (details in Supplementary Information).

471 **Temperature programmed desorption (TPD) experimental procedures.** TPD was 472 used to investigate C_2D_4 desorption and dehydrogenation/carbon deposition chemistry on the 473 samples. To start each TPD cycle, the samples was held at 150 K and exposed to a 10 L dose of 474 C_2D_4 , which is sufficient to saturate all binding sites that are stable at 150 K. The sample was 475 then heated at 3 K per second to 750 K, while monitoring desorption of species of interest 476 (principally C_2D_4 and D_2) using a differentially pumped mass spectrometer that views the sample 477 through a 2.5 mm aperture on a skimmer cone, positioned ~ 0.5 mm from the sample surface. 478 The relationship between numbers of molecules desorbing from the sample and numbers of ions 479 detected by the mass spectrometer was determined using a procedure described elsewhere¹³, 480 calibrated by leaking C₂D₄ or D₂ into the main UHV chamber at measured pressures to create 481 well defined fluxes of into the mass spectrometer.

482 Computational Methods. Global optimization of the Pt₄Ge/alumina structures was
 483 performed with plane-wave density functional theory (PW-DFT) using the Vienna Ab-initio

484	Simulation Package (VASP) ³⁰⁻³² with projector augmented wave (PAW) potentials ³³ , using the
485	PBE functional ³⁴ . The energy cutoff for the plane waves was chosen as 400.0 eV, and Gaussian
486	smearing with a sigma of 0.1 was used, while the electronic energy convergence parameter was
487	chosen as 10 ⁻⁶ eV. The D3 dispersion correction was used ³⁵ . The model substrate used was an α -
488	alumina(0001) surface with cell parameters of a = 4.807 Å and c = 13.126 Å, previously found 20
489	to best match the experimental support. The lower layers of the slab were kept fixed during
490	global optimization and subsequent adsorbate binding calculations. Only gamma-point sampling
491	was used due to the larger supercell used in the study.
492	Our initial Pt_4Ge structure geometries were obtained using our in-house code PGOPT ³⁶ ,
493	which uses a bond-length distribution (BLDA) algorithm in order to generate structure that are
494	faster to optimize and less likely to result in errors during optimization. Once $\sim 200 \text{ Pt}_4\text{Ge}$
495	structures had been generated, we took the thermally accessible structures within a cutoff of 0.4
496	eV, and generated a number of rough binding modes of C ₂ H ₆ , C ₂ H ₄ , and C ₂ H ₂ using PGOPT,
497	which we later refined with VASP local optimizations to obtain the final binding modes. The
498	final ensemble of thermally-accessible catalyst states was computed for the initial cluster
499	structures, and re-computed for every intermediate on the reaction profile, by weighting the
500	optimized structures by the Boltzmann probability to be occupied at 700 K, based on DFT
501	electronic energies.
502	The Pt ₄ GeC ₂ structures were generated from the thermally accessible acetylene binding
503	modes to Pt ₄ Ge by removing the hydrogens then optimizing the resulting structures with DFT.

Bader charge analysis ³⁷⁻⁴⁰ was performed to obtain the partial atomic charges. C-H activation
barriers for low-lying and important binding modes were calculated using the climbing-image
nudged elastic band (CI-NEB) method ³⁹ and optimized until the force on all of the images was
less than 0.02 eV/Å. For ethylene and acetylene, multiple non-equivalent C-H bond breaking

508 events were attempted, focusing on the hydrogens closest to Pt atoms. For ethane, only the

509 elongated activated C-H bonds were broken.

- 510 DFT calculations on gas-phase models were performed with the Amsterdam Density
- 511 Functional (ADF) package, version 2019.304⁴¹. The PBE functional was used for all
- 512 calculations. Slater-type basis sets of triple- ζ + polarization quality were used on all atoms, with
- 513 orbitals up to 4d (Pt), 3d (Ge) and 1s (C) included in the frozen core⁴².
- 514
- 515

523

524

516 **References and Notes**

- 5171Oliver-Meseguer, J., Cabrero-Antonino, J. R., Domínguez, I., Leyva-Pérez, A. & Corma, A. Small gold518clusters formed in solution give reaction turnover numbers of 107 at room temperature. Science 338,5191452-1455 (2012).
- 5202Zandkarimi, B. & Alexandrova, A. N. Dynamics of Subnanometer Pt Clusters Can Break the Scaling521Relationships in Catalysis. Journal of Physical Chemistry Letters 10, 460-467,522doi:10.1021/acs.jpclett.8b03680 (2019).
 - 3 Joo, S. H. *et al.* Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. *Nature Materials* **8**, 126, doi:10.1038/nmat2329
- 525 <u>https://www.nature.com/articles/nmat2329#supplementary-information</u> (2008).
- 5264Bhasin, M., McCain, J., Vora, B., Imai, T. & Pujado, P. Dehydrogenation and oxydehydrogenation of
paraffins to olefins. *Applied Catalysis A: General* **221**, 397-419 (2001).
- 5285Nie, L., Meng, A., Yu, J. & Jaroniec, M. Hierarchically macro-mesoporous Pt/γ-Al 2 O 3 composite529microspheres for efficient formaldehyde oxidation at room temperature. Scientific reports 3, 1-6530(2013).
- 5316Yang, D. *et al.* The preparation of hierarchical Pt/ZSM-5 catalysts and their performance for toluene532catalytic combustion. *Microporous and Mesoporous Materials* 296, 109802 (2020).
- 5337Musselwhite, N., Na, K., Sabyrov, K., Alayoglu, S. & Somorjai, G. A. Mesoporous aluminosilicate catalysts534for the selective isomerization of n-Hexane: the roles of surface acidity and platinum metal. Journal of535the American Chemical Society 137, 10231-10237 (2015).
- 5368Lu, J., Elam, J. W. & Stair, P. C. Synthesis and Stabilization of Supported Metal Catalysts by Atomic537Layer Deposition. Acc. Chem. Res. 46, 1806-1815, doi:10.1021/ar300229c (2013).
- 5389Lu, J. L. *et al.* Coking- and Sintering-Resistant Palladium Catalysts Achieved Through Atomic Layer539Deposition. *Science* 335, 1205-1208 (2012).
- 54010Gorey, T. J. *et al.* Selective Growth of Al₂O₃ on Size-selected Platinum Clusters by Atomic Layer541Deposition. *Surf. Sci.* 691, 121485, doi:10.1016/j.susc.2019.121485 (2020).
- 542 11 Pham, H. N., Sattler, J. J., Weckhuysen, B. M. & Datye, A. K. Role of Sn in the Regeneration of Pt/γ543 Al₂O₃ Light Alkane Dehydrogenation Catalysts. *ACS Catal.* 6, 2257-2264, doi:10.1021/acscatal.5b02917
 544 (2016).
- 54512Iglesias-Juez, A. *et al.* A Combined in situ Time-resolved UV–Vis, Raman and High-energy Resolution546X-ray Absorption Spectroscopy Study on the Deactivation Behavior of Pt and PtSn Propane

547 Dehydrogenation Catalysts under Industrial Reaction Conditions. J. Catal. 276, 268-279, 548 doi:10.1016/j.jcat.2010.09.018 (2010). 549 Li, G. et al. Sn-modification of Pt₇/Alumina Model Catalysts: Suppression of Carbon Deposition and 13 550 Enhanced Thermal Stability. J. Chem. Phys. 152, 024702, doi:10.1063/1.5129686 (2020). 551 14 Gorey, T. J. et al. Coking-Resistant Sub-Nano Dehydrogenation Catalysts: Pt n Sn x/SiO2 (n= 4, 7). 552 ACS Catalysis 10, 4543-4558 (2020). 553 15 Zandkarimi, B. et al. Alloying with Sn suppresses sintering of size-selected subnano Pt clusters on SiO2 554 with and without adsorbates. Chemistry of Materials 32, 8595-8605 (2020). 555 16 Ha, M.-A., Baxter, E. T., Cass, A. C., L.Anderson, S. & Alexandrova, A. N. Boron Switch for Selectivity of 556 Catalytic Dehydrogenation on Size-Selected Pt Clusters on Al₂O₃. J. Am. Chem. Soc. 139, 11568-11575, 557 doi:10.1021/jacs.7b05894 (2017). 558 17 Jimenez-Izal, E., Liu, J.-Y. & Alexandrova, A. Germanium as Key Dopant to Boost the Catalytic 559 Performance of Small Platinum Clusters for Alkane Dehydrogenation. J. Catal. 374, 93-100, 560 doi:10.1016/j.jcat.2019.04.034 (2019). 561 18 Mariscal, R., Fierro, J. L., Yori, J. C., Parera, J. M. & Grau, J. M. Evolution of the properties of PtGe/Al2O3 562 reforming catalysts with Ge content. Applied Catalysis A: General 327, 123-131 (2007). 563 19 Ballarini, A. D., de Miguel, S., Castro, A. & Scelza, O. n-decane dehydrogenation on bimetallic PtSn 564 and PtGe catalysts prepared by dip-coating. *Catalysis in Industry* **5**, 283-296, 565 doi:10.1134/S2070050413040028 (2013). 566 20 Baxter, E. T., Ha, M.-A., Alexandrova, A. & Anderson, S. L. Ethylene Dehydrogenation on Pt47.8 Clusters 567 on Al₂O₃: Strong Cluster-Size Dependence Linked to Preferred Catalyst Morphologies. ACS Catal. 7, 568 3322-3335, doi:10.1021/acscatal.7b00409 (2017). 569 21 Redhead, Ρ. Thermal desorption 12, 203-211, Α. of gases. Vacuum 570 doi:http://dx.doi.org/10.1016/0042-207X(62)90978-8 (1962). 571 Yeh, J. J. & Lindau, I. Atomic Subshell Photoionization Cross Sections and Asymmetry Parameters: 1< 22 572 Z < 103. Atomic Data and Nuclear Data Tables 32, 1-155 (1985). 573 23 Dai, Y. et al. Inherent Size Effects on XANES of Nanometer Metal Clusters: Size-Selected Platinum 574 Clusters on Silica. J. Phys. Chem. C. 121, 361-374, doi:10.1021/acs.jpcc.6b10167 (2017). 575 24 Rodríguez, J. I. et al. A high performance grid-based algorithm for computing QTAIM properties. 576 Chemical Physics Letters 472, 149-152 (2009). 577 25 Rodríguez, J. I. An efficient method for computing the QTAIM topology of a scalar field: The electron 578 density case. Journal of computational chemistry 34, 681-686 (2013). 579 26 Madey, T. E. in *Chemisorption and Reactivity on Supported Clusters and Thin Films* Vol. 331 (eds 580 Richard M Lambert & Gianfranco Pacchioni) 105-116 (Kluwer Academic Publishers, 1997). 581 27 Chen, P. J. & Goodman, D. W. Epitaxial growth of ultrathin Al₂O₃ films on Ta(110). Surf. Sci. 312, L767-582 L773 (1994). 583 28 Kane, M. D., Roberts, F. S. & Anderson, S. L. Effects of Alumina Thickness on CO Oxidation Activity over 584 Pd₂₀/Alumina/Re(0001): Correlated Effects of Alumina Electronic Properties and Pd₂₀ Geometry on 585 Activity. J. Phys. Chem. C. 119, 1359–1375, doi:10.1021/jp5093543 (2015). 586 29 Gorey, T. J. et al. Preparation of Size and Composition Controlled Pt_nSn_x/SiO₂ (n = 4, 7, 24) Bimetallic 587 Model Catalysts with Atomic Layer Deposition. J. Phys. Chem. C. 123, 16194-16209, 588 doi:10.1021/acs.jpcc.9b02745 (2019). 589 30 Kresse, G. & Hafner, J. Ab initio Molecular Dynamics for Liquid Metals. Phys. Rev. B 47, 558, 590 doi:10.1103/physrevb.47.558 (1993). 591 31 Kresse, G. & Furthmüller, J. Efficient Iterative Schemes for ab initio Total-energy Calculations using a 592 Plane-wave Basis Set. Phys. Rev. B 54, 11169, doi:10.1103/PhysRevB.54.11169 (1996). 593 32 Kresse, G. & Furthmüller, J. Efficiency of ab-initio Total Energy Calculations for Metals and 594 Semiconductors using a Plane-wave Basis Set. Comput. Mater. Sci. 6, 15-50, doi:10.1016/0927-

595		0256(96)00008-0 (1996).
596	33	Kresse, G. & Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-wave Method.
597		<i>Phys. Rev. B.</i> 59 , 1758-1775, doi:10.1103/PhysRevB.59.1758 (1999).
598	34	Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev.
599		<i>Lett.</i> 77 , 3865, doi:10.1103/PhysRevLett.77.3865 (1996).
600	35	Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of
601		density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical
602		<i>Physics</i> 132 , 154104, doi:10.1063/1.3382344 (2010).
603	36	Zhai, H. & Alexandrova, A. N. Ensemble-Average Representation of Pt Clusters in Conditions of
604		Catalysis Accessed through GPU Accelerated Deep Neural Network Fitting Global Optimization. J.
605		<i>Chem. Theory Comput.</i> 12 , 6213-6226, doi:10.1021/acs.jctc.6b00994 (2016).
606	37	Tang, W., Sanville, E. & Henkelman, G. A Grid-based Bader Analysis Algorithm without Lattice Bias. J.
607		<i>Condens. Matter. Phys.</i> 21 , 084204, doi:10.1088/0953-8984/21/8/084204 (2009).
608	38	Sanville, E., Kenny, S. D., Smith, R. & Henkelman, G. Improved Grid-based Algorithm for Bader Charge
609		Allocation. <i>J. Comput. Chem.</i> 28, 899-908, doi:10.1002/jcc.20575 (2007).
610	39	Henkelman, G., Uberuaga, B. P. & Jónsson, H. A Climbing Image Nudged Elastic Band Method for
611		Finding Saddle Points and Minimum Energy Paths. J. Chem. Phys. 113, 9901-9904,
612		doi:10.1063/1.1329672 (2000).
613	40	Yu, M. & Trinkle, D. R. Accurate and Efficient Algorithm for Bader Charge Integration. <i>J. Chem. Phys.</i>
614		134 , 064111, doi:10.1063/1.3553716 (2011).
615	41	Te Velde, G. t. <i>et al.</i> Chemistry with ADF. <i>Journal of Computational Chemistry</i> 22 , 931-967 (2001).
616	42	Van Lenthe, E. & Baerends, E. J. Optimized Slater-type basis sets for the elements 1–118. <i>Journal of</i>
61/		<i>computational chemistry</i> 24 , 1142-1156 (2003).
618		
619	Ackn	owledgments
620		The funding is from Air Force Office of Scientific Research grant AFOSR FA9550-19-1-
621	0261.	We thank Marc Malek and Autumn Fuchs for their assistance with some experiments and
622	Brian	Roy Van Devener for collecting the TEM images.
623	Auth	or Contributions
624		ANA and SLA conceived and supervised the research, reviewed and edited the paper. GL
625	and P	P wrote the original draft and developed the methodology. GL performed the experimental

- 626 work. PP conducted all DFT calculations. TM assisted in obtaining the initial experimental
- 627 conditions and conducted TEM experiments.
- 628 **Competing interests**
- 629 Authors declare that they have no competing interests.

630 Additional information

631 Supplementary Information

- 632 **Data availability** Data behind all Figs. in the paper will be uploaded to a publically available
- 633 archive with link provided at time of publication.
- 634 **Correspondence and requests for materials** should be addressed to Anastassia N. Alexandrova
- and Scott L. Anderson.

637 Fig. 1 XPS showing selective binding of Ge to Pt clusters. (A) XPS of Pt 4d 5/2 and 3/2 of

638 Pt₄Ge/alumina, red colored peak is from Mg contamination in the Al source. **(B)** Ge 2p 3/2 peak

639 for Ge/alumina in red and Pt₄Ge/alumina in blue.

642structure. (A) Computed thermally accessible structures of Pt₄/alumina. (B) Computed643thermally accessible structures of Pt₄Ge/alumina. The spin state, net support-to-cluster electron644transfer (ΔQ), Bader charges on each cluster atom, and the thermal population at 700 K (P_{700K})645are shown. GM = global minimum. For each local minimum (LM), the energy above the GM646(ΔE) is given.

Fig. 4 Low energy He⁺ ion scattering spectroscopy (ISS) showing relative intensities of Pt

657 and Ge. (A) as deposited Pt₄/alumina, (B) Pt₄/alumina post 750 K heat, inset shows the raw ISS

 $at \sim 30 \ \mu As \ exposure. \ (C) \ Pt_4/alumina \ post \ 1 \ C_2D_4 \ TPD, \ (D) \ Pt_4/alumina \ post \ 6 \ C_2D_4 \ TPDs, \ (E)$

As-prepared Pt₄Ge/alumina, (F) Pt₄Ge/alumina post 750 K heat, inset shows the raw ISS at ~ 30

660 μ As exposure. (G) Pt₄Ge/alumina post 1 C₂D₄ TPD and (H) Pt₄Ge/alumina post 6 C₂D₄ TPDs.

661

668 Fig. 6 Representative ethane, ethylene, and acetylene C-H activation barriers on Pt₄GeC₂,

669 the steady-state catalyst. (a) the one thermally accessible Pt_4GeC_2 isomer, and (b)

- 670 representative C-H activation barriers for ethane, (c) ethylene, and (d) acetylene, with certain key
- 671 structures inset.