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Abstract 

Ab initio molecular dynamics (AIMD) is an established method to reveal the 

reactive dynamics of complex systems. However, the computational cost of AIMD 

restricts the explorable length and time scales to a great extent. Here, we develop a 

fundamentally different approach using molecular dynamics simulations powered by a 

neural network potential to investigate complex reaction networks. This potential is 

trained via a workflow combining AIMD and interactive molecular dynamics in virtual 

reality (VRMD) to accelerate the sampling of a rare reactive process. The capability of 

the methodology is demonstrated by achieving a panoramic visualization of the 

complex reaction networks for decomposition of a novel high explosive (ICM-102), 

without any predefined reaction coordinates. The study leads to the discovery of new 

pathways that would be difficult to uncover employing established methods. These 

results highlight the power of neural network-based molecular dynamics simulations 

for exploration of complex reaction mechanisms under extreme conditions at the ab 

initio level, pushing the limit of theoretical and computational chemistry towards the 

realism and fidelity of experiments. 
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Introduction 

High explosives (HEs) have contributed enormously to the prosperity of 

humankind since the invention of black powder in China and the era of nitroglycerin 

brought by Alfred Nobel[1,2]. In an HE, the chemical energy stored in the bonds of the 

explosive material is converted into kinetic energy of the gaseous products via chemical 

reactions. A quantitative as well as qualitative understanding of the complex reaction 

network is critical to the application of HE. Such a reaction network involves thousands 

of elementary reactions that take place over a wide range of time scales. In addition, 

the reactions usually occur in extreme conditions (i.e., > 10 GPa and > 3000 K[3]), 

which makes it very difficult or even impossible to obtain the detailed reaction 

mechanisms of HE materials using experimental or conventional simulation approaches. 

In recent decades, ab initio molecular dynamics (AIMD) simulations[4] have been 

applied to gain atomic insights into HE materials[4–10]. In an AIMD simulation, an 

HE material is represented by an atomic model with interatomic forces determined by 

electronic structure calculations, and the Newtonian equations of motion are solved to 

obtain the dynamic trajectories. Thus, AIMD allows chemical reactions (i.e. bond 

breaking and forming events) to occur and accounts for electronic polarization effects. 

The initiation reaction of HE involves coupled processes subject to mechanical, thermal, 

and chemical stimulation. With the AIMD method, the response of HE material to 

stimulation and the subsequent reaction mechanism can, in principle, be captured. 

AIMD has been applied to investigate the shock-induced mechanical response and 
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initiation of a detonation in numerous studies, providing fundamental insight into the 

microscopic mechanisms of such complex phenomena. However, the computational 

cost of AIMD is so high that the accessible system size and time scale in simulations 

are limited to several hundred atoms and dozens of picoseconds, respectively. 

Recently, artificial neural networks (NNs) have been applied to construct potential 

energy surfaces (PESs) in a fully data-driven manner, where the PES is abstracted from 

a well-selected training dataset using suitable functional expressions[11]. Several 

formulations, such as DeepMD[12], GAP[13], sGDML[14], and SchNet[15], have been 

proposed to develop NN potentials and have achieved success in the modeling of 

water[16], small organic molecules[14], and metal materials[17]. The performance of 

NN potential depends on the completeness of the training dataset[18]. In other words, 

NN does well in finding solutions in the function space of the training dataset but might 

fail in configurations outside the dataset. Therefore, the quality of the dataset is critical 

to developing NN potentials, and it is recommended to include all the critical 

configurations during potential reaction processes[19]. MD sampling is the most 

straightforward way to construct the training dataset, and the evolution of energies and 

forces are recorded as training datasets[20]. Various bond dissociations and 

recombinations exist in a reactive system, e.g., the decomposition of HE materials. Such 

processes cannot be sampled appropriately in classical MD sampling due to the high 

energy barriers. Enhanced sampling techniques, such as metadynamics[21,22],[19], 

could improve the sampling quality in the potential reaction coordinates. The concept 
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of interactive molecular dynamics in virtual reality (VRMD) was first proposed by 

Glowacki et al. [23] and applied to sample the PES of a simple hydrogen abstraction 

reaction[24,25]. This method has been proven to accelerate the intelligent curation of 

high-quality datasets. In a VRMD simulation, VR forces are implemented on atoms to 

accelerate the reaction processes, similar to metadynamics. 

In this paper, we develop a neural network-based molecular dynamics (NNMD) 

method for investigation into the reaction dynamics of a novel high explosive (ICM-

102)[26]. The training dataset is derived from both AIMD and VRMD simulations. The 

configuration spaces of datasets from different sampling methods are compared to yield 

a good NN potential. A set of MD simulations is performed to explore the elementary 

reactions in the decomposition of ICM-102 molecules. A panoramic visualization of the 

complex reaction networks is abstracted, and new pathways are identified from atomic 

trajectories for the first time. 

Computational Methods 

Workflow of VR-enhanced NN potential 

The full dataset consists of configurations sampled from AIMD and VRMD 

methods. A detailed description of the training dataset is shown in Table S1. As shown 

in Fig. 1, the following training procedures are performed: 

(i) Performing AIMD simulation in the NVT ensemble at multiple temperatures 

(300, 1000, 2000, 3000, 4000 K); 

(ii) Selecting additional configurations with an active learning strategy; 
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(iii) Extracting the configurations of potential chemical reactions with the VRMD 

method. 

 

Fig. 1 Schematic illustration of the workflow for NN potential training. 

DFT and AIMD Calculations 

DFT calculations were performed using the CP2K package[27]. Core electrons 

were treated using Goedecker−Teter−Hutter (GTH) pseudopotentials and the Perdew 

Burke Ernzerhof generalized gradient approximation method[28,29]. The Grimme 

DFT-D3 method[30] was used to account for dispersion interactions. A double-zeta 

Gaussian basis set plus polarization (DZVP-MOLOPT)[31] was considered. AIMD 

calculations were performed for an ICM-102 system of 160 atoms using the Quickstep 

module in CP2K. In both cases, simulations were carried out at constant volume and 

temperature conditions with periodic boundary conditions. An integration time step of 

0.5 fs was used. 
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NN descriptor and training 

We trained NN potentials using the DeePMD-kit package[32,33]. The smooth 

version of the deep potential model is adopted with a cut-off radius of 6.0 Å[32]. To 

remove the discontinuity introduced by the cut-off, the 1/r term in the network 

construction is smoothly switched off by a cosine shape function from 1.0 Å to 6.0 Å. 

The filter (embedding) network has three layers with (25, 50, 100) nodes/layer, and the 

fitting net is composed of three layers, with 240 nodes each. The network is trained 

with the ADAM optimizer, with an exponentially decaying learning rate from 1.0 × 10-

3 to 5.0× 10-8. During the optimization process, the pre-factors in the loss function 

change from 1 to 10 and 1000 to 1 for the energy and force terms, respectively. The 

final NN model used for the production run was trained for 1.0 × 106 steps. Additional 

configurations were obtained using an active learning sampling procedure as 

implemented in the DP-GEN package[34]. Four NN potentials were trained on the same 

dataset with different initializations of weights and biases. NVT-MD simulations were 

performed at multiple temperatures (300, 3000, and 4000 K) using the LAMMPS 

package[35]. By comparing the structures from MD simulations, the agreement on the 

force predictions made by these potentials is used to select new configurations. When 

the deviation of NN prediction for one configuration was in the range of [0.4, 0.8] eV/Å, 

the corresponding structure was labeled as a candidate for the training set. The upper 

limit is used to filter nonphysical configurations[19]. 

 



 

8 
 

VRMD sampling with Manta 

Figure 2 illustrates the basic architecture, including multiple VR clients, a network 

server, and an MD simulator. The VR client renders the virtual reality environment and 

captures the user's actions using the Unity3D engine. The network server enables a 

mode of cloud computing to control information flow between the local VR client and 

the MD simulator hosted on a high-performance cluster. The MD simulator empowers 

Manta to conduct the real-time calculations of NNMD and integrate the interactive 

forces from the VR clients. Details of Manta implementation can be found in 

supplementary materials (Fig. S1). With Manta, users could explore the evolution of 

molecular structures along their intuitionistic reaction pathways, and corresponding 

configurations are recorded for further analysis. 

 

Fig. 2 General architecture of Manta. The core of Manta is built on an MD simulator 

solving the molecular interactions from internal and interactive forces. The front end of 

the VR client includes multiple VR helmets/handles allowing molecular visualization 

and interactions. A gateway and net command processor control the network 



 

9 
 

communication between the MD simulator and the VR client. 

Reaction network 

The reaction network was postprocessed using ReacNetGenerator by Zeng et al.[36] 

from the NNMD trajectories. All the species in the reaction network are clustered by 

their fingerprints using the scikit-learn package[37]. The fingerprints are defined by the 

molecular structure and calculated by RDKit[38]. The importance of each species is 

calculated according to the observed number that it occurs and is represented by the 

size of the dot. 

 

Results and discussion 

Sampling the PES with VRMD 

The decomposition of ICM-102 involves complex PESs, and VRMD is applied as 

an enhanced sampling method to potential reactions. To illustrate the effect of VR 

forces on the sampling processes, we first sample the reaction of a single ICM-102 

molecule. As shown in Fig. 3a and 1b, the ICM-102 molecule is visualized in the helmet 

screen. The user interacts with atoms using handles, where the movement of handles is 

translated as VR forces applied on atoms. In Fig. 3c, we select a reaction that involves 

the breakage of a C-N bond and the formation of a C-O bond. This reaction is a rare 

event hindered by the high energy barrier. As illustrated in Fig 3d, the PES from the 

initial state to the transition state is steep. With the aid of VR forces, the reactants 

overcome the high energy and undergo C-N bond scission. The full PES of this reaction 
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is plotted along the reaction coordinates in Fig. 3e; the lengths of the C-N and C-O 

bonds are represented by d1 and d2, respectively. There is a local minimum as the initial 

state in Fig. 3c at d1=1.40 Å and d2=2.28 Å. The other local minimum sits at d1=2.30 

Å and d2=1.36 Å, corresponding to the final state (Fig. 3c). The energy barrier 

corresponds to 138 kcal/mol. Several AIMD simulations are further performed for 10 

ps to sample the PES at 300-4000 K. It is found that most AIMD trajectories are 

distributed near the initial state. As the temperature increases, the distribution of 

configurations becomes wider. When the temperature exceeds 3000 K, a few 

configurations near the transition state and final state are sampled. The trajectories from 

VRMD are also mapped in Fig. 3e, which samples the whole reaction process. The 

above comparison illustrates that AIMD sampling is mainly trapped in low-energy 

regions, resulting in a limited number of reaction configurations. VRMD sampling 

could obtain the reaction event guided by human intuition that almost follows the 

minimum energy path (MEP). 
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Fig. 3 The VRMD sampling process. (a) The hardware for VRMD, including one 

helmet, two handles, and two detectors. (b) Snapshots of a single ICM-102 molecule in 

a VRMD environment. Red and blue arrows represent the moving direction of handles. 

(c) The reaction pathway involves the breakage of the N-O bond and the formation of 

the CO bond. Yellow and green halos represent VR forces applied by handles. (d) 

Illustration of VR forces applied on the potential energy surface. (e) Trajectory 

visualization sampled by VRMD (gray dots). The background is the potential energy 
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surface projected on the reaction coordinates of d1 and d2. The AIMD trajectories at 

temperatures of 300, 1000, 2000, 3000 and 4000 K are highlighted by blue, orange, 

green, red, and purple dots, respectively. 

Dataset exploration 

The performance of NN potential depends on the quality of the training dataset, 

which describes the chemical space of PES[18,39]. The whole training dataset of bulk 

ICM-102 molecules is constructed using both AIMD and VRMD sampling methods, 

and the detailed configurations are listed in Table S1. The structural landscapes of ICM-

102 decomposition are shown in Fig. 4a, where the molecular configurations are 

projected onto their first two principal components (PCs). The full configurations can 

be divided into crystal, partial decomposition, and gas species. The most common 

structure is the crystalline phase of ICM-102, represented by a sheet-like structure. As 

the decomposition reaction's starting point, the crystal group has the lowest potential 

energies, as expected. Along with the 1st principal component (PC1), crystalline ICM-

102 gradually turns into states undergoing partial decomposition. The molecules 

become irregular under thermal stimulation, and the loss of hydrogen atoms is observed. 

Further examining the configurations along PC1, small gas molecules, i.e., H2O, NO, 

NH2, HCN, are observed, suggesting that ICM-102 molecules have been entirely 

decomposed. Figure 4b shows the average molecular masses along PC1. When PC1 < 

-2, the average molecular mass is 202 a.u., corresponding to the mass of the ICM-102 

molecule. As PC1 increases, the molecular mass gradually decreases, indicating the 
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start of the decomposition reaction. Therefore, we conclude that PC1 refers to the 

overall reaction coordinate, where the initial stable reactants gain energy to overcome 

energy barriers and reach a stable product state. Then, the distributions of subsets are 

compared. The first subset is, in fact, obtained from AIMD simulations at 300-4000 K, 

combined with an active learning sampling strategy[40]. An additional dataset of 

VRMD is constructed from the intuition of the first author using an in-house VRMD 

simulator (Manta). It allows researchers to explore the configuration space of chemical 

reactions and performs expert-biased enhanced sampling on the targeted PES. In the 

VRMD dataset, reaction pathways include the transfer of hydrogen atoms between 

ICM-102 molecules, ring-opening reactions and the formation of gas molecules (Fig. 

S2b). A detailed distribution of each subset along PC1 and energy is included in Fig. 

S2. Similar to Fig. 3e, the range of the AIMD dataset increases with temperature, and 

the VRMD datasets cover the full range of PC1. Figure 4c shows the distribution 

density of configurations along PC1. The configurations of the AIMD dataset cluster in 

the range of [-2, 0], and high-energy configurations are less sampled due to the energy 

barriers. In other words, most of the configurations sampled by AIMD simulations are 

nonreactive (~70%). In contrast, the distribution of the VRMD dataset has two peaks. 

In particular, it includes more structures with high energies, which largely extends the 

boundary of PES sampling. Then, NN potentials are trained on different dataset 

configurations. Fig. S3 shows that the NN potentials trained on the AIMD+VRMD 

datasets have lower mean absolute errors (MAEs) than potentials trained on only the 
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AIMD dataset. This demonstrates that the final NN potential can perfectly reproduce 

the energy and forces in AIMD trajectories (Fig. S4). The configurations sampled by 

VRMD can be a good supplement for AIMD samples to create a balanced training set 

for model training. 

 

Fig. 4 Exploring the datasets of AIMD and VRMD. (a) Landscapes of the AIMD dataset 

for the decomposition of ICM-102 with principal component analysis (PCA). Each dot 

represents a configuration of 160 atoms. The colors refer to the atomic energy values. 

The inserts indicate representative snapshots of configurations. (b) The average 

molecular mass along the PC1. The vertical bars represent the standard deviations. (c) 

The distribution of AIMD and VRMD datasets. 

Reaction network of ICM-102 decomposition 

To capture the reactive dynamics of ICM-102 molecules, 100 ps MD simulations 

were performed using the new NN potential (e.g., case 4 in Table S2) with 64 ICM-102 

molecules at 3000 K. The species evolution during ICM-102 decomposition predicted 

by NN and AIMD are compared in Fig. S5. It is clear that NN agrees well with the 
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AIMD results, where ICM-102 molecules are rapidly consumed, and H2O is the main 

product. With the application of NN potential, the system size could be extended to 

thousands or even millions of atoms[41,42]. Compared to the large oscillation in the 

predicted species evolution of AIMD, NNMD simulates an eight-times larger system, 

resulting in smooth species evolution. Such a large system allows studies on the 

macroscopic nature of a statistical ensemble, which is beyond the ability of the 

traditional AIMD method. 

Figure 5 shows the decomposition of 64 ICM-102 molecules. The simulation 

reaches equilibrium after ~50 ps, where the main species include C4H5N6O4 (ICM-102), 

C4H5N6O4, H2O, NO, N2, CHNO, and CO2. The atomic trajectory is visualized by 

identifying the new product and highlighting these molecules in molecule-specific 

colors. As shown in Fig. 5a, most ICM-102 molecules are consumed within the first 1 

ps, and H2O and NO are subsequently observed. These species can be produced by 

direct bond dissociation from ICM-102 molecules. The formation of N2, CHNO, and 

CO2 requires ~5 ps to occur, and this cannot be observed from the short AIMD 

simulations, suggesting that the kinetics derived from AIMD might not represent the 

full reactive image (Fig. S5). 
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Fig. 5 Evolution of an NNMD simulation. (a) Evolution of major species. (b) Local 

snapshots of the formation of key species (only 1/8 of the system is shown). Left: The 

simulation begins with the hydrogen abstraction of ICM-102 molecules (blue) to form 

C4H5N6O4 (orange). Middle: small gas molecules exist (H2O, green; NO, red). Right: 

At longer simulation times, other gas species are observed (N2, purple; CHNO, brown; 

CO2, pink). 

In total, 5799 products are identified from the NNMD trajectories. Direct 

derivation of the reaction mechanism from thousands of products can be quite 

challenging. We propose an interactive reaction network to illustrate the detailed 

reaction mechanism. In Fig. 6, the full reaction network contains detailed pathways and 

intermediates. These intermediates are represented by fingerprints[38] and clustered 

into eight groups using the k-means clustering algorithm[43]. Groups 1 and 2 represent 
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ICM-102 and molecules produced by releasing H, O and OH radicals, respectively. 

Groups 3 and 4 share similar elemental compositions as groups 1 and 2 but with broken 

C-N rings. The decomposition of groups 5, 6, and 7 produces intermediates with a low 

H/O ratio (see Figure S6). Group 8 represents small gas products, including CHNO, 

H2O, OH, NO, and N2. These species are frequently involved in the reaction network 

as the product of many reaction pathways. There are two pathways for reactants to 

release the final gas products: group 1 => 2 => 8; group 1 => 3 and 4 => 5 and 6 => 7 

=> 8. The first pathway corresponds to reactions in early initiation (<1 ps) and produces 

molecules/radicals such as H2O, NO, OH and H. The second pathway requires a 

higher energy barrier and mainly occurs during 5-50 ps. 

 

Fig. 6 A panoramic visualization of the ICM-102 decomposition. Each dot and line 



 

18 
 

represent a species and a reaction between species, respectively. The dot size is 

proportional to the observed frequency of species in the network. Only species with a 

frequency higher than five are shown. The inserts show the representative molecular 

structure in each group. 

Derived from the overall ICM-102 decomposition (Fig. 6), the primary reaction 

pathways of ICM-102 and the formation of H2O are constructed in Fig. 7. ICM-102 

decomposition starts with intermolecular and intramolecular H transfer to form R-OH 

species (R1 and R7). These species further decompose into radicals such as OH and 

H (R2 and R10). The NO2 molecule also abstracts a hydrogen atom from ICM-102 to 

form HNO2 (R8), which further dissociates as an OH radical (R9). The combination of 

OH and H radials forms water molecules (R6). The R-OH structures could also 

undergo ring-opening reactions by C-N bond scission (R3), and this reaction is not 

preferred due to the high bond energy (305 kJ/mol for C-N bonds[44]). 
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Fig. 7 Primary reaction pathways for the ICM-102 decomposition and formation of H2O. 

The arrow width represents the observed number of reactions (n), where width = ln 

(n+1). 

From the above discussion, the NNMD method breaks through the limitations of 

AIMD. On the one hand, it extends the timescale of simulation to allow observation of 

the reaction pathways related to N2, CHNO, CO2 and many other intermediates of ring-

opening reactions; on the other hand, it expands the system size to thousands of atoms 

to obtain statistically significant results on the branching of detailed reaction pathways. 

In summary, ICM-102 decomposition reactions are explored using NN-based molecular 

dynamics simulations. This is the first study to achieve a panoramic view of the 

complex explosive reaction process with an ab initio level of accuracy. NNMD extends 
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simulation of high explosives to the sub-nanosecond scale, which helps the 

development of high accuracy kinetics models and promotes the design and application 

of high explosives. 

 

Conclusion 

This work evaluates the datasets generated from different sampling methods: 

AIMD and VR enhanced sampling. The complex system is abstracted by PCA to 

compare the similarity of configurations. Surprisingly, we find that PC1 is strongly 

correlated with the overall reaction coordinates of ICM-102 decomposition, where the 

explosive molecules decompose into gaseous species. According to the principal 

components, a prior estimation of the training set is achieved, where configurations of 

AIMD are concentrated in low-energy states. In contrast, VRMD provides more 

configurations at high-energy states corresponding to gaseous products. An NN 

potential is developed from the AIMD and VRMD datasets with superior accuracy. The 

dataset's quality is critical to the training of a neural network potential. The trained NN 

potentials will not capture the correct dynamics if the configuration space is not 

adequately sampled. 

Although MD simulations can easily generate thousands of configurations, only a 

fraction of them is involved in chemical reactions due to the high energy barriers. With 

the help of VRMD sampling, the full PES of interest could be appropriately represented 

with a small number of additional configurations. We believe such a reduced dataset is 
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extremely valuable to the application of supervised learning in the field of 

computational chemistry because dataset labeling is the most time-consuming step in 

supervised learning, corresponding to electronic structure calculations in NN potential 

training. A small improvement in accuracy requires a great effort in computational 

resources. Recently, it has been found that the computational efforts at high-level ab 

initio calculations can be minimized by combining datasets of molecular forces from 

different levels of theory[14]. However, such a strategy is highly dependent on the well-

selected training set of high-level ab initio calculations. We are working on integrating 

the VR-enhanced sampling algorithms to develop NN potentials with a high level of 

accuracy. 

Gaps between the MD simulations and experiments still exist in explosive 

decomposition reactions. Although the landscape of ICM-102 molecules has been 

drawn via AIMD and VR-enhanced sampling, further work is required to assemble 

reaction networks into kinetics models to interpret macro-phenomena in diverse fields, 

such as combustion, catalysis, and atmospheric chemistry. There are many well-

established methods, such as model reduction and sensitivity analysis, to construct 

kinetic models and describe the macroproperties. Importantly, the present work 

constructs a novel VR-enhanced sampling method to train NN potentials and enables 

MD simulations of a novel high explosive (i.e. ICM-102) with complex reaction 

networks at the level of ab initio calculations, providing atomic insights into the detailed 

reaction pathways that are otherwise difficult to uncover, such as ring-opening reactions 
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and the formation of N2, CHNO, and CO2. Thus, the study opens up new possibilities 

to build reaction kinetics models based on high-fidelity and low-cost AI algorithms. 
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molecular dynamics in virtual reality (VRMD) to construct a neural network potential 
of a novel high explosive. The VRMD helps sample the reactive process and 
significantly improves the model performance. Our potential enables the large-scale 
MD simulation with an ab initio level of accuracy, achieving a panoramic view of the 
complex explosive reaction process. 


