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ABSTRACT 

Antimicrobial peptides (AMPs) have appeared as promising compounds to treat a wide range 

of diseases. Their clinical potentialities reside in the wide range of mechanisms they can use for 

both killing microbes and modulating immune responses. However, the hugeness of the AMPs’ 

chemical space (AMPCS), represented by more than 1065 unique sequences of 50 residues long or 

less, has represented a big challenge for the discovery of new promising sequences and for the 

identification of common structural motifs and even relevant biological functions. Here, we 

present a new approach based on network science and similarity searching to discover new 

promising AMPs, specifically antiparasitic peptides (APPs). We exploited the network-based 

representation of APPs’ chemical space (APPCS) to retrieve valuable information by using three 

types of networks: chemical space (CSN), half-space proximal (HSPN), and metadata (METN). 

In the network analysis, some centrality measures were applied to identify in each network the 

most important and non-redundant nodes/peptides. Then, these central peptides were considered 

as queries (Qs) in group fusion similarity-based searches against an existing collection of known 

bioactive compounds, stored in the graph database starPepDB, to discover new potential APPs. 

The performance of the resulting multi-query similarity-based search models (mQSSMs) was 

evaluated in five benchmarking data sets of APP/non-APPs. The predictions performed by the best 

mQSSM showed a strong-to-very strong performance since their external Matthews correlation 

coefficient (MCC) values ranged from 0.834 to 0.965. Outstanding MCC values (> 0.85) were 

attained by the mQSSM with 219 Qs from both networks CSN and HSPN with 0.5 as similarity 

threshold in external datasets. Then, the performance of our best mQSSM was compared with the 

APPs prediction servers AMPDiscover and AMPFun. The proposed model showed its relevance 

by outperforming state-of-the-art machine learning models to predict APPs with statistically 

significant differences. After applying the best mQSSM and additional filters on the non-APP 

space, 95 AMPs were repurposed as potential antiparasitic leads. Due to the high sequence 

diversity of these peptides, different computational approaches were applied to identify relevant 

motifs for searching and designing new promising APPs. These results support that network-based 

similarity searches identify APPs with high effectivity and reliability. The proposed models and 

pipeline are freely available through the starPep toolbox software at http://mobiosd-

hub.com/starpep.  
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1. INTRODUCTION  

In the last decades, antimicrobials have contributed to preventing and treating infectious 

diseases caused by bacteria, viruses, fungi, and parasites.1 Nonetheless, inappropriate use of 

these medicines, poor sanitary conditions, and other causes have created conditions for the 

emergence of multidrug-resistant (MDR) pathogens that are not treatable with the available 

drugs.2 According to the World Health Organization, antimicrobial resistance (AMR) is one of 

the top ten global public health threats facing humanity in this century, so this is a worrying issue 

with potential consequences for human, animal, and environmental health.3 

In this scenario, it is mandatory to search for new antimicrobials less susceptible to 

evolutionary resistance mechanisms and that decrease damaging inflammation. Antimicrobial 

peptides (AMPs) or cationic host defense peptides (CHDPs) have appeared as promising 

compounds to control infectious diseases avoiding AMR, due to their exceptional microbicidal 

properties and/or by immunomodulating host responses.4 AMPs are small bioactive compounds, 

commonly with fewer than 50 amino acids, amphipathic properties, and a net positive charge 

between 2-9 at physiological pH.5 These molecules are part of the primary immune responses, 

the first defense barrier against microbial pathogens of different living organisms, including 

bacteria, plants, fungi, invertebrates, amphibians, and mammals.6 

Some advantages of AMPs over traditional antimicrobials are slower emergence of 

resistance, antibiofilm activity, modes of action that do not rely on specific targets, and capacity 

to modulate host immune responses.7 Therefore, the effectiveness of CHDPs resides on the wide 

range of mechanisms they can use for both killing microbes and modulating immune responses, 

which depend on their concentration and dose, external stimuli, target cell or tissue, 

administration mechanism, host microbiota, and so forth.5 AMPs can kill microbes affecting 



 

5 

their extracellular dynamics, mainly by the membrane perturbation of pathogens, using different 

mechanisms. Moreover, these compounds can interrupt transcription, replication, cell wall 

synthesis, and other important processes by binding to intracellular molecular targets.4 Some of 

the CHDPs’ immunomodulatory actions are the recruitment of leukocytes to the site of infection, 

modulating neutrophil responses, influencing on adaptive immune responses, altering 

inflammatory cytokine patterns, enhancing phagocytosis, microbiome modulation, and wound 

healing.8  

It has also been proven that AMPs have potential uses to treat a wide range of diseases, 

including infections caused by MDR bacteria;4,9 chronic inflammatory diseases like asthma,10 

arthritis,11 and colitis;12 and some types of cancers.13 Some CHDPs’ antimicrobial activities such 

as antiparasitic, antiviral, and antifungal have been less explored but have a great potential to 

combat infectious diseases caused by non-bacterial pathogens.14 Considering this prospect, in 

this report, we have focused on the AMPs’ antiparasitic activity, which could help to treat 

malaria and neglected tropical diseases such as Leishmaniases, Chagas disease, among others.15  

There are multiple sources to retrieve AMPs, such as natural peptides produced as part of the 

immune system of different organisms,6 synthetic peptides derived from natural CHDPs,16 

cryptic peptides obtained from proteomes or microbiomes using bioinformatics,17,18 mass 

spectrometry-based proteomics experiments with fragmentation techniques,19 and so forth. 

Therefore, AMPs chemical space (AMPCS) is huge, it is estimated that there are more than 1065 

unique sequences of peptides with 50 residues or fewer,14 which represent a big challenge for the 

discovery of new promising bioactive peptides and the identification of common features (e.g. 

sequence and structural motifs determining their relevant biological functions).7 In this context, 
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computational-aided pipelines have been proposed as efficient alternatives to do high-throughput 

screening (HTS) of CHDPs.20  

Traditionally, strategies applied for the discovery of AMPs have relied on bioinformatics 

methods such as sequence and structure-based alignment searches; pattern-matching approaches 

like profile Hidden Markov Models and regular expressions; evolutionary algorithms; molecular 

fingerprint comparisons; and quantitative structure-activity relationship (QSAR) models.21–23 

More recently, machine learning (ML) algorithms, sometimes in combination with the 

aforementioned methods, have been extensively used to predict and discover new potential 

AMPs.24 Most of the ML methods to predict AMPs have focused on supervised strategies, 

requiring labeled datasets to train these models . These supervised algorithms have shown some 

issues regarding the size, quality, diversity, application domain, and representativeness of 

datasets required to train the models, which can produce inappropriate predictions and wrong 

results.25 

Considering the limitations and drawbacks of the available methods to discover AMPs, we 

present a novel approach based on network science tools and multi-query similarity searching 

models (mQSSMs) to discover new potential AMPs, specifically antiparasitic peptides (APPs). 

Network science is a discipline that studies complex systems, large collections of components 

that are characterized by having a lot of interactions, emergence, dynamics, self-organization, 

adaptation, among other properties.26,27 Similarity searching is a virtual screening strategy that 

compares a molecular query, characterized by descriptors, against the set of descriptors of other 

molecules from a database, obtaining a ranked list that possesses the most similar molecules to 

the query at the top of the list. That is, chemical similarity searching involves the use of a 

similarity measure (coefficient) to score the degree of similarity between a query structure (or 
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several queries) and each target compound in a database, and the similar property principle 

means that the highest-ranked query structures by a similarity measure are likely to have similar 

properties to that of the template(s).28,29 

We have taken advantage of network-based representation of APPs’ chemical space 

(APPCS) to retrieve valuable information by using chemical space networks (CSNs), half-space 

proximal networks (HSPNs), and metadata networks (METNs). Some centrality measures were 

applied to identify the most important nodes, and these peptides were taken as queries to perform 

similarity-based searches by group fusion (MAX-SIM rule) models against the graph database 

starPepDB 30 (http://mobiosd-hub.com/starpep). These mQSSMs allowed us to repurpose new 

potential APPs. It is worth mentioning this is the first time we are exploring the chemical space 

from starPepDB to retrieve valuable information of certain known AMPs. To validate the worth 

of this strategy, we evaluated the mQSSMs performance in five benchmarking data sets of 

APP/non-APPs, and classification results were contrasted with  the performance metrics of ML 

APPs prediction servers AMPDiscover (https://biocom-ampdiscover.cicese.mx)31 and AMPFun 

(http://fdblab.csie.ncu.edu.tw/AMPfun/index.html).32  

 

2. DATASETS AND METHODS 

Our workflow was divided into four stages: i) networks analysis, ii) multi-query similarity 

searching models, iii) APPs prediction, and iv) discovery of sequence motifs. The first stage 

consisted of data extraction, networks building, similarity cutoff analysis, the study of global 

networks properties, calculation of centrality measures, and retrieval of the most central APPs 

sets by each metric. The second stage included the design of network-based similarity searching 

models, selection of the best ones, and comparison of our models with ML approaches to predict 

http://mobiosd-hub.com/starpep
https://biocom-ampdiscover.cicese.mx/
http://fdblab.csie.ncu.edu.tw/AMPfun/index.html
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APPs. The third stage was the prediction of new potential APPs by applying the best mQSSMs to 

screen the entire starPepDB and subsequently some filters of toxicity and hemolytic activities, 

the resulting APPs were confirmed with the annotation of external webservers. The last stage 

was the discovery of sequence motifs shared by the potential antiparasitic leads, using multiple 

sequence alignments, alignment-free methods, and the PROSITE server. TOC/Abstract graphic 

summarizes all these stages. 

2.1. Networks Analysis 

2.1.1 Data collection   

The APPs were obtained from starPepDB, a graph database that contains 45,120 nodes 

representing AMPs and additional nodes for metadata, obtained from about 40 data sources.33 As 

far as we know, this is one of the largest integrated AMPs database until now. The starPepDB is 

embedded in the starPep toolbox, a software designed to perform network analysis of data 

contained in this resource.30 Thus, we filtered the database by metadata function using the 

“Antiparasitic” search term and retrieved 550 APPs (see SI1-A, a FASTA file).  

2.1.2 Creation of networks  

The starPep toolbox allowed us to create three types of networks: CSNs, HSPNs, and 

METNs. CSNs and HSPNs are similarity or correlation networks,30 defined as G = (V, E) where 

V is a set of nodes and E is a set of edges. In these networks, nodes in V represent AMPs, 

characterized by multi-dimensional molecular descriptors vectors, and edges linking nodes in E 

are pairwise similarity relationships between sequence-based descriptors of the peptides. Thus, 

nodes of CSNs and HSPNs are connected because they are similar to each other, instead of the 

existence of physical interactions among these compounds.30 In addition, METNs are multilayer 

networks, defined as G = (V, E, L), where V and E are the sets of nodes and edges, same as in 
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CSNs and HSPNs, and L is the set of layers representing different edge types or labels.34 METNs 

have two layers: metadata and AMPs. Metadata consist in additional information of AMPs such 

as origin, database, function, target pathogen, crossref, N-terminus, C-terminus, and unusual 

amino acids. Note that CSNs and HSPNs are networks where there is only one kind of node and 

relationship. However, a more interconnected system has been considered for further analysis, by 

connecting the nodes representing AMPs with their different types of metadata such as origin, 

database, function, target pathogen, and so on.35 Among these nodes, peptides and metadata, the 

edges depict multi-type links and hierarchical connections for a better organization and network 

navigation. Hierarchy relationships between nodes are established by the edges in both layers of 

METNs. 

In CSNs and HSPNs, the set of molecular descriptors that codifies an AMP can be derived 

from sequence molecular descriptors by applying statistical and aggregation operators on amino 

acid property vectors (see SI1-2 in ref.30). The cross-out sequence’s descriptors were calculated 

using StarPep by selecting all the available amino acid properties (e.g., the heat of formation, 

side-chain mass, among others), all groups of amino acid types (e.g., aliphatic, aromatic, 

unfolding, and so forth), and traditional aggregation operators but those based on GOWAWA 

and Choquet integral. The neighborhood (k neighbors up to 6) was included as one of the 

aggregation operators.30 

The selection of suitable sequence descriptors to map the chemical space of AMPs is a key 

parameter to create CSNs and HSPNs, which was widely explored in ref.30 From the defined 

chemical space, the similarity relationships between AMPs form a symmetric similarity matrix 

M of size |V|x|V|, being |V| the number of AMPs. The symmetric property of M means that ∀u,v 

Mu,v = Mv,u, where u and v are any two nodes from V. Each entry Mu,v corresponds to the 



 

10 

similarity score between nodes u and v in M. Then, a similarity threshold t is applied on M to 

filter the most prominent similarity relations, and if the similarity scores are greater than or equal 

to t they remain on M, otherwise, they are assigned to zero.36,37 The new matrix is known as 

threshold matrix T, and both CSN and HSPN were constructed from T.30 Edges are filtered 

according to the criteria summarized in the following expression:  

𝑇𝑢,𝑣 = {
𝑇𝑢,𝑣 𝑖𝑓 𝑢 ≠ 𝑣,𝑀𝑢,𝑣 ≥ 𝑡 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
              (1) 

Therefore, CSN and HSPN are weighted and undirected networks, with similarity values 

between AMPs as weights, and there exists an edge between two nodes if this value is greater 

than or equal to a given cutoff t.30 The criteria applied to choose this similarity threshold are 

explained in the next section.  

The main difference between CSNs and HSPNs is the way they are constructed. CSNs create 

a similarity matrix of all pairwise relationships between nodes and establish an edge only if the 

pairwise similarity value is equal or greater than a given threshold.38 On the other hand, HSPNs 

do not consider all the possible pairwise relationships between nodes, instead, these networks 

apply the half-space proximal test over the set of nodes,39 obtaining a connected network with a 

small fraction of the maximum number of edges.30 HSPNs have been applied to create a vector 

representation of residues contacts in protein 3D structures,40 but this is the first time we are 

using them to represent the AMPCS.   

In this report, we created CSN, HSPN, and METNs of the 550 APPs available in starPepDB. 

METNs of origin, database, function, and target pathogen were constructed using the Metadata 

Network option from the starPep toolbox. For CSN and HSPN, we firstly chose the default 

sequence identity value to remove redundant APPs. Thus, 415 APPs sharing a maximum of 98% 

of identity were used to generate the networks (see SI1-A_I), applying the local alignment 
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algorithm Smith-Waterman41 and Blosum 62 substitution matrix. Secondly, an optimized set of 

alignment-free sequence descriptors and methods were used to represent them as recommended 

in ref.30  Next, the Euclidean distance metric with min-max normalization to establish the 

pairwise similarity relationships among nodes was applied. The similarity threshold of both 

networks was set up considering different parameters, as is explained in the next section. Then, 

we retrieved CSN and HSPN giant components (405 APPs comprised the giant component of 

both networks, see SI1-A_II), defined as the largest connected component of a network, using 

the Central Informative Nodes in Network Analysis (CINNA) R package.42 The giant components 

of both networks were used onwards for all calculations. To visualize these networks in a 

meaningful way, we examined a family of force-directed layout algorithms that can be used to 

spatialize the network and rearrange nodes. These algorithms change the position of nodes by 

considering that they repulse each other, whereas similarity relationships may attract their 

attached nodes like springs.43 Particularly, the Fruchterman-Reingold algorithm44 was the most 

suitable for drawing  CSN and HSPN of APPs.  

In addition, we created two null network models with the same number of nodes and edges of 

CSN and HSPN giant components by applying the Gilbert method, a variation of the well-known 

Erdős-Rényi model. In this random network model, the edges are chosen uniformly and 

randomly from the set of all possible edges of the network.45 We created these random networks 

using the sample_gnm function from the igraph R package,46 applying a random seed of 100 

with the seed function. All network visualizations were customized with Gephi 47 and Inkscape.48  

2.1.3 Networks similarity threshold analysis 

We constructed CSNs and HSPNs of APPs according to specifications explained in previous 

section but changing similarity threshold in the range of 0.05 and 0.90 with a step of 0.05 (36 
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networks in total, 18 for each network type). As long the cutoff increases, some edges were 

removed from networks, becoming increasingly sparser graphs. Then, we retrieved some metrics 

of these networks at different similarity cutoffs using the starPep toolbox. The first metric was 

the network density, which is the actual number of edges over the maximum number of edges in 

a network49 (equation 2). This metric was obtained with starPep toolbox, according to the 

variations of the similarity cutoffs. 

𝐷 =
2|𝐸|

|𝑉|(|𝑉|−1)
          (2) 

where, |V| is the number of vertices and |E| the number of edges. 

We also removed singletons, nodes without edges connected to it or the ones with zero-

degree,27 filtering the 550 APPs by Network measure with attribute Weighted Degree to be 

greater than zero.  

The modularity of the networks was also analyzed at each similarity cutoff. This is  a 

network measure that compares the density in a community with the expected density for the 

same group of nodes on a random network.34 We calculated modularity and the number of 

communities using the modularity optimization clustering algorithm (based on the Louvain 

method).50 The modularity of undirected and weighted networks is defined as:  

𝑀 =
1

2|𝐸|
∑ [𝐴𝑢𝑣 −

𝑘𝑢𝑘𝑣

2|𝐸|
] 𝜎(𝑐𝑢, 𝑐𝑣)𝑢,𝑣𝜖𝑉     (3) 

where, |E| is the number of edges, Auv is an entry of an adjacency matrix, k is the degree of a 

particular node, and σ is the Kronecker delta, a function that returns one if u and v are in the same 

community (cu = cv) or zero otherwise.51 

According to a previous report, the average clustering coefficient (ACC), a global measure of 

nodes neighborhood connectivity,27 is a good indicator to set up the proper similarity threshold to 

create similarity networks,36 so we calculated the ACC for all networks using the transitivity 
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function from the igraph R package,46 which applies the definition of ACC for weighted 

networks proposed in ref.52 Therefore, we decided the best similarity threshold for CSNs and 

HSPNs evaluating all the aforementioned network measures. Plots of this sections were created 

with ggplot253 R package. 

2.1.4 Study of global networks properties 

The global characterization of networks is useful for identifying general topological and 

structural patterns, and thus, understanding the phenomena we are modeling, in this case the 

representation of the APPCS. These calculations were applied only to CSN and HSPN with the 

best similarity thresholds. In the last section, we obtained some of these features such as density, 

number of communities, modularity, singletons, and ACC for CSNs and HSPNs and their 

respective null network models. These properties are related to the number of edges, 

connectivity, and community structure of networks.    

Moreover, we measured some properties associated with component structure and 

reachability of networks, including the number of connected components, diameter, and average 

shortest path (ASP). A connected component is a subnetwork whose nodes can be reached from 

one another by traversing edges.34 Diameter is defined as the largest shortest path of a network, 

and ASP corresponds to the expected length of the shortest path between two nodes chosen at 

random.49 The formal definition of ASP is presented below:  

𝐴𝑆𝑃 =
∑ |𝑃𝑢𝑣|𝑢,𝑣𝜖𝑉

|𝑉|(|𝑉|−1)
      (4) 

where, |V| is the number of vertices and |Puv| is the length of a path to go from u to v. 

We also plotted the degree distributions of networks. All these metrics were calculated with 

the starPep toolbox and igraph R package.  

2.1.5 Centrality analysis  
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Centrality is a key concept in network science, it provides an intuition of the importance of 

nodes in networks, which may play critical roles in the system that is being modeled.54 In this 

study, the most influential nodes can provide useful information from the APPCS, and also these 

peptides can be used to retrieve new potential APPs by similarity searches. Therefore, we 

calculated the four centrality measures available in the starPep toolbox (weighted degree (WD), 

betweenness (BE), harmonic (HC), and hub-bridge (HB)) for both CSN and HSPN, and all of 

these values were normalized with the min-max method. Also, we explored possible correlations 

between these measures with the Spearman coefficient, using the corrmorant R package.55 To 

corroborate the correlation analysis, common APPs were identified within the top-50 most 

central nodes retrieved by different centrality measures, using in-house R scripts.  

To retrieve the most central and unique APPs sets by each metric, first, we decreased the 

redundancy among them by applying the Scaffold extraction plugin from the starPep toolbox. 

These peptides were ranked in decreasing order by each centrality measure, and redundant 

sequences were removed at a given percentage of sequence identity. We chose a sequence 

identity value of 50% to consider that a particular peptide is related to an already selected central 

peptide and, as a consequence, removed from the network. For these sequence comparisons, we 

applied the Smith-Waterman local alignment algorithm41 and BLOSUM62substitution matrix. 

Then, we retrieved APPs whose centrality scores were at least 10% of the most central APP 

value by each metric. We applied this process for both CSN and HSPN.  

2.2. Similarity Searching Models 

2.2.1 Description of models  
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Our models consisted of multi-query searches against some databases, and the combination 

of similarity scores by group fusion applying various similarity thresholds. All the components 

of our models are explained below:  

 Query datasets: The queries of our model were the most central and non-redundant 

APPs sets by the four centrality measures considered in this study for CSN, HSPN, and 

the consensus sets of both networks. In addition, we considered the set of 13 singletons 

(see SI1-B, a FASTA file), which was the same for both networks, and some 

combinations of the most promising sets. Finally, we had twenty-one query datasets, 

seven for each network, six for the combination of both networks, and the set of 

singletons.  

 Target or calibration databases: We considered five databases of APPs and non-APPs 

reported in ref.31 There were different balanced and unbalanced datasets stored in five 

FASTA files with thousands of labeled APPs and non-APPs (see SI1C-G).  

 Similarity coefficient: Smith-Waterman local alignment algorithm,41 implemented in 

BioJava,56 with Blosum62 substitution matrix allowed us to calculate the similarity 

scores, which were numbers between 0 and 1.  

 Group fusion: In this fusion model, the reference peptide can be presented by anyone of 

the extracted peptidic scaffolds (reduced chemical space), however the similarity measure 

(defined below) was kept constant  Some studies have demonstrated that fusion by 

similarity scores and the maximum fusion rule are the best parameters for these 

models,29,57 so we implemented these standards in our pipeline. Therefore, given a 

reference peptide Q and a peptide D from the target database, the algorithm of group 

fusion measures similarity scores S(Q, D) between Q and all the molecules of the 
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database, and retrieves the single fused score by the maximum fusion rule. Thus, the 

fused score is the largest of all similarity scores. 

 Similarity threshold: After applying the group fusion model for all queries of a dataset, 

we ranked the results in decreasing order of the fused scores. Then, we tested seven 

similarity thresholds in the range of 0.3 and 0.9 with a step of 0.1. Therefore, all of the 

peptides with fused scores greater than or equal to the specific cutoff were predicted as 

APPs.  

We performed these models with the starPep toolbox, using the Multiple query sequences 

option of the Peptides search by menu. In this software, group fusion by similarity scores and the 

maximum fusion rule are implemented by default, and users can change the query set, 

target/calibration dataset, similarity coefficient, and similarity threshold. Thus, we imported each 

of the five target databases to the starPep toolbox in different workspaces, and we applied multi-

query sequence searches with each of the twenty-one queries sets against each of the target 

databases. The query datasets were composed of central and singleton peptides, previously 

selected by scaffold extraction protocol with the starPep toolbox. As we had twenty-one query 

datasets and seven similarity thresholds, we evaluated 147 different mQSSMs. The best models 

were identified using several classification performance measures, which are explained in the 

next section. We presented a graphical summary of the pipeline used in our mQSSMs in Scheme 

1A.  

2.2.2 Selection of the best of models and comparisons with ML APPs prediction servers 

To assess the relative performance of the mQSSMs, we used the five data sets of APPs and 

non-APPs recently provided in ref.31 These datasets were obtained from starPepDB, whose 

description can be found in https://biocom-ampdiscover.cicese.mx/dataset. Each set of queries  

https://biocom-ampdiscover.cicese.mx/dataset
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Scheme 1. A) Workflow corresponding to the similarity searching modeling process (retrospective 

study) and B) APPs selection process (prospective virtual screening study). This scheme was 

created with Inkscape.48 
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and similarity thresholds were wrapped into a calibration algorithm, comprising a modified 

virtual screening simulation technique.31 In these models, we used just the queries’ subset of 

APPs as the multi-query calibration group, while the active and inactive subsets were the target 

datasets. The prediction ensemble, composed of similarity scores of each peptide D in the target 

dataset with each query Q, was ordered with the MAX-SIM multi-classifier.58,59 The ordered list 

was scanned for every active and inactive APP-labeled peptide of the target database, and these 

results were used to calculate performance metrics, obtained from the confusion matrix.60 

(Scheme 1A). The performance metrics were used to evaluate the quality of the early retrieval.  

In ref.61 the authors reported a unified overview of methods that are currently used for 

evaluating classification tasks, as well as the advantages and downsides of each approach. 

Here, we used the following performance metrics derived from the confusion matrix of the 

actual versus predicted class: i) sensitivity (SN, also called true positive rate, hit rate, and 

recall), ii) precision (PR), iii) specificity (SP, also called true negative rate), iv) accuracy 

(Q% - global good classification), v) kappa, and vi) Matthews correlation coefficient (MCC). 

These performance metrics were calculated with the formulas presented below:  

{
 
 
 
 

 
 
 
 𝑆𝑁 = 

𝑇𝑃

𝑇𝑃+𝐹𝑁

𝑃𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃

𝑆𝑃 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃

𝑄% = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

𝑘 =  
𝑝𝑜−𝑝𝑒

1−𝑝𝑒

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)

 (5) 

where, TP are true positives, TN true negatives, FP false positives, FN false negatives, po 

the relative observed agreement among raters, and pe the hypothetical probability of chance 

agreement. 
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Finally, the performance metrics for the five calibration datasets were used to carry out 

comparisons among models by using the statistic of Iman and Davenport.62 These statistical tests 

showed that Friedman's value was undesirably conservative. Whenever significant differences 

were detected, the post hoc tests58,63,64 were used to compare the Friedman best-ranked models or 

reference measure with the remaining ones. This step-up procedure works in the opposite 

direction to Holm’s test and allows the control of the so-called familywise type I error arising 

from multiple pair-wise comparisons.63 After applying these statistical tests, we obtained the best 

mQSSM. A second comparison was carried out to compare our best similarity searching models 

with ML-based models reported in the literature for APP prediction31,32 by using the same five 

calibration datasets.  

2.3. New APPs Predictions 

We used the starPepDB as a space of search to discover new potential APPs and the starPep 

toolbox for exploring the APPCS. First, we removed the toxic peptides and known APPs from 

starPepDB, applying the not operator and filtering the database by metadata Function with 

Antiparasitic, Toxic, and Toxic/Venom queries. Then, we reduced the redundancy of these 

sequences with the nonredundant plugin, applying a similarity identity value of 0.95 with the 

local alignment algorithm Smith-Waterman,41 and BLOSUM62 substitution matrix. These non-

toxic, non-APP, and nonredundant peptides were the chemical space to search for new potential 

APPs. Hence, we used the best mQSSM, obtained in the previous section, as a prediction tool to 

detect new APPs in the before-mentioned chemical space.  

We removed from the space of unknown and non-toxic APPs, those virtual hits with 

sequence length greater than or equal to 30, sharing similarity score of one, and that contain non-

standard amino acids. To avoid toxic peptides in our list of APPs candidates, we uploaded the 
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FASTA file of these sequences to the ToxinPred server 

(https://webs.iiitd.edu.in/raghava/toxinpred/)65, applying the SVM (Swiss-Prot) + Motif based 

model with an SVM threshold of zero. The APPs predicted as toxic by ToxinPred were 

discarded. We also used the HemoPI server (https://webs.iiitd.edu.in/raghava/hemopi/)66 to 

remove potential hemolytic peptides, applying SVM + Motif (HemoPI-1) and SVM + Motif 

(HemoPI-2) models, and removing peptides with a PROB score greater than or equal to 0.7 in 

both models. Then, the remaining virtual hits were further reduced by developing mQSSM 

aimed at detecting similarities with the most central toxic peptides available in starPepDB. The 

centrality analysis was performed as explained above. 

In addition, we used AMPDiscover31 and AMPFun32 servers to confirm our APP predictions. 

Therefore, Random Forest and Deep Learning models of AMPDiscover, and AMPFun were 

evaluated on the virtual hits. Then, we created a CSN and an HSPN with the remaining virtual 

hits and applied non-redundant scaffold reduction based on Harmonic centrality with a 0.7 

identity threshold on each network. Thus, we obtained the consensus set of sequences between 

both networks. Ultimately, a CSN was constructed with the remaining set of virtual hits. We 

selected the singletons and communities with two nodes, applied the Modularity optimization 

clustering algorithm, and extracted the non-redundant set for each community applying a 

similarity threshold of 0.5, the Harmonic centrality, and the other parameters established by 

default. Therefore, singletons, communities of two nodes, and representatives for each cluster 

were the lead peptides proposed as potential APPs in this study. A graphical summary of this 

section is depicted in Scheme 2. 

 

 

https://webs.iiitd.edu.in/raghava/toxinpred/
https://webs.iiitd.edu.in/raghava/hemopi/
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Scheme 2. Filtering workflow to obtain the new potential APPs. This scheme was created with 

Inkscape.48 

 



 

22 

2.4. Discovery of Sequence Motifs 

2.4.1. Multiple sequence alignments 

We created a CSN with lead compounds and obtained its communities using the Modularity 

optimization clustering algorithm. Then, these resulting clusters were aligned independently by 

using multiple sequence alignment (MSA), publicly available at 

https://www.ebi.ac.uk/Tools/msa/. To determine consensus motifs within each cluster, three 

different MSA algorithms were applied with their default parameters: Multiple Alignment using 

Fast Fourier Transform (MAFFT) v7 with the iterative refinement FFT-NS-i option,67 Multiple 

Sequence Comparison by Log-Expectation (MUSCLE),68 and Tree-based Consistency Objective 

Function for Alignment Evaluation (T-Coffee).69  

The resulting MSAs were employed to extract the consensus sequences by considering the 

frequency of each residue at every column of the alignment. The residues with a higher score 

than a certain threshold estimated for each column will conform to the positions (putative motifs) 

in the consensus. Both the Jalview software v2.11.1.470 and the EMBOSS Cons web server71 

(https://www.ebi.ac.uk/Tools/msa/emboss_cons/) were used for this aim. 

2.4.2. Alignment-free method. 

Lead compounds were analyzed with the Sensitive, Thorough, Rapid, Enriched Motif 

Elicitation (STREME) software72 to discover fixed-length patterns (ungapped motifs) that were 

enriched in each cluster. The predictions were performed via its web server (https://meme-

suite.org/meme/tools/streme), fully integrated within the widely-used MEME Suite of sequence 

analysis tools (https://meme-suite.org/meme/).73 Control sets were generated by shuffling input 

peptides. The motif width was set between 3-5 amino acids length. STREME evaluated motifs 

https://www.ebi.ac.uk/Tools/msa/
https://www.ebi.ac.uk/Tools/msa/emboss_cons/
https://meme-suite.org/meme/tools/streme
https://meme-suite.org/meme/tools/streme
https://meme-suite.org/meme/
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using a statistical test of the enrichment of matches for the target motif in the query set of 

sequences compared to a set of control sequences.72 

2.4.3. Motif Search in PROSITE 

Potential APPs were queried by the Motif Search tool (https://www.genome.jp/tools/motif/), 

integrated into the GenomeNet Suite (https://www.genome.jp/).74 PROSITE Pattern and 

PROSITE Profile libraries75 were only considered for the motif search within each cluster. 

 

3. RESULTS AND DISCUSSION  

3.1. Navigating and Mining the APPCS 

3.1.1 Networks of APPs  

Before creating CSN and HSPN, we conducted some analyses to decide the proper similarity 

threshold for both networks. The similarity cutoff to define edges is a mandatory parameter to 

create CSNs and it is optional for HSPNs. The selection of this threshold is not trivial because it 

modifies network topology and some properties like density, modularity, among others.36 There 

is a lack of predefined standard values for this task because it depends on the input data, 

similarity relationships between nodes, and other aspects. Therefore, it is recommended to define 

this threshold case by case,30 so we studied what would be the best cutoff values for both 

networks taking into account some network metrics.  

Some previous articles have found similarity networks have an inversely proportional 

relationship between their similarity threshold and density values,30,36 which means that networks 

with high cutoffs have fewer edges and are sparser. Both CSNs and HSPNs showed the 

mentioned behavior between similarity thresholds and density (Figure 1A, Tables SI2-1 and SI2-

2). HSPN density values were much lower than the corresponding values of CSN, as we 

https://www.genome.jp/tools/motif/
https://www.genome.jp/
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expected because of the differences between methods building these networks, as explained in 

the Datasets and Methods section. In addition, density values were the same on HSPNs with a 

cutoff between 0.05 and 0.45 because the number of edges almost did not change (Table SI2-2). 

If the density is too high it would be complicated to interpret network topological features, while 

at low values it is likely to lose information, so an equilibrium between both extremes is a 

must.34 

The ACC had a particular behavior, it increased at low and high similarity thresholds in the 

CSNs, and the HSPNs with high cutoffs even had larger ACC than networks with lower values 

(Figure 1B, Tables SI2-1 and SI2-2). These results were counterintuitive because the logic output 

would be that dense networks increase their connectedness, while the sparser ones decrease this 

parameter. Nonetheless, adding edges to some nodes does not guarantee that their neighbors are 

connected, which is measured by ACC, instead, the opposite could occur,36 as is shown in the 

HSPN results (Figure 1B and Table SI2-2).  

In ref 36 the authors studied the relationship between ACC and similarity threshold in 

networks of small molecules, obtained from the World of Molecular Bioactivity database and the 

PubChem Molecular Libraries Small Molecule Repository. They found that the ACC versus 

similarity threshold function of networks reconstructed from different datasets had a local 

maximum in a cutoff value associated with the best clustering outcome, and it would be the best 

option to choose.36 Our results showed that the local maximum similarity thresholds for CSN and 

HSPN were 0.90 and 0.65, respectively (Figure 1B, Tables SI2-1 and SI2-2). Moreover, 

additional parameters were analyzed to confirm if these values were the best cutoffs, as 

explained below. 
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The modularity of both types of networks did not change too much at initial similarity 

cutoffs, but then these values increased until a global maximum of 0.94 and 0.96 for CSNs and 

HSPNs respectively (Figure 1C, Tables SI2-1 and SI2-2). Higher values of this network measure 

indicate if a community structure exists,51 and it is associated with the number of communities 

(Figure 1D). An excessive number of communities is not desirable because it is likely that some 

of these clusters would be artifacts.34 In both CSN and HSPN, the number of communities at 

high similarity thresholds increased too much compared to their low counterparts (Figure 1D, 

Tables SI2-1 and SI2-2), so these aspects were considered to choose the similarity cutoff for both 

types of networks.  

The last parameter was the number of singletons (also well known as outliers or atypical 

sequences), unique APPs not similar to other nodes from our networks. These peptides are worth 

exploring because they could have new properties that enhance their antiparasitic activity. This 

network measure had a behavior as modularity, with no change at initial similarity thresholds, 

but increasing their values at higher cutoffs (Figure 1E, Tables SI2-1 and SI2-2), and it is not 

desirable to have an excessive number of singletons nor very few. 

Considering all metrics from the 36 networks with different similarity cutoffs (18 cutoff 

values for both CSNs and HSPNs), the best similarity threshold for both types of networks was 

0.65. The HSPN with this similarity cutoff was the local maximum point of ACC, and it 

presented intermediate values of density, modularity, communities, and singletons. Although 

CSN with a similarity threshold of 0.65 was not the local maximum of ACC, the other 

parameters were the most appropriate (Figure 1, Tables SI2-1 and SI2-2).  
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Figure 1. Network measures to determine the proper similarity threshold for CSN and HSPN. A) 

Density, B) Average clustering coefficient (ACC), C) Modularity, D) Communities, and E) 

Singletons. This Figure was created with ggplot2 R package53 and edited with Inkscape.48 

 

Therefore, we created CSN and HSPN applying the 0.65 similarity threshold. We obtained 

the giant components of both networks, and we constructed null models with the same number of 
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nodes and edges of the giant components. Figure 2 shows visualizations of both CSN and HSPN 

giant components and their null models, with nodes colored by their community and sized by 

their weighted degree or strength, calculated by summing up edge weights of the adjacent edges 

for each node.49 The graphml files of all networks are available as SI3.  

The size of all nodes from null networks was the same (Figures 2C and 2D) because we 

created these graphs using a random model that did not have APPs as nodes, so there were no 

weights to calculate strength. Another noticeable feature from Figure 2 was that the real 

networks had an apparent community structure, absent in the random models.  

We calculated some networks metrics to measure in a formal way the differences between 

CSN and HSPN, as well as between real and random networks, in terms of their community 

structures and other aspects. The number of vertices, singletons, and connected components of 

CSN and HSPN were the same, which was shown in complete networks, giant components, and 

random models (Table 1). Indeed, the singletons of both networks were the same 13 APPs (see 

SI1-B), so we had only one set of these unique nodes for further analysis. 

Density and ACC of HSPN tended to have lower values than CSN, while the opposite 

occurred with modularity, communities, diameter, and ASP. This behavior is related to the way 

each network model is constructed and the number of edges obtained by each process, as we 

explained in Materials and Methods. If a network has many links, as is the case of CSNs, the 

network’s fraction of the possible number of edges and its connectivity would increase, which 

are the aspects measured by density and ACC, respectively.  
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Figure 2. Network of APPs. A) CSN and B) HSPN giant components. C) CSN and D) HSPN 

random models with the same number of nodes and edges as A) and B). In all networks, nodes are 

colored by their community and sized by their weighted degree. All the visualizations were created 

with Gephi,47 applying the Fruchterman-Reingold layout algorithm,44 and edited with Inkscape.48 

 

On the other hand, community detection in dense networks would be difficult due to their 

interconnectedness between nodes, so assigning a node to a specific cluster would be fuzzy.49 

This fact was observed in the lower modularity and number of communities values in CSNs 

compared to HSPNs. The same pattern appeared in the two measures related to reachability,  
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Table 1. Global Networks Properties of the Complete Graphs, Giant Components, and Random 

Models. 
Networka CSN HSPN CSN GC HSPN GC CSN RM HSPN RM 

Vertices 415 415 405 405 405 405 

Edges 19,302 1,564 19,294 1,557 19,294 1,557 

Connected 

components  

5 5 1 1 1 1 

Density 0.2247 0.0182 0.2358 0.0190 0.2358 0.0190 

ACC 0.6988 0.0551 0.6943 0.0480 0.2361 0.0226 

Modularity  0.234 0.455 0.233 0.452 0.071 0.335 

Communities  11 15 7 9 10 12 

Singletons 13 13 0 0 0 0 

Diameter  ∞ ∞ 9 12 2 6 

ASP ∞ ∞ 2.254 3.732 1.764 3.166 
aAll the measures were calculated with igraph.46 GC: giant component, RM: random model, ACC: average cluster 

coefficient, ASP: average shortest path. 
 

diameter and ASP (Table 1), a logical result because dense networks like CSN have more 

possible paths to reach a node from another one, so the diameter and ASP from CSN were lower 

than the corresponding values in HSPN. The diameter and ASP for both complete networks were 

assigned to be infinite because these models had more than one component, so it is not possible 

to link some of their nodes, and for convenience these values are infinite. 

Comparing the giant components with their random model counterparts, the number of 

vertices, edges, connected components, density, and singletons were the same. However, 

modularity, number of communities, and ACC values of giant components were greater than the 

random models (Table 1). Hence, the real networks showed a better community structure and 

neighbor connectivity, as is shown visually in Figure 2. In CSN and HSPN, communities could 

be APP families that share certain chemical and structural properties. The diameter and ASP 

values were also greater in real networks, so the reachability of these graphs was lower compared 

to the null models. 

In addition, we plotted the degree distributions of giant components and random models from 

CSN and HSPN to explore some properties and if these networks behave as general models.49  
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Figure 3. A) Degree distributions in a log-log scale of the giant components and random models 

from both CSN and HSPN. The horizontal axis is vertex degree k and the vertical axis is the 

probability of a node to have a degree of k. B) Complementary cumulative distribution function of 

the CSN giant component degree. The horizontal axis is vertex degree x and the vertical axis is the 

probability for finding a node of degree k greater than or equal to x. This Figure was created with 

ggplot2 R package53 and edited with Inkscape.48 
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The degree of HSPN giant component and their random models are distributed normally, as 

is shown with their bell-shaped distribution (Figure 3A), revealing the random behavior of 

HSPN. The randomness in HSPN was expected due to the way this network is constructed, 

following the half-space proximal test, as was explained in Materials and Methods. By contrast, 

the CSN giant component pattern distribution was not as evident as the other networks in Figure 

3A, so we visualized its degree distribution with the complementary cumulative distribution 

function (CCDF) because it reflects these patterns in a better way.34 The cumulative degree 

distribution showed that in CSN the probabilities for finding a node with degree x or higher were 

similar across different degree values (Figure 3B), so there was no power-law behavior due to 

the lack of scale invariance between degree and CCDF.76Therefore, the CSN was more related to 

a random model, as well as HSPN. 

Moreover, the METNs showed valuable information about the APPCS. We observed that 

most of the APPs come from synthetic constructs, which are observed as the largest node or hub 

in the network, and a few of them are derived from parasites, bacteria, and animals (Figure 4A). 

As we expected, the most prevalent functions were antiparasitic and antimicrobial, but some of 

the APPs have been associated with antibacterial (Gram-positive and Gram-negative), antifungal, 

anticancer, among other activities (Figure 4B). The most predominant pathogen targets were 

some bacteria such as Escherichia coli and Staphylococcus aureus, although we also found 

parasites such as Plasmodium, Leishmania, and Trypanosoma (Figure 4C). The results of 

pathogen targets can be biased because there are much more antimicrobial essays made in 

bacteria than in parasites.13  Regarding databases, most of the APPs come from DBAASP,77 

SATPdb,78 ParaPep,79, and APD80(Figure 4D). ParaPep is one of the biggest databases of  
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Figure 4. METNs with metadata of A) origin, B) function, C) target pathogen and D) database. In 

all networks, red nodes are APPs and the blue ones are metadata, and all of them are sized by their 

degree. All the visualizations were created with Gephi,47 applying the Fruchterman-Reingold 

layout algorithm,44 and edited with Inkscape.48 

 

validated APPs,79 so including its information in starPepDB helped us to map the known 

APPCS. 

3.1.2 Centrality analysis and influential but non‑redundant APPs 
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Figure 5. Spearman correlation analysis of centrality measures from A) CSN and B) HSPN. In A) 

and B) the distribution of each variable, the pairwise scatter plots with a fitted line, and the values 

of the spearman correlation are shown in the main diagonal, bottom diagonal, and upper diagonal 

respectively. On the right side of each correlogram, the legend color shows the scale of the 

correlation coefficients. This figure was created with corrmorant R package55 and edited with 

Inkscape.48 

 

The results of normalized centrality measures for all nodes from both CSN and HSPN can be 

found as SI4-A and SI4-B, respectively. These centrality measures consider different network 
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properties to identify influential nodes, but some metrics might have similar results. Hence, we 

studied possible correlations between these variables with the Spearman coefficient. We applied 

this correlation measure because the distributions of some of these metrics were skewed (see 

main diagonal at Figures 5A and 5B), so the assumption of normality was not satisfied, and other 

correlation coefficients like Pearson would not be a good choice.81,82 

In both kinds of networks, the centrality measures of harmonic, hub-bridge, and weighted 

degree had a high positive correlation between them, greater than 0.80 in all cases, which is also 

shown graphically in the pairwise scatter plots between these variables (Figure 5). These results 

showed that the notion of the importance of these three centrality measures is highly related. 

Betweenness centrality had intermediate correlations values with the rest of the metrics, so it was 

also associated with the other measures, but at a lower level compared to the relationships among 

the others. Correlation analysis was supported by the common APPs in the top 50 most central 

nodes retrieved by different centrality measures, showing similar associations between the 

centrality measures (Tables SI2-3 and SI2-4). Considering these outcomes, the centrality sets 

from correlated measures were merged and tested together as queries against the validated 

datasets, as is explained in the next section.   

An important aspect to consider with the obtention of central nodes was their 

representativeness by different communities, which was achieved with the chosen criteria, as is 

shown in Table SI2-5. Thus, our central nodes for each network and centrality measure belonged 

to different communities, which in these networks could be APPs families. In this way, the 

central nodes represented the APPCS and most of its potential APPs families. However, these 

influential nodes could be redundant in their communities because they would be highly similar 

to one another.  
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Figure 6. A) APPs CSN and B) subnetwork of 57 APPs from CSN’s community 3 and its sub-

communities. In both networks, nodes are colored by their community and sized by their weighted 

degree. All the visualizations were created with Gephi,47 applying the Fruchterman-Reingold 

layout algorithm,44 and edited with Inkscape.48 

 

As a proof of concept for the redundancy of peptides inside communities of our networks, we 

extracted the APPs from CSN’s community 3 and obtained sub-communities of this cluster using 

the modularity optimization algorithm, as is shown in Figure 6.  

Then, we obtained the sequences and other physicochemical properties of some 

representative APPs from each sub-community (Table 2). We observed that several from CSN’s 

community 3 had the same sequence length of 29, 10, 5, and 16 amino acids in 1, 2, 3, and 5 sub-

communities, respectively. In addition, the same (or rather similar) amino acid residues 

composed of those peptides, and their physicochemical properties had similar values (Table 2).  

Hence, in general, it is expected that inside the most central nodes we could obtain highly similar 

APPs, so it may be better to extract some non-redundant sequences from the networks instead of 

just selecting the highest-ranked ones by each centrality measure. To remove this potential  
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Table 2. Sequences and some physicochemical properties of representative APPs from sub-

communities of CSN’s community 3. 

aID of the peptides in starPepDB. bThe physicochemical properties of APPs were calculated with ToxinPred server.65 

Mol wt: molecular weight. 

 

redundancy in APPs, and obtain central but non-redundant peptides, we applied the Scaffold 

extraction plugin from the starPep toolbox, as was explained in the centrality analysis section of 

Materials and Methods. Thus, we obtained the most central and non-redundant APPs by each 

centrality measure and network, and we exported them as FASTA files, which are available as 

SI5. These sets of influential and unique APPs were used in the next section to retrieve new 

potential APPs by similarity searching. 

The numbers of central nodes obtained from CSN with hub-bridge, weighted degree, and 

betweenness centrality measures were lower compared to the values derived from HSPN, while 

for harmonic centrality these values were almost the same for CSN and HSPN (Table SI2-5). 

Moreover, the numbers of central APPs from both CSN and HSPN with harmonic, hub-bridge, 

and weighted degree centrality measures were greater than one hundred APPs, which was not the 

case for betweenness centrality (Table SI2-5). 

3.2. Multi-Query Similarity Searching Models for APPs  

3.2.1. Performance of the best mQSSMs 

 

Community Namea Sequence Length Chargeb Mol wtb Hydrophobicityb 

1 

starPep_09852 GKGLXXGKXXGLXXG

KXXGLXXGKXXGKR 

29 6 1611.25 -0.26 

starPep_09855 GKGLXXGRXXGFXXG

RXXGFXXGRXXGKR 

29 6 1763.30 -0.37 

2 
starPep_20193 FPFFNQYVKL 10 1 1302.68 0.04 

starPep_20234 FPWFNQYVKL 10 1 1341.72 0.02 

3 
starPep_09474 FHPHE 5 0 665.77 -0.18 

starPep_11159 LHPHE 5 0 631.76 -0.19 

4 
starPep_04155 IASASCTTCICTCSCSS 17 0 1641.10 0.02 

starPep_02009 SCTTCVCTCSCCTT 14 0 1415.83 -0.05 

5 
starPep_13642 WIQXITXLXXQXXXPF 16 0 1145.51 0.15 

starPep_13916 YIQXITXLXXQXXXPF 16 0 1122.47 0.11 
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Table 3. Antiparasitic datasets to calibrate/evaluate and compare the mQSSMs proposed in this 

report with several methods reported in the literature. 

ID/Fasta file Name Number of 

sequences 

Positive 

(APPs) 

Negative 

(non-APPs) 

D1/SI1-C  TR_starPep_AP 198 99 99 

D2/SI1-D TS_starPep_AP 62 31 31 

D3/SI1-F EX_starPep_AP 11,182 411 10,771 

D4/SI1-F B-TS_starPep_AP 57 26 31 

D5/SI1-G B-EX_starPep_AP 11,080 309 10,771 

This table was adapted from Table1 of ref.31 SI: supporting information, TR: training, TS: test, EX: external, B_TS: 

benchmarking test, B_EX: benchmarking external. 
 

In our mQSSMs, the constant parameters were the similarity coefficient and group fusion 

model, while we varied the query set, target database, and similarity threshold (Scheme 1A). 

Five target databases (SI1C-G, five FASTA files) provided in the ref,31 namely D1-D5, were 

used to calibrate and evaluate the novel mQSSMs. These databases included balanced datasets 

(D1, D2, D4) with a similar proportion of positive and negative classes, and unbalanced datasets 

(D3, D5), which have much more negative instances than positive ones (Table 3).  D1-D3 

databases contain sequences of lengths between 5 and 100 amino acids, while sequences from 

D4-D5 have lengths between 5 and 30 amino acids.31 The D1-D3 datasets were recently used as 

training, test, and external validation data sets, respectively, to generate ML models by using 

genetic algorithm metaheuristics and random forest (RF); where the default configurations in the 

Weka tool v3.8 were applied.31 On the other hand, D4-D5 databases were previously used as 

external validation datasets to carry out a comparative study of the best RF-based classification 

models obtained for APPs discrimination. Here, we used these five benchmarking datasets of 

APP/non-APPs (Table 3) to compare the performance between our mQSSMs and with the 

algorithms reported in the literature for predicting APPs.   

As we had twenty-one query sets, and seven similarity thresholds (0.3 to 0.9 with 0.1 step), 

we generated 147 different mQSSMs, which were evaluated with the five target databases (D1-

D5), and their results were summarized in SI6 as four excel files containing output predictions  
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Table 4. Performance of the best nine mQSSMs to identify APPs, evaluated on the D1-D5 

databases. 
Performance metrics 

(target database)a 

186Q_0.5 (HB-HC-

Singletons) 
178Q_0.5 (HC-Singletons) 165Q_0.5 HC 

Best 3 mQSSMs from CSN 

Accuraccy (D1) 0.934 0.914 0.894 

KappaStatistic (D1) 0.869 0.828 0.788 

AverageRecall (D1) 0.934 0.914 0.894 

AveragePrecision (D1) 0.94 0.924 0.913 

Accuraccy (D2) 0.952 0.952 0.935 

KappaStatistic (D2) 0.903 0.903 0.871 

AverageRecall (D2) 0.952 0.952 0.935 

AveragePrecision (D2) 0.952 0.952 0.937 

Accuraccy (D3) 0.991 0.991 0.991 

KappaStatistic (D3) 0.86 0.86 0.863 

AverageRecall (D3) 0.904 0.904 0.898 

AveragePrecision (D3) 0.96 0.96 0.972 

Accuraccy (D4) 0.947 0.965 0.965 

KappaStatistic (D4) 0.894 0.929 0.929 

AverageRecall (D4) 0.945 0.965 0.965 

AveragePrecision (D4) 0.949 0.965 0.965 

Accuraccy (D5) 0.991 0.991 0.992 

KappaStatistic (D5) 0.832 0.832 0.842 

AverageRecall (D5) 0.89 0.89 0.886 

AveragePrecision (D5) 0.945 0.945 0.964 

Performance metrics 

(target database)a 

200Q_0.5 HB-HC-

Singletons 
187Q_0.5 HB-HC 173Q_0.5 HC-Singletons 

Best 3 mQSSMs from HSPN 

Accuraccy (D1) 0.939 0.904 0.929 

KappaStatistic (D1) 0.879 0.808 0.859 

AverageRecall (D1) 0.939 0.904 0.929 

AveragePrecision (D1) 0.946 0.919 0.936 

Accuraccy (D2) 0.968 0.935 0.935 

KappaStatistic (D2) 0.935 0.871 0.871 

AverageRecall (D2) 0.968 0.935 0.935 

AveragePrecision (D2) 0.968 0.937 0.937 

Accuraccy (D3) 0.991 0.992 0.99 

KappaStatistic (D3) 0.874 0.881 0.85 

AverageRecall (D3) 0.921 0.915 0.898 

AveragePrecision (D3) 0.955 0.969 0.957 

Accuraccy (D4) 0.982 0.965 0.965 

KappaStatistic (D4) 0.965 0.929 0.929 

AverageRecall (D4) 0.984 0.965 0.965 

AveragePrecision (D4) 0.981 0.965 0.965 

Accuraccy (D5) 0.992 0.993 0.991 
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KappaStatistic (D5) 0.838 0.854 0.817 

AverageRecall (D5) 0.904 0.9 0.882 

AveragePrecision (D5) 0.935 0.958 0.939 

Performance metrics 

(target database)a 178Q_0.5 HC 206Q_0.5 HB-HC 219Q_0.5 HB-HC-Singletons  

Best 3 mQSSMs from both HSPN-CSN 

Accuraccy (D1) 0.919 0.909 0.944 

KappaStatistic (D1) 0.838 0.818 0.889 

AverageRecall (D1) 0.919 0.909 0.944 

AveragePrecision (D1) 0.93 0.923 0.95 

Accuraccy (D2) 0.935 0.952 0.984 

KappaStatistic (D2) 0.871 0.903 0.968 

AverageRecall (D2) 0.935 0.952 0.984 

AveragePrecision (D2) 0.937 0.952 0.984 

Accuraccy (D3) 0.991 0.993 0.992 

KappaStatistic (D3) 0.868 0.89 0.885 

AverageRecall (D3) 0.904 0.922 0.928 

AveragePrecision (D3) 0.969 0.97 0.958 

Accuraccy (D4) 0.965 0.965 0.982 

KappaStatistic (D4) 0.929 0.929 0.965 

AverageRecall (D4) 0.965 0.965 0.984 

AveragePrecision (D4) 0.965 0.965 0.981 

Accuraccy (D5) 0.992 0.993 0.992 

KappaStatistic (D5) 0.845 0.866 0.856 

AverageRecall (D5) 0.891 0.91 0.914 

AveragePrecision (D5) 0.961 0.959 0.942 
aModels performance on five D1-D5 benchmarking datasets of APP/non-APPs, which are described in Table 3.             

Q: query, CSN: Chemical space network, HSPN: half-space proximal network, HB: hub-bridge centrality, HC: 

harmonic centrality, mQSSMs: multi-query similarity searching models. 
 

(active or inactive for APPs and non-APPs, respectively) for all models. We had ninety-eight 

mQSSMs for CSN (SI6-A) and HSPN (SI6-B), forty-nine for each network, forty-two models for 

the combination of both networks (SI6-C), and seven mQSSMs for the set of singletons (SI6-D). 

The query sets and number of queries for all the models are presented in Table SI2-6.  

Table 4 shows the performance metrics of the best nine models to predict APPs, evaluated 

with the D1-D5 validation datasets, whereas SI7-A contains the corresponding statistical 

parameters for all 147 mQSSMs. As it can be noted, the number of Qs included in the best 3 

models for each network ranged from 165 to 219 sequences. It can also be observed that all these 
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best mQSSMs had good results according to their performance metrics, showing values of 

average recall, average precision, kappa statistic, and accuracy greater than 0.8.  

We observed that the best similarity threshold was 0.5 in all mQSSMs (SI7-A). The best 

reference query sets were HC > WD > HB >> BE > singletons in both networks (see SI7-A and 

SI7-C for more details). However, the combination of query sets obtained with different 

centrality measures (in the same network and from both networks) was always better than any 

query set derived from a single centrality measure. Combinations of query datasets such as HB-

HC-singletons in CSN, HSPN, and mixing both networks at the same time (CSN-HSPN) were 

the best mQSSMs (Tables 4 and Table 5). Similarly, the fusion of the thirteen singletons to any 

central query datasets enhanced the recovery of models, which is a logical result due to atypical 

nodes and central query sets represent the complete space of known APPs. 

All the best 21 mQSSMs had successful predictive ability according to the average recall, 

average precision, kappa statistic, and accuracy performance metrics (see SI7-A and SI7-C for 

more details). Outstanding outcomes were attained by the mQSSM with 219 Qs from both 

networks (HB-HC-Singletons CSN-HSPN) and by using 0.5 as similarity threshold, with the 

previous performance metrics being greater than or approximately equal to 0.83 in D4-D5 

external validation datasets (Table 5, SI7-B, and SI7-C). Moreover, it can be stated that the 

predictions performed by the best mQSSMs were not random (MCC ≫ 0). It is important to 

remark that these antiparasitic mQSSMs had a strong-to-very strong predictive agreement since 

their test/external MCC values ranged from 0.834 to 0.965. 

The best mQSSMs developed in this report for each network were used to perform a 

comparative study with state-of-the-art ML-based methods reported in the literature for  
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Table 5. Comparison between the best mQSSMs to predict APPs proposed in this study and those 

reported in the literature on the antiparasitic benchmarking test and external data sets. 

Parameters 
ProtDCal-

AP_RF 

ProtDCal-

AP_RF_Hierarchical 
AMPfun 

178Q_0.5 (HC-

Singletons) 

CSN 

200Q_0.5 

HB-HC-

Singletons 

HSPN 

219Q_0.5 

HB-HC-

Singletons 

HSPN-CSN 

D4 Dataset 

SNB-TS 0.885 0.769 0.538 0.962 0.963 0.963 

SPB-TS 0.903 0.936 0.71 0.962 1 1 

Q%B-TS 0.895 0.86 0.632 0.965 0.983 0.983 

MCCB-TS 0.788 0.721 0.252 0.929 0.965 0.965 

D5 Dataset 

SNB-EX 0.799 0.783 0.45 0.896 0.875 0.8893 

SPB-EX 0.867 0.944 0.883 0.783 0.8123 0.832 

Q%B-EX 0.865 0.939 0.871 0.9914 0.992 0.993 

MCCB-EX 0.306 0.45 0.165 0.834 0.839 0.856 

AP: antiparasitic, RF: random forest, Q: query, CSN: Chemical space network, HSPN: half-space proximal network, 

HB: hub-bridge centrality, HC: harmonic centrality, mQSSMs: multi-query similarity searching models, SN: 

sensitivity, SP: specificity, Q%: accuracy, MCC: Matthew’s correlation coefficient, B-TS: benchmarking test, B-EX: 

benchmarking external. 

predicting APPs; the AMPfun sever,32 and alignment-free quantitative sequence-activity models 

(AF-QSAMs) implemented in AMP-Discover.31  

Regarding the outcomes achieved in the antiparasitic classification, the superiority of the 

three proposed models was remarkable, since the AMPfun model32 and AMP-Discover AF-

QSAMs31 presented a weak predictive ability y (MCC < 0.26 and MCC < 0.45, respectively) on 

both benchmarking data sets (Table 5). 

3.2.2. Statistical comparison  

A sole accepted and established test doesn’t exist for multiple comparison tests (MCT, for 

more detail, see http://sci2s.ugr.es/sicidm). In fact, models comparison and the selection of the 

best one is a staple among scientific investigations.83 We selected the best mQSSMs by 

evaluating our models with various criteria (Q%, SE, SP, and MCC) on the five target databases, 

and applying a paired-parametric post hoc test (see SI7-C and SI7-D for more details). We 

determined the differences between our models by using several non-parametric statistical 

http://sci2s.ugr.es/sicidm
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tests.58,63,64 In the first place, we applied an Iman–Davenport test62 to check whether all the 

results obtained by the algorithms present any inequality, and in the case of finding some, then 

we can know, by using a Holm test58,63,64 what algorithms partners’ average results are 

dissimilar. That is to say, a Friedman’s test, which rejected the null hypothesis that all predictors 

performed comparably on average. The same can be concluded from the results of an Iman and 

Davenport’s test. 

The MCTs showed according to the rankings’ method that 219Q_0.5 HB-HC-Singletons 

HSPN-CSN was the best algorithm, while 200Q_0.5 HB-HC-Singletons HSPN and 178Q_0.5 

HC-Singletons CSN had the second and third best average value of ranking in the five 

validation datasets, in concordance with the results depicted by Tables 4 and Table 5 (see SI7-C 

and SI7-D for more details). 

Besides, a second Iman–Davenport test62 was carried out to detect if significant differences 

existed between our models and state-of-the-art algorithms to predict APPs (Table 5). In this 

sense, the null hypothesis (no-differences) was rejected for the case where the test values were 

higher than the critical value. Then, we performed the Holm test58,63,64 and for the case of the 

benchmark datasets, we found statistically significant differences between our mQSSMs and 

literature methods, but no significant differences were found between our best mQSSM and the 

second and third best mQSSMs (SI7-D). Namely, in these five validation databases significant 

differences were observed by our best mQSSMs, at α = 0.05. Figure 7 is a graphical 

representation of the average ranks (ranking scores) obtained by the best mQSSMs and literature 

methods in the Friedman Test, showing the relative position in the ranking of each of the six 

models and their differences with the best-ranked one (219Q_0.5 HB-HC-Singletons HSPN-

CSN, see also SI7-D for more details). For example, 200Q_0.5 HB-HC-Singletons HSPN  
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Figure 7. Average ranks obtained by each method in the Friedman Test. Friedman statistic 

(distributed according to chi-square with 5 degrees of freedom): 21.571. P-value computed by 

Friedman Test: 0.000631. Iman and Davenport statistic (distributed according to F-distribution 

with 5 and 35 degrees of freedom): 8.194. P-value computed by Iman and Davenport Test: 

0.00003336. 

 

performed similarly to the first ranked method, and slightly better than 178Q_0.5 HC-Singletons 

CSN. Somewhat larger differences were detected between our mQSSMs and the literature 

models, including ProtDCal-AP_RF_Hierarchical, ProtDCal-AP_RF,31 and AMPfun.32  

3.3. Virtual Screening for Discovery of Putative APPs 

Our starting search space was the entire StarPepDB, which contains about 45.000 peptides. 

After applying a series of filters with the starPep toolbox and some external servers, as well as 

the best mQSSM, we retrieved ninety-five leads that have never been associated with the  
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Figure 8. A) CSN of 95 potential AMPs, in which nodes are colored by their community and sized 

by harmonic centrality. METNs with metadata of B) origin, C) function, D) target pathogen, and 

E) database. In all METNs, red nodes are APPs, and the blue ones are metadata, and all of them 

are sized by their degree. All the visualizations were created with Gephi47, applying the 

Fruchterman-Reingold layout algorithm,44 and edited with Inkscape.48 
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antiparasitic activity, available in SI8-1 as a FASTA file. Scheme 2 summarizes the filtering 

process applied to retrieve the set of new potential APPs. In addition, Scheme 1B depicts the 

prospective virtual screening process to reduce most of the peptides from the initial search space, 

applying our best mQSSM. Figure 8A shows the CSN of the 95 potential APPs with its 

communities, which exhibit the diversity that these peptides still have (SI3-11 has the graphml 

file of this network).  

To measure such similarity among the 95 leads, we calculated pairwise sequence identity 

among all of them. We found that most of the sequences share pairwise identity values below 

30%, represented by the blue points in the heatmap depicted in Figure 9A. Figure 9B also shows 

the structural singularity of lead peptides because most pairwise identity values belong to 0-0.1, 

0.1-0.2, and 0.2-0.3 bins of the histogram.  

In addition, METNs of these peptides revealed some common characteristics shared by them. 

The origin of the leads was mainly from synthetic constructs (Figure 8B), as the METN showed 

for the APPs (Figure 3A). Regarding their annotated function, most of these peptides have 

antimicrobial and antibacterial (Gram-positive and Gram-negative) activities (Figure 8C), so 

their main pathogen targets are also bacteria such as Escherichia coli and Staphylococcus aureus 

(Figure 8D). Moreover, these potential APPs were mainly obtained from DRAMP,84 DBAASP,77  

SATPdb,78 among other databases (Figure 8E).  

As far as we know, none of the lead 95 compounds reported in this study have been 

associated with the antiparasitic activity. However, some of them have been reported to have 

other activities. For instance, starPep_00322 or caerin 1.19 is a peptide derived from the skin 

secretion of the frog Litoria gracilenta, identified as a wide-spectrum antibiotic,85 and as 

antiviral agent against the HIV.86 There are other peptides associated with general antimicrobial  
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Figure 9. A) Heat map of pairwise sequence identity (all vs all), and B) Histogram of pairwise 

sequence identity of the 95 lead peptides.  

activity such as starPep_15171 or N-Mag-C,87 while others have antiviral activity like 

starPep_09816 or MG2d, antifungal activity such as starPep_17290 or Cap-LFampH-K,88 and 

antibacterial activity like starPep_01732 or Phylloseptin-2.1TR.89 Consequently,  our method can 
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be considered as a drug repurposing strategy addressed to detect the antiparasitic activity on 

peptides with other previously reported activities. 

3.4. Discovery of APPs Sequence Motifs. 

To perform a wide exploration of motifs that could be determining a repurposed antiparasitic 

activity in peptides not labeled as APPs, the resulting ninety-five lead peptides identified after 

applying the above-mentioned filtering steps (Scheme 2), were clustered by mapping them onto 

the CSN space (Figure 8A). Thus, we identified five clusters; four out of the five contained 

members sharing some network regularities/properties, but the fifth cluster was selected to store 

singletons (peptides identified as atypical in the CSN). The five clusters were made up of twenty-

six, nine, thirty-five, eighteen, and seven members, respectively (SI8-2-6 are FASTA files with 

sequences of the five clusters). The sequence diversity within each cluster was evaluated by all 

against all global alignments, reaching an overall identity lower than 30% in all clusters, which 

means that is very unlikely to find homologous sequences within each cluster.90 This analysis 

confirmed the structural singularity of the ninety-five APPs considered as new sequence 

scaffolds.  

In this sense, the five clusters were screened for discovering sequence patterns/motifs among 

these peptides that have been identified as potential APPs. As they represent new structural and 

singular scaffolds, new motifs accounting for the antiparasitic activity should be found. The 

motif search was performed by using different motif identification algorithms, including MSA, 

STREME,72 and PROSITE.75 We applied MSA algorithms developed after the classical 

ClustalW,91 so that they can deal with the sequence diversity shown in each cluster and thus, 

detect more accurately any conserved signature or motif.  
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In this sense, MAFFT,67 MUSCLE,68 and T-Coffee69 were applied to carry out MSAs in each 

cluster. The philosophy behind each MSA algorithm is different to improve alignment quality. 

MAFFT uses Fourier transform (FFT) to optimize protein alignments based on the amino acid 

sequence properties and have included iterative steps to refine the alignments,67 while MUSCLE 

combines alignment-free (k-mers counting) and alignment-based (Kimura) distances to perform 

the progressive alignment, which is controlled by a log-expectation score function, and also 

includes iterative refinement alignment steps.68 On the other hand, T-Coffee constructs 

progressive MSA by combining information derived from global and local alignment.69 

Each MSA algorithm provided a consensus sequence that was estimated by the Jalview70 and 

the EMBOSS Cons.71 As EMBOSS Cons gives a more legible output, only displaying high 

scored amino acids/positions (capital letters), less scored but positive residues (lower-case 

letters), and non-consensus positions (X) that are under the threshold score, we identified the 

motifs using this software. Non-consensus positions were complemented by the visual inspection 

of the corresponding positions in the Jalview software and the Seq2Logo (available at 

http://www.cbs.dtu.dk/biotools/Seq2Logo)92 by using default parameters. Table 6 depicts the 

consensus motifs, unraveled by each MSA algorithm, as well as the frequency of these motifs in 

the 550 APPs from starPepDB and the 95 lead compounds reported in this study. In general, 

most of the motifs had a low frequency of occurrence on both 550 APPs and 95 lead compounds, 

being the most frequent motif KxxG (x being any amino acid) with 120 occurrences in the 550 

APPs and 20 in the 95 lead chemicals (Table 6). The low frequency from most of the motifs 

obtained by MSA could suggest they are novel signatures for characterizing APPs, so these 

motifs can be considered as scaffolds to search for new APPs. Moreover, alignments and 

sequence logos by each of the clusters are available at SI9.  

http://www.cbs.dtu.dk/biotools/Seq2Logo
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Table 6. Discovered Motifs by Multiple Sequence Alignment. 

No Motif 

Frequency of 

occurrence 550 

APPs/95 

potential APPs 

EMBOSS 

Consensus 

Frequency of 

occurrence 550 

APPs/95 

potential APPs 

Cluster 
Cluster 

size 
MSA Method 

1 K[fl]GK 22/4 KxGk 31/6 

1 26 

MAFFT 

2 kK[fl][ga]K 15/3 kKxxK 57/14 MUSCLE 

3 K[fy][fl]G 0/2 KxxG 117/20 T-Coffee 

4 RK[vi]AL 0/0 RKxAL 0/0 

2 

 

9* 

 

MAFFT 

5 aLLAL 0/0 axLAL 8/3 MUSCLE 

6 K[l]K[pa]RPa 
0/0 

KKxRPa 
0/0 T-Coffee/ 

MUSCLE 

7 L[kl]I[la]RK 0/0 LxIxRK 0/0 

3 

 

35* 

 

MAFFT 

8 IL[kr]K 2/1 ILxK 6/2 MUSCLE 

9 r[ilv]I[il]K 0/0 rxIxK 6/2 T-Coffee 

10 
RWR[rw]r[mrs

]RR 

0/0 

RWRxrxRR 

0/0 

4 18 

MAFFT 

MUSCLE 

T-Coffee 

11 L[ap]L[lp]L 
0/0 

LxLxL 
14/5 5 

(singletons) 
7 MUSCLE 

*The MSA quality of clusters 2 and 3 was improved by removing noised peptides, so we removed starPep_36552 

from cluster 2, and starPep_16010-starPep_16459 from cluster 3. 

 

To perform a wide motif search, unaligned patterns in the peptides should be also discovered. 

In this sense, the alignment-free approach STREME was used to find enriched patterns ranging 

from three to five amino acids length within the peptide clusters. STREME has been reported as 

the most accurate and sensitive algorithm among its competing state-of-art partners72 (e.g., 

DREME,93 HOMER,94 MEME73). Unlike previously algorithms, STREME counts efficiently 

position matches by using a position weight matrix (PWM) representing the motif candidate and 

also creates a Markov Model of a user-specified order from the control sequences. Both elements 

are considered when counting motif matches, keeping away the search on those that are mere 

artifacts of lower-order statistics of the input sequences.72 Table 7 displays enriched motifs found 

within each cluster with respect to the control sequences. Motifs appearing in more than 30% of 

the query sequences were listed according to their statistical significance or score. We observed 

that motifs obtained with STREME also had a low frequency of occurrence in the 550 APPs and 

the 95 lead compounds, so these motifs can be new patterns to search novel APPs (Table 7). 
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Table 7. Discovered Motifs by STREME. 

No Motif Cluster 
Cluster 

size 

Matches in 

positive 

sequences. 

Matches in 

control 

sequences 

Score 

Frequency of 

occurrence 550 

APPs/95 potential 

APPs 

1 GAI  

1 

 

 

26 

 

15 1 2.0e-005 6/2 

2 LHS 11 0 1.3e-004 7/5 

3 GKF 12 2 1.9e-003 7/5 

4 PRPY  

2 

 

 

9 

 

4 0 4.1e-002 0/1 

5 ALKKA 3 0 1.0e-001 2/2 

6 KKALL 3 0 1.0e-001 4/2 

7 RLGI  

3 

 

 

35 

 

8 0 2.5e-003 0/1 

8 L[IA]KKF 7 0 5.6e-003 0/0 

9 GLL 9 1 6.7e-003 15/1 

10 WQWR  

4 

 

 

18 

 

8 0 1.4e-003 8/2 

11 MRR 7 1 2.0e-002 3/4 

12 RRF 5 0 2.3e-002 2/2 

13 LLLRL 5 7 2 0 2.3e-001 0/0 

APPs: antiparasitic peptides.  

 

Table 8. Discovered Motifs found in PROSITE. 

No Motif Cluster Hit Peptide 
PROSITE 

Database 
Match with Signature 

Frequency of 

occurrence 

550 APPs/95 

potential 

APPs 

1 AGLQFPV 

 

 

1 

 

 

 

starPep_36218 

Pattern 

[AC]GLxFPV Histone H2A 0/1 

2 
CGETCVLG

TC 
starPep_10020 

C[GA]E[ST]

C[FTV][GLT

I]G[TSK]C 

Cyclotides 

Moebius 
0/1 

3 

CYCRIPACL

AGERRYGT

CFYRRRVW

AFCC 

starPep_01640 

CxCx(3,5)Cx

(7)GxCx(9)C

C 

Mammalian 

defensins 
0/1 

4 
DAIWNLLR

QAQEKFG 
starPep_17290 

Profile 

ECIWHLLQ

RMQQLFGH

GGKDP 

Transferrin-

like domain 
0/1 

5 

GSAFCGET

CVLGTCYT

PDCSCTAL

VCLKN 

starPep_10020 

GLPVCGET

CVWGPCNT

PGCTCKWP

VCYRN 

Cyclotides 0/1 

6 
KMDSRWR

WKSCKK 
4 starPep_27296 Profile 

KMDCRWR

WKCCKK 
Myotoxins_2 0/1 

APPs: AntiParasitic Peptides.  

Lastly, we also queried the peptide clusters against PROSITE Pattern and PROSITE Profile 

databases75 by using the search engine Motif Search of the GenomeNet suite.74 Significant hits 

were only found among a few members of clusters one and four (Table 8). Matching patterns and 

profiles can be straightforward associated with AMP-related signatures such as the histone 2A, 
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cyclotides, mammalian defensins, and myotoxins. Although transferrin-like domains are found in 

many proteins with diverse functions, some of them like the mammalian blood serotransferrin 

may have an antibacterial effect by removing toxic free iron from the blood, as well as the 

lactoferrin, found in the mammalian milk, which showed antimicrobial activity.88 

As we mentioned before, motifs listed in Tables 6 and 7 were searched against the APPs 

registered in StarPepDB and the 95 lead compounds to discriminate the possible new signatures 

from the existing ones. We need to consider that new motifs should not appear in any of the 

registered APPs or should be at a very low frequency, which was the case for most of the motifs 

obtained by MSA and STREME methods.  

 

4. CONCLUSIONS  

A novel approach based on network science methods and similarity searches was introduced 

to explore the APPCS. We explored the chemical space of starPepDB with three types of 

networks (CSNs, HSPNs, METNs) and mQSSMs to retrieve valuable information from this 

database. We demonstrated that the pipeline developed in this research outperformed state-of-

the-art ML models available for APP prediction with statistically significant differences. The 

novel mQSSMs were comparatively tested with the largest experimentally validated non-

redundant peptide set reported to date and they largely outperformed several methods from the 

literature. Thus, we have arrived at a novel computational strategy regardless machine learning 

algorithms that recognizes APPs at high effectivity and reliability. This strategy promises to 

support research aimed at repurposing peptides associated with different activities as promising 

leads for a specific bioactivity. In fact, as a result of our method and other filters, we proposed 95 

repurposed lead compounds as potential APPs that have not been associated with this activity 
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until now. Moreover, we explored sequence similarities and motifs shared by these leads and 

discovered some promising common motifs that can serve as templates for searching novel 

APPs. 
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