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Reinforcement learning (RL) is a powerful paradigm that has gained popularity across multiple domains. 

However, applying RL may come at a cost of multiple interactions between the agent and the 

environment. This cost can be especially pronounced when the single feedback from the environment 

is slow or computationally expensive, causing extensive periods of nonproductivity. Curriculum learning 

(CL) provides a suitable alternative by arranging a sequence of tasks of increasing complexity with the 

aim of reducing the overall cost of learning. Here, we demonstrate the application of CL for drug 

discovery. We implement CL in the de novo design platform, REINVENT, and apply it on illustrative 

molecular design problems of different complexity. The results show both accelerated learning and a 

positive impact on the quality of the output when compared to standard policy-based RL. To our 

knowledge, this is the first application of CL for the purposes of molecular design. The code is freely 

available at https://github.com/MolecularAI/Reinvent.  

mailto:atanas.patronov@astrazeneca.com
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Introduction  

The application of deep learning for drug discovery provides potential to accelerate therapeutics 

development. One fundamental challenge is molecular design, involving the design and prioritization of 

candidate molecules for experimental validation.1,2 Molecular design entails a multi-parameter 

optimization (MPO) search in chemical space, estimated to be in the range of 1023 to 1060 molecules.3 

Recently, deep learning has been applied towards more efficient methods of sampling chemical space 

such that it is possible to identify promising candidate molecules faster. Deep generative models using 

policy-based reinforcement learning (RL)4–10, value based RL11, learning a molecular latent space12, and 

other methods including tree search13 and genetic algorithms14–16 have been proposed to generate 

molecules that possess a desired set of properties. In the policy-based RL paradigm, an agent (a 

generative model) learns a policy (series of actions to take at given states) to generate molecules that 

maximize a reward which is typically computed based on a pre-defined reward function.4–10 Often, 

physics-based approximations of binding affinity such as molecular docking are included as a component 

in the reward function in order to design candidate molecules with enhanced predicted potency. Given 

sufficiently long training time, these models can learn to generate molecules which satisfy the desired 

MPO objective. However, in cases with complex reward functions where minima are difficult to find, the 

resulting small gradients elicit minimal change to the agent policy. Consequently, the agent may spend 

many epochs sampling from areas in chemical space that are far away from the desired objective. The 

issue is exacerbated when computationally intensive components are included in the reward function, 

such as molecular docking. Thus, policy-based RL can be infeasible for complex MPO objectives, leading 

to suboptimal allocation of computational resources and eventually suboptimal molecules identified for 

synthesis. 

 



 

Fig. 1 Curriculum learning overview. In the Curriculum Phase, the agent progresses through successive Curriculum Objectives that gradually 

increase in complexity. The agent samples compounds in the SMILES format through a RL cycle such that the conditional probabilities are 

updated to maximize the reward obtained based on a scoring function comprised of the current Curriculum Objective.17 Curriculum 

Progression Criterions check for sufficient learning of each Curriculum Objective based on a threshold that the agent must achieve. If and 

only if the final Curriculum Progression Criterion is satisfied does the agent progress to the Production Phase in which a scoring function 

comprised of the Production Objective is applied. 

 

Curriculum learning (CL) has been proposed as a training strategy to overcome difficulties in learning 

complex tasks.18 The basis of CL is to decompose complex objectives into simpler constituent objectives 

that are sequentially learned, guiding training towards successful convergence of the final objective. 

Provided a curriculum where constituent objectives are strongly correlated with the final objective, 

corresponding gradients from sequential simpler tasks are more effective at traversing the optimization 

landscape and can accelerate convergence.19,20 Similarly, CL can be applied to non-gradient based 

objectives, e.g., presence of a target structural motif, by devising a curriculum with gradually increasing 

complexity, e.g., decomposing the target structural motif into simpler constituents. Molecular design 

often requires optimizing correlated properties that cumulatively define favourable chemical space, e.g., 

generating known active scaffolds and improving binding affinity.21 By applying concepts from CL, 

existing limitations of policy-based RL for molecular design can be circumvented. CL provides a strategy 



to lower the learning barrier of complex MPO objectives, reaching a state of productivity within a 

reasonable timeframe. 

In this work, we build on the de novo molecular design platform, REINVENT, and introduce a CL 

implementation that can address complex tasks where policy-based RL has difficulties to identify 

suitable molecules due to the complexities of the reward function.5 The use of CL extends REINVENT’s 

applicability to complex reward functions that were previously infeasible with standard policy-based RL. 

We demonstrate the use of CL in REINVENT by formulating a complex task to design 3-phosphoinositide-

dependent protein kinase-1 (PDK1) inhibitors, adopting a structure-based optimization approach.22 We 

show that immediate states of productivity can be achieved by assembling a curriculum compared to 

standard policy-based RL, which can circumvent high computational costs associated with reward 

components such as molecular docking. Moreover, we show that CL provides a natural method for agent 

policy regularization, such that minor changes in the curriculum can steer molecular design, enabling 

control over the quality and diversity of the results in a predictable manner and leading to high quality 

molecules proposed for synthesis. 

 

Curriculum Learning Setup 

Curriculum Learning Formulation. The implementation of CL builds on the REINVENT platform described 

by Blaschke et al. (see Methods).5 In CL, a complex task is decomposed into simpler constituent tasks to 

accelerate training and convergence. The goal is to guide the agent to learn tasks with increasing 

complexity before providing the Production Objective. Agent Learning progresses through the 

Curriculum Phase to the Production Phase and is controlled by Curriculum Progression Criteria, checking 

that the agent achieves an adequate score threshold for each objective (Fig. 1). In the former, the agent 

is trained on simpler sequential tasks with gradually increasing complexity. In the latter, the agent  



 

Fig. 2 Curriculum learning target scaffold construction. We define a curriculum where the target dihydro-pyrazoloquinazoline with a 

phenyl substituent scaffold is decomposed into sequential simpler substructures (highlighted) to guide the agent. The score drops 

momentarily when a successive substructure objective is introduced as it is unlikely that currently sampled compounds will also possess 

the new substructure, by chance. By using curriculum learning, the agent is able to find the target scaffold within 1750 epochs while 

standard policy-based RL is unsuccessful in the same number of epochs (Supplementary Fig. 1). 

 

reaches a state of productivity, whereby the agent samples compounds in favourable areas of chemical 

space that satisfy the Production Objective (see Methods for a formal definition of the CL strategy). Agent 

policy update is maintained in the Production Phase to ensure the agent continues to sample favourable 

compounds from diverse minima. 

 

Results 

In this section, we devise three experiments to demonstrate the enhanced capability of CL to satisfy 

complex objectives relative to standard policy-based RL: 

 

Production Objective: Generate compounds that possess a target scaffold. Scoring Function: 

matching substructure to target scaffold. Curriculum Objective: Achieve a state of productivity 



by decomposing the target scaffold into simpler sequential substructures with gradually 

increasing structural complexity. Scoring Function: matching sequential substructures. 

1. Production Objective: Generate compounds that are drug-like and satisfy a molecular docking 

constraint.23 Scoring Function: docking constraint and QED.23 Curriculum Objective: Guide the 

agent to sample compounds with Tanimoto (2D) similarity to a reference ligand. Scoring 

Function: Tanimoto (2D) similarity to the reference ligand. 

 

2. Production Objective: Generate compounds that are drug-like satisfy a molecular docking 

constraint.23 Scoring Function: docking constraint and QED.23 Curriculum Objective: Guide the 

agent to sample compounds with 3D shape-based similarity (ROCS) to a reference ligand (see 

Methods).24,25 Scoring Function: ROCS (3D) similarity to the reference ligand. 

 

For experiments 2 and 3, we further define a “Low” (0.5) and “High” (0.8 for Tanimoto and 0.75 for 

ROCS) scenario denoting the minimum score the agent must achieve with the Curriculum Objective 

activated before proceeding to the Production Objective. The purpose of these scenarios is to investigate 

the effect of variable degrees of agent Curriculum Objective knowledge on compound sampling in the 

Production Phase and how it impacts the state of productivity. 

 

Experiment 1: Target Scaffold Construction. As an initial example, we show that CL can guide the agent 

to generate compounds possessing a relatively complex scaffold that is not present in the training set 

for the prior (Fig. 2). The dihydro-pyrazoloquinazoline scaffold was identified as a promising starting 

point for PDK1 inhibitor design owing to good cell permeability and low promiscuity and initial SAR 

analysis kept the phenyl substituent constant.22 The goal is to generate compounds that possess this 

target scaffold. We first demonstrate that the task is too complex for standard policy-based RL and 

denote this as baseline RL (Supplementary Fig. 1). In the baseline experiment, the only component in 



the scoring function is target scaffold. Each generated compound scores either 1.0 or 0.5, denoting 

whether the scaffold is present or not, respectively. The average score of the baseline experiment does 

not exceed 0.5 across 2000 epochs, indicating the scaffold is not found. Given that the scaffold is not 

present in the training set, the likelihood of sampling a compound possessing the scaffold is much lower 

and the inability to do so prevents meaningful agent learning. It is worth noting that provided unlimited 

time, baseline RL will almost surely find the scaffold due to sampling stochasticity. On the other hand, 

CL can accelerate convergence by decomposing the target scaffold into simpler substructures with 

gradually increasing structural complexity (Fig. 2). There are 5 Curriculum Objectives, each assigned to 

successively more complex substructures with Curriculum Progression Criterion thresholds of 0.8. The 

agent is tasked to generate compounds possessing each substructure until the average score is 0.8. 

When a Curriculum Progression Criterion is satisfied, the successive and more complex Curriculum 

Objective is activated. A sharp decrease in average score accompanies each Curriculum Objective update, 

e.g., at approximately epoch 150 (Fig. 2), as it is unlikely that currently sampled compounds will also 

possess the successive substructure, by chance. Over the course of training, the agent learns to generate 

compounds possessing increasingly complex substructures until the target scaffold is constructed.  

 

Experiments 2 and 3: Satisfying a Molecular Docking Constraint. In this section, we demonstrate that 

simple curricula, utilizing a single Curriculum Objective can accelerate agent productivity and generate 

compounds that satisfy a docking constraint, i.e., predicted to retain experimentally validated 

interactions (see Methods for experiment hyperparameters).6,7,13–15 Simulating a real-world application 

where one must allocate limited computational resources, baseline RL and CL performances are 

compared, given a maximum number of permitted production epochs (300), i.e., epochs that involve 

docking, as these are relatively computationally demanding. For CL, Curriculum Objectives are first 

applied to guide the agent and the number of permitted curriculum epochs is not limited, as these are 

computationally inexpensive (see Table S2). Angiolini et al. design PDK1 inhibitors by leveraging the 



dihydro-pyrazoloquinazoline scaffold which forms two hydrogen-bonding interactions with Ala 162 (Fig. 

3a) that are crucial for potency.22 The structure-based optimization is mimicked by defining the following 

Production Objective: 

 

Production Objective: Generate compounds that retain the two hydrogen-bonding interactions with Ala 

162, possess enhanced predicted potency compared to the reference ligand (as assessed by LigPrep and 

Glide docking score) and are drug-like, as measured by the Quantitative Estimate of Druglikeness 

(QED).23,26–30 The QED score also prevents compounds from exploiting the weaknesses of docking 

algorithms to achieve favourable scores, e.g., presence of excessive hydrogen bond donors would 

significantly restrict membrane permeability.31 



 

Fig. 3 Baseline reinforcement learning vs. curriculum learning to design PDK1 inhibitors. Values in the plots represent the average over 

triplicate experiments and the shaded regions are the minimum and maximum values observed. a. Reference ligand binding pose (PDB ID: 

2XCH). Waters and ligand-protein interactions are shown in red and as yellow dotted lines, respectively. The two hydrogen-bonding 

interactions with Ala 162 are highlighted. The objective is to design compounds that retain the hydrogen-bonding interactions and possess 

enhanced predicted binding affinity relative to the reference ligand. b. Baseline reinforcement learning vs. curriculum learning (Tanimoto 

Curriculum Objective) Production Phase docking score. Docking struggles significantly in the baseline RL experiments and only reaches a 

state of productivity after approximately 300 epochs. Curriculum learning using Tanimoto (2D) similarity guides the agent to immediately 

generate compounds that satisfy the docking constraint. c. Baseline reinforcement learning vs. curriculum learning (ROCS Curriculum 

Objective) Production Phase docking score. The same observations as b. are made. d. Selected generated compounds that exceed a total 



score encompassing docking and QED above a threshold. The predicted poses are superimposed with the reference ligand (grey). The 

binding poses retain the two hydrogen bonding interactions with Ala 162, as enforced by the docking constraint. 

 

First, we show that the Production Objective is challenging for baseline RL (Fig. 3b and 3c). The docking 

score is approximately 0 for the first 100 epochs, indicating essentially no compounds sampled satisfy 

the docking constraint. From epochs 100-200, some compounds satisfy the docking constraint but the 

score (averaged over all compounds sampled) is still low. It is only from epoch 200 onward that the 

docking score begins a steep improvement and indicates the point at which the agent starts entering a 

state of productivity. It is evident that baseline RL is suboptimal as the agent spends a significant amount 

of time generating compounds that do not satisfy the Production Objective. It is worth noting, however, 

that the agent eventually converges given enough time (Supplementary Fig. 5). 

To circumvent the limitations of baseline RL, we devise curricula and introduce 2 Curriculum 

Objectives to guide the agent to productivity: Tanimoto (2D) and ROCS (3D) shape-based similarity to 

the reference ligand.24,25 In the former, the rationale is that by teaching the agent to first generate 

compounds with 2D similarity to the reference ligand, subsequently generated compounds will have a 

greater likelihood of satisfying the docking constraint. The rationale for ROCS is identical except with 3D 

similarity to match the shape and electrostatics of the reference ligand. Triplicate baseline RL 

experiments with Tanimoto and ROCS components (using a scoring function comprised of 

Tanimoto/ROCS, docking, and QED together, respectively) were conducted for a fair comparison with 

CL.  These baseline experiments did not improve agent productivity and similar training progress as the 

baseline shown in Fig. 3b and Fig. 3c is observed (Supplementary Fig. 6 and 7). For the “Low” and “High” 

Tanimoto scenarios, the agent is immediately capable of generating compounds that satisfy the docking 

constraint (Fig. 3b). More specifically, although docking starts at a relatively low value (but higher than 

baseline RL) for the “Low” Tanimoto experiment, the agent quickly improves over the first 50 epochs 

and continues to do so for the remainder of the experiment. In the “High” Tanimoto scenario, docking 



starts at a score that exceeds the maximum score achieved by the baseline RL agent over 300 epochs 

and maintains productivity. The results are intuitive as enforcing the agent to first learn to generate 

compounds with higher 2D similarity to the reference ligand should increase the likelihood of satisfying 

the docking constraint. Similar observations are made when using ROCS as a Curriculum Objective (Fig. 

3c). In both the “Low” and “High” scenarios, docking starts more favourably than baseline RL but unlike 

the Tanimoto experiments, the ROCS experiments start at a less favourable docking score. Firstly, these 

results are not completely surprising as training the agent to satisfy a 3D shape similarity objective will 

decrease the likelihood, relative to 2D similarity, in satisfying the docking constraint owing to more 

potential conformational discrepancies of the generated compounds compared to the reference 

ligand.32 Secondly, the agent still improves significantly over 100 and 50 epochs for the “Low” and “High” 

ROCS scenarios, respectively. These results convincingly demonstrate that the improvement in CL 

performance over baseline RL is attributed to the sequential nature of the CL objectives as opposed to 

the presence of the additional Curriculum Objectives only.  

To visualize the quality of the results, the binding poses of selected generated compounds are 

superimposed with the reference ligand (Fig. 3d). The binding poses retain the two hydrogen bond 

interactions with Ala 162, as enforced by the docking constraint. Furthermore, the superimposed 

binding poses demonstrate excellent agreement with the reference ligand, supporting plausibility. Thus, 

we show that using Tanimoto (2D) and ROCS (3D) shape-based similarities to the reference ligand as 

Curriculum Objectives can guide the agent to satisfy a complex Production Objective and the results 

demonstrate CL outperforms baseline RL given the same number of production epochs. Moreover, 

tuning the degree of Curriculum Objective optimization, as shown in the “Low” and “High” scenarios, 

provides direct control in guiding the agent to productivity. 



 

Fig. 4 Baseline reinforcement learning vs. curriculum learning docking scores distribution. RL: Reinforcement Learning and CL: Curriculum 

Learning. Each individual violin plot represents pooled triplicate experiments. The results shown consist of all the stored compounds from 

the 300 permitted production epochs with the Production Objective: docking and QED. ‘N’ in the x-axis labels is the number of compounds 

collected (those that exceed a total score encompassing docking and QED above a threshold) in each pooled violin plot. ‘Baseline Tanimoto 

RL’ and ‘Baseline ROCS RL’ refers to baseline reinforcement learning using a scoring function composed of docking, QED, and 

Tanimoto/ROCS together, respectively. Lower Glide docking scores denote a greater predicted binding affinity. The docking score for the 

reference ligand is -10.907 kcal/mol and is shown by the horizontal black dotted line. Curriculum learning not only collects more compounds 

than baseline reinforcement learning but the compounds also possess more favourable docking scores, on average. 

 

Curriculum Objectives Enhance Objective Optimization. To further investigate the output of the 

baseline RL and CL experiments, all docking scores of the collected compounds were pooled from the 

triplicate experiments and the resulting distributions are illustrated in Fig. 4. Firstly, CL generates a 

significantly greater quantity of favourable compounds compared to baseline RL, as only those that pass 

a minimum score based on docking and QED are stored. This is consistent with Fig. 3b-d where the 

baseline RL agent struggles for the first 150 epochs, predominantly sampling compounds that do not 

satisfy the Production Objective. Secondly, compounds generated by CL exhibit more favourable docking 

scores than baseline RL, on average. Thirdly, between the Curriculum Objectives (Tanimoto and ROCS), 

the “High” scenario has a greater density of favourable docking scores compared to the “Low” scenario. 



 

Fig. 5 Baseline reinforcement learning vs. curriculum learning unique Bemis-Murcko scaffolds. RL: Reinforcement Learning and CL: 

Curriculum Learning. Number of unique Bemis-Murcko scaffolds in the collected compounds (those that exceed a total score encompassing 

docking and QED above a threshold). Values in the plot represent the average over triplicate experiments (see Table S4 for individual 

experiment quantities). ‘Favourable Unique Scaffolds’ denotes the scaffolds that possess a more favourable docking score than the 

reference ligand. The fraction of ‘favourable’ scaffolds generated is shown as an annotated percentage.   

 

To quantify this, the fraction of compounds collected that possess a docking score better than the 

reference ligand (-10.907 kcal/mol) was calculated for each experiment (see Table S3). The task chosen 

resembles a potential real-world application as the reference ligand is an experimentally validated 

nanomolar (nM) inhibitor.22 In all cases, CL generates between 2941-9068 and between 12.42%-23.79% 

more compounds that dock more favourably than the reference ligand by absolute counts and 

percentage, respectively, compared to baseline RL. Furthermore, between the Curriculum Objectives 

Tanimoto and ROCS, the “High” scenario outperforms the “Low” scenario (between 316-3415 and 

between -0.4%-10.57%) at the same task. Thus, a single Curriculum Objective provides a tunable 

parameter that can enhance and control the degree in which the agent is able to satisfy a Production 

Objective. 

 



Curriculum Objectives Maintain Scaffold Exploration. Scaffold diversity was investigated by extracting 

and averaging the number of unique Bemis-Murcko scaffolds from the triplicate experiments, shown in 

Fig. 5. (see Supplementary Table 4 for individual experiments).33 It is evident that the CL experiments 

generate more unique scaffolds than baseline RL. This is expected from the training plots observed in 

Fig. 3b and 3c where the baseline RL experiments generate essentially no favourable compounds in the 

first 100 epochs. Between the Curriculum Objectives, Tanimoto generates more unique scaffolds than 

ROCS. Similarly, “High” scenarios generate more unique scaffolds than “Low” scenarios for both 

Tanimoto and ROCS. To assess the quality of the generated scaffolds, we denote scaffolds ‘favourable’ 

if the corresponding compound possesses a more favourable docking score than the reference ligand. 

CL generates more unique ‘favourable’ scaffolds than baseline RL by absolute counts and percentage 

(Fig. 5). This is in agreement with the docking scores distributions in Fig. 4 that illustrate clear enrichment 

in docking scores for the CL experiments. The results show that using Curriculum Objectives increases 

the number of ‘favourable’ scaffold ideas generated and maintains agent exploration as enforced by the 

diversity filter (DF, see Methods). Importantly, the unique scaffolds count demonstrates the capability 

of CL to perform scaffold hopping (see Supplementary Fig. 10-12 for example compounds generated in 

the “High” Tanimoto experiment and Fig. 13-15 for unique scaffolds statistics for each replicate 

experiment).  



 

Fig. 6 Agent knowledge retention and effects of Curriculum Objectives on the solution space diversity. Values in the plots represent the 

average over triplicate experiments and the shaded regions are the minimum and maximum values observed. a. Tanimoto similarity to the 

reference ligand evolution. Left subplot depicts the Curriculum Phase where the agent is taught to sample compounds with Tanimoto (2D) 

similarity to the reference ligand. The right subplot depicts the Production Phase. In general, “High” Tanimoto experiments sample more 

compounds that possess greater similarity to the reference ligand (this is shown at the compound and scaffold level). b. Cross-Tanimoto 

similarity for intra-set diversity. The plot shows the pooled collected compounds (those that exceed a total score encompassing docking 

and QED above a threshold) from the triplicate experiments, in which the overall dataset was reduced in size by a factor of 10 to decrease 

computation time. Relative to the baseline RL experiments, CL generates compounds with notably greater intra-set similarity. The effect is 

more pronounced in the “High” scenarios compared to the “Low” scenarios. c. Curriculum learning (Tanimoto Curriculum Objective) UMAP. 

The top 3000 compounds were extracted from each triplicate experiment. Overall, the “Low” and “High” scenarios sample from areas 

‘close’ in chemical space, but generally distinct from baseline RL. 

 



Direct Steering of Agent Policy: Trade-off Between Production Objective Optimization and Solution 

Space Diversity. To further elucidate the role of Curriculum Objectives and the extent to which the agent 

retains acquired knowledge in downstream production tasks, the collected compounds from the CL 

Tanimoto experiments were pooled and the average Tanimoto similarity (compound and scaffold) to 

the reference ligand calculated for each epoch (Fig. 6a). The left subplot shows the gradual optimization 

of Tanimoto similarity for the “Low” and “High” scenarios, representing the Curriculum Phase. The right 

subplot shows the Tanimoto similarities for all the compounds collected in the Production Phase. In 

general, the compounds generated from the “High” Tanimoto experiments possess a greater Tanimoto 

similarity to the reference ligand than the “Low” Tanimoto experiments, as expected (see 

Supplementary Fig. 17 for the distribution of Tanimoto similarities). Moreover, the gradual decrease in 

Tanimoto similarity at the scaffold level further supports the capability of CL to perform scaffold hopping 

(Fig. 6a). Interestingly, however, the difference is not drastic and can be explained by cross-referencing 

the training plots shown in Fig. 3b. The “Low” Tanimoto experiments start at notably lower docking 

scores than the “High” Tanimoto scenario and suggests that the compounds collected at the beginning 

are those that happen to exhibit high Tanimoto similarity to the reference ligand. Consequently, the 

“Low” Tanimoto experiments generate less favourable compounds in the first 50 epochs when the 

Production Objective is activated (Supplementary Fig. 18).  

To investigate the effect of similarity-based Curriculum Objectives on solution space diversity, 

cross-Tanimoto similarities between each unique compound pair in the pooled datasets were calculated 

to quantify how different the collected compounds are to each other (see Methods). Relative to the 

baseline RL experiments, collected compounds in the CL experiments exhibit greater intra-set similarity, 

interpreted as the agent sampling compounds from ‘closer’ areas in chemical space (Fig. 6b). Moreover, 

the “High” scenarios have a greater density of high cross-Tanimoto similarities than the “Low” scenarios. 

Uniform Manifold Approximation and Projection (UMAP) was used as a dimension reduction technique 

to visualize the solution space diversity from the CL Tanimoto experiments.34 There is notable similarity, 



without overlap (as there is no scaffold overlap, see Supplementary Fig. 14), between the compounds 

sampled from the “Low” and “High” scenarios (Fig. 6c). The results suggest that moderate optimization 

of similarity-based Curriculum Objectives (as in the “Low” scenarios) already significantly narrows the 

agent perceived solution space, in agreement with the cross-Tanimoto similarity distributions shown in 

Fig. 6b. The similarity between the generated compounds from the “Low” and “High” experiments was 

quantified by calculating the cross-Tanimoto similarity between the two datasets (Supplementary Fig. 

20). The majority of cross-Tanimoto similarities is > 0.7, confirming that the generated compounds from 

both scenarios were sampled from areas ‘close’ in chemical space (Fig. 6c). Taken together, the 

observations in this section suggest that devising a curriculum and using Curriculum Objectives to guide 

the agent to a Production Objective facilitates knowledge retention that is exploited to achieve a state 

of productivity. However, there is an inverse relationship between using similarity-based Curriculum 

Objectives to enhance Production Objective optimization and intra-set diversity, imposing a trade-off 

when using CL over baseline RL. 

 

Conclusions 

In this work, we build on the de novo molecular design platform, REINVENT, by adapting curriculum 

learning (CL) to accelerate agent convergence on complex multi-parameter optimization (MPO) 

objectives.5 Relative to baseline reinforcement learning (RL) which may issue many non-productive calls 

to expensive physics-based descriptors, simple curricula consisting of even one Curriculum Objective can 

successfully guide the agent to achieve productivity in substantially reduced time. We demonstrate the 

application of CL on two Production Objectives: Constructing a relatively complex scaffold and satisfying 

a molecular docking constraint. In the former, given the same number of epochs, CL successfully 

constructs the complex structure from simpler constituents while baseline RL is unsuccessful. In the 

second application example, using Tanimoto (2D) or ROCS (3D) shape similarity to the reference ligand 



as Curriculum Objectives guides the agent to areas of chemical space that satisfies the docking 

constraint.24,25 In contrast, baseline RL significantly struggles, spending many epochs generating 

unfavourable compounds. CL facilitates direct steering of agent policy towards a Production Objective 

by providing the ability to teach the agent specific knowledge. The results show that teaching the agent 

to optimize Curriculum Objectives to a greater degree can enhance the ability to satisfy a complex 

Production Objective, relative to baseline RL. However, optimizing similarity-based Curriculum Objectives 

to a greater degree leads to lower intra-set diversity, as the agent generates compounds that are ‘closer’ 

in chemical space. Thus, devising appropriate curricula allows one to accelerate agent convergence and 

steer agent policy update for bespoke applications.   

 

Methods 

Curriculum Learning Strategy.  

Definition 1: A scoring function, 𝑆: SMILES → [0, 1] is formulated as a weighted geometric mean: 

𝑆(𝑥) = (∏ 𝑐𝑖(𝑥)𝑤𝑖𝑛
𝑖=1 )1/ ∑ 𝑤𝑖

𝑛
𝑖=1 , where 𝑥 is a sampled compound in the SMILES format and 

𝑐𝑖: SMILES → [0, 1] and 𝑤𝑖 are the 𝑖th component and its corresponding weighting, respectively. 𝑆(𝑥) 

computes the desirability of the sampled compound, 𝑥, and its corresponding gradient is used to update 

the agent policy.5 

 

Definition 2: A Curriculum, 𝐶 consists of a sequence of Objectives, 𝑂 = {𝑂𝐶1
, … , 𝑂𝐶𝑛−1

, 𝑂𝐶𝑛
, 𝑂𝑃}, where 

subscripts 𝐶 and 𝑃 denote Curriculum and Production Objectives, respectively. For each Objective, 𝑂, 

there is a corresponding scoring function 𝑆 to compute the desirability of a sampled compound based 

on the current Objective, e.g., possessing a specific structural motif. Progression through a Curriculum 

is controlled by Curriculum Progression Criterions, 𝑃 = {𝑃1, … , 𝑃𝑛−1, 𝑃𝑛}, such that the Curriculum, 𝐶 =

{𝑂, 𝑃}.  



Curriculum Phase. In the Curriculum Phase, the goal is for the agent to learn to generate compounds 

that satisfy sequential Curriculum Objectives with increasing complexity that guide the agent towards 

the Production Phase. 𝑂𝐶1
, … , 𝑂𝐶𝑛−1

, 𝑂𝐶𝑛
 are designated Curriculum Objectives with corresponding 

Curriculum Progression Criterions 𝑃1, … , 𝑃𝑛−1, 𝑃𝑛, that enforces sufficient agent learning of each 

sequential Curriculum Objective based on a score threshold. If the score threshold is met, the agent 

progresses to the sequential Curriculum Objective, otherwise, the agent continues learning the current 

Curriculum Objective. This process collectively constitutes the Curriculum Phase. 

 

Production Phase. If and only if the final Curriculum Progression Criterion, 𝑃𝑛 is satisfied, the Production 

Objective, 𝑂𝑃, is activated. Presumably, the agent is in a state of productivity and samples compounds 

that satisfy the Production Objective. Balance between chemical space exploration and exploitation can 

be achieved by tuning hyperparameters (see Methods). The agent samples for a pre-defined number of 

epochs and all compounds that score above a minimum threshold are stored and outputted at the end. 

 

REINVENT Curriculum Learning Extension. The implementation of CL builds on the REINVENT generative 

model, which uses a recurrent neural network (RNN) architecture.5,35 The molecular design task is 

formulated as a natural language processing (NLP) problem where compounds are sampled in the 

SMILES format based on conditional probabilities.17,36 The RNN in this work features three hidden layers 

of 512 long short-term memory (LSTM) cells with an embedding size of 256 and a linear layer with 

softmax activation.5,37 A prior generative model is first trained on the ChEMBL dataset to learn the 

SMILES syntax.5,17,38 The agent is initialized as the prior and is then focused towards a MPO task via RL. 

For further details on REINVENT, see the work by Blaschke et al.5  

 



REINVENT’s Learning Hyperparameters. The same hyperparameters were used for the baseline RL and 

CL experiments: batch size of 128, learning rate of 0.0001, sigma scalar factor of 128, all scoring function 

components’ weights were set to 1, and using the Adam optimizer.39 

 

Agent Exploration and Exploitation. Balance between agent chemical space exploration and 

exploitation was achieved by using a diversity filter (DF) and inception, and learning thresholds 

(Curriculum Progression Criteria). A DF enforces diverse results by defining buckets with limited size that 

track the number of compounds sampled possessing the same scaffold. Once a bucket is full, further 

sampling of compounds with the same scaffold will be penalized.5,40 Only compounds that exceed a user-

defined total score (based on the score contributions of each component in the scoring function defined) 

are stored and added to the corresponding bucket. The specific total score threshold used in this work 

was 0.4. Inception is a form of experience replay to mitigate catastrophic forgetting and can speed up 

convergence by replaying previously sampled favourable compounds to the agent.5,41 TALK ABOUT 

THRESHOLD HERE For further details on REINVENT, see the work by Blaschke et al.5 In the baseline RL 

experiments, an Identical Murcko Scaffold DF (penalizes the agent if the same Bemis-Murcko scaffold is 

sampled beyond the bucket size) and inception were applied. In contrast, the implementation of CL in 

REINVENT allows one to initialize separate DFs and inception for the Curriculum Phase and Production 

Phase. During the Curriculum Phase, the goal is for the agent to acquire intermediate knowledge. Thus, 

no DF was applied as it can be counterproductive to guiding the agent to favourable areas of chemical 

space. Moreover, the learning thresholds can control exploration… The effect of this hyperparameter 

was investigated via the low and high scenarios 

 

In the Production Phase, a new inception (previous favourable compounds during the Curriculum Phase 

cleared) was initialized. Presumably, the agent is in a state of productivity and samples compounds that 



satisfy the Production Objective.5,40 Thus, an Identical Murcko Scaffold DF with a bucket size of 25 was 

applied to encourage exploration, such that the agent samples from different local minima.5,33  

 

ROCS 3D Shape Similarity. ROCS is a 3D shape similarity metric, comprised of two components: ‘shape’ 

and ‘color’. The components are quantified by the match, if at all, between the volumes occupied and 

the defined pharmacophoric features between the two ligands, respectively.24,25 Compounds with 

similar “shape” and “color” are more likely to exhibit similar properties. The implementation of ROCS in 

REINVENT is described in detail by Papadopoulos et al.42 In the CL experiments, the hyperparameters 

used for ROCS were 1:1 shape:color, giving equal weighting to each component in the final ROCS 

similarity score.  

 

Molecular Docking Constraint Experiments. The PDK1 receptor crystal structure was obtained from the 

Protein Data Bank (PDB) with PDB ID: 2XCH.22 A receptor grid was generated in the Maestro GUI with 

two hydrogen-bonding constraints specified between the reference ligand and Ala 162.43 Ligand 

preparation and docking was performed using DockStream, which is integrated with REINVENT, 

facilitating parallelization over numerous CPU cores.44 3D coordinates for all agent sampled compounds 

from the baseline RL and CL experiments were generated using LigPrep. Default parameters were used 

except for the pH tolerance range set to 7.0 ± 1.0 with Epik and a maximum of two stereoisomers kept 

per compound.26 Glide docking used Standard Precision (SP) with the followings settings: allow only 

amide trans isomers, allow up to 25 poses for post-docking minimization, apply strain correction, and 

apply enhanced sampling with a factor of 2.27–30 All baseline RL and CL experiments were allowed 300 

production epochs, i.e., epochs that involve docking, for a reasonable allocation of computational 

resources and for a fair comparison between baseline RL and CL. The docking score transformation was 

chosen to encourage agent sampling of compounds that possess a more favourable docking score than 

the reference ligand (Supplementary Fig. 2). 



Hardware. The REINVENT agent was trained using a NVIDIA Tesla V100 Volta with 32GB memory. Ligand 

LigPrep and Glide docking were performed on an Amazon Web Services (AWS) p3.8xlarge instance and 

parallelized over 8 and 48 CPU cores using DockStream, respectively.26–30,44 

 

Cross-Tanimoto Similarity.  

The cross-Tanimoto similarity is calculated as the Tanimoto similarity for each unique compound pair in 

a dataset. Note that the compound pairs ‘AB’ and ‘BA’ are the same, and hence only calculated once. 

 

Data availability 

The raw data that supports the findings of this study are available from the corresponding author upon 

request. 

 

Code availability 

The code used in this study is available at https://github.com/MolecularAI/Reinvent. A corresponding 

tutorial for the code is available at  

https://github.com/MolecularAI/ReinventCommunity/blob/master/notebooks/Automated_Curriculu

m_Learning_Demo.ipynb .   
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