Chiral Organocopper Electro catalyst-Enabled Oxidative Kinetic Resolution of Primary Alcohols

Pei-Sen Gao, Hui-Lin Liu, You-Liang He, Ke-Jin Jiao, Cong Ma, Tian-Sheng Mei*

Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Science, Shanghai 200032, China.

*Corresponding author. Email: mei7900@sioc.ac.cn

Abstract

Asymmetric electrocatalysis is poised to provide a unique avenue for access to enantioenriched molecules that are difficult to obtain through more conventional approaches, but the development of efficient electrocatalysts capable of highly enantioselective transformations remains elusive. Towards this enviable end, bifunctional electrocatalyst capable of both redox mediation and delivery of high stereocontrol is needed. Here we disclose a novel TEMPO-BOX-ligated copper electrocatalyst that enables oxidative kinetic resolution of racemic 1,4-diols, affording diverse chiral 1,4-diols and γ-lactones with good or excellent chemo-, regio, and enantioselectivity. We also show that this cooperative Cu/TEMPO-BOX catalytic strategy is applicable to the electro-oxidative kinetic resolution of 1,2- and 1,3-amino alcohols. This work demonstrates the potential of bifunctional electrocatalysis for asymmetric synthetic methods and we anticipate that it will spur the development of new hybrid electrocatalysts to realize novel asymmetric electrocatalytic methods.

Electrocatalysis has emerged as a promising and sustainable tool for forging carbon–carbon and carbon–heteroatom bonds(1-3) since electric current serves as the sole traceless “reagent” for oxidation and reduction of organic and organometallic molecules. Furthermore, the ease of precise regulation of the electrical potential offers a convenient and underutilized handle for taming redox transformation.(4-16) In this context, the use of redox mediators such as TEMPO and other N-oxyl radicals to achieve indirect electrolysis offers great advantages compared to direct electrolysis in that electrode passivation is avoided, the delivered electrical potential is dampened, and functional group tolerance is enhanced.(17-19) The advancement of asymmetric electrochemical catalytic methods for accessing enantioenriched molecules has garnered broad interest across the organic synthesis community in recent years.(20-23) Owing to the versatile reactivity of transition metals and the ease of tailoring chiral ligands, the synergistic use of transition metal catalysis and redox mediators is an appealing strategy that could be merged under an umbrella of ‘asymmetric
To achieve such a merger, the redox mediators should efficiently oxidize (or reduce) the substrate into a reactive intermediate that immediately enters an asymmetric catalytic cycle. Unfortunately, the presumably highly reactive oxidized (or reduced) intermediates are prone to diversion to side reactions that ultimately attenuate the efficacy of the electrocatalyst (Fig. 1A). Additionally, the reconciliation of multiple oxidation and reduction processes in metal catalysis could result in low efficiency and enantioselectivity, along with the deactivation of the metal catalyst by cathodic reduction. Inspired by Stahl’s pioneering work on (bpy)Cu/TEMPO cooperative catalytic system for efficient oxidation of alcohols(32, 33) and Meggers’ work on substrates binding strategy for electrorhodium-catalyzed radical couplings,(34) we envisioned that a “two in one” strategy(35-37) involving an electrocatalyst bearing both a TEMPO mediator and a source of chirality within a single ligand could enable asymmetric electrochemical catalysis. Directly linking the redox mediator to the metal catalyst could minimize side-reactions by shortening the distance between the metal complex, redox mediator, and reactive intermediates and thereby maximize cooperativity to deliver the desired reaction outcome (Fig. 1B).

Fig. 1. Strategies for asymmetric electrochemical catalysis. A, Established strategy. B, Desired strategy. C, Resolution of racemic 1,4-diols by forming chiral lactones. D, This study.

We chose oxidative lactonization of 1,4-diols as a model reaction to test this hypothesis since chiral lactones are important structural motifs in natural products and pharmaceuticals, and are building blocks for the production of fine chemicals.(38-42) There are important fundamental challenges associated with an enantioselective electrochemical oxidative lactonization of 1,4-diols via kinetic resolution that make it an important benchmark reaction (Fig. 1C). First, selective oxidation of one of two primary alcohols can be difficult (i.e., competition between step i and step iv). Second, selective oxidation of the hemiacetal (lactol) over a primary alcohol presents another challenge (competition between step iii and step v). Finally, as with any kinetic resolution, achieving a high selectivity factor is required for utility. Herein, we describe the design and development of a bifunctional TEMPO-BOX ligand to enable electrochemical Cu-catalyzed lactone-forming kinetic resolution of 1,4-diols in an
undivided cell proceeding with high chemo-, regio-, and enantioselectivity (Fig. 1D). Examples of kinetic resolutions of amino alcohols are also provided.

Table 1. Reaction optimization.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Electrocatalyst/Ligand</th>
<th>r.r. of 2a/3a</th>
<th>2a yield [%]</th>
<th>ee [%]</th>
<th>2b yield [%]</th>
<th>ee [%]</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L1</td>
<td>>95:5</td>
<td>49</td>
<td>20</td>
<td>50</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>L2</td>
<td>88:12</td>
<td>24</td>
<td>67</td>
<td>73</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>L3</td>
<td>>95:5</td>
<td>53</td>
<td>-75</td>
<td>45</td>
<td>-60</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>L4</td>
<td>92:8</td>
<td>37</td>
<td>50</td>
<td>62</td>
<td>31</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>E1</td>
<td>>95:5</td>
<td>49(43)</td>
<td>53</td>
<td>49(41)</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>6</td>
<td>E2</td>
<td>>95:5</td>
<td>23(20)</td>
<td>84</td>
<td>77(71)</td>
<td>81</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>E3</td>
<td>>95:5</td>
<td>47</td>
<td>91</td>
<td>52</td>
<td>82</td>
<td>56</td>
</tr>
<tr>
<td>8</td>
<td>E4</td>
<td>>95:5</td>
<td>35</td>
<td>17</td>
<td>63</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

*a*Unless otherwise indication, the reaction was performed at 0.20 mmol scale in an undivided cell with two platinum electrodes (each 1.0 x 1.0 cm²). *b*r.r. value was analyzed by 1H NMR. *c*yields were determined by 1H NMR using CH₂Br₂ as the internal standard. *d*The ee values were determined by chiral HPLC analysis. *e*The selectivity factor were calculated as \(s = \ln[(1-C)(1-\text{ee}(2a'))]/\ln[(1-C)(1+\text{ee}(2a'))] \). C = ee(2a)/[ee(2a)+ ee(2a')]. *f*Isolated yield.

We began our study by evaluating the performance of various chiral ligands on the kinetic resolution (KR) of diol 1a in the presence of 4-benzoyloxy-substituted TEMPO 4 (10 mol%) as a mediator and [Cu(MeCN)₄]OTf as a catalyst, with acetonitrile as the solvent, n-Bu₄NPF₆ as the electrolyte, and N-methyl imidazole (NMI) as the base in an undivided electrochemical cell (Table 1). Poor enantiomeric selectivity and a low selectivity factor result when using bidentate pyridine bisoxazoline (PyBOX) ligand L1, although the conversion of 2a/3a is excellent (entry 1). Gratifyingly, in the presence of BOX ligands bearing iPr group (L2), the oxidative KR proceeds smoothly and affords product 2a in 67% enantiomeric excess (ee) with 1a recovered in 12% ee (entry 2). However, both the regioisomeric ration (r.r) of 2a/3a and selectivity (s) factor are low (r.r = 88:12, s = 6). BOX ligands bearing phenyl (L3) or indane (L4) both afford 2a in improved ee, and the ee values of recovered 1a are also improved, but selectivity factors are still just 15 and 12 respectively, while regioselectivities are good to moderate (entries 3 and 4). Based on the hypothesis aforementioned, we synthesized a series of
TEMPO-BOX hybrid electrocatalysts (E1-E5) to enhance the proximity of the chiral center and the reactive site of 1a. (43,44) (Table 1. For the synthesis of E1–E5, see Scheme S4-S8 in the Supporting Information for details). To our delight, indanyl E1 affords 2a in high enantioselectivity and regioselectivity (93% ee and >95:5 rr, respectively). The enantioselective excess of recovered 1a is 92%, and the s factor is as high as 92 (entry 5). X-ray diffraction revealed the absolute configuration of 2a to be S. Replacing the methyl group of E1 with ethyl, isopropyl, or benzyl groups does not significantly improve the enantiomeric excess of 2a. For example, ethyl-bearing ligand E2 affords 84% ee and 23% yield of 2a and 81% ee of recovered 1a (entry 6). The oxidative KR proceeds smoothly in the presence of the isopropyl-bearing variant E3, affording 2a in 91% ee and 47% yield with the recovery of 1a in 82% ee and 52% yield (entry 7). Last in the indanyl series, benzyl-bearing E4 affords a significantly decreased ee of 2a and recovered 1a (17% and 10% respectively, entry 8). Diphenyl-bearing analogue E5 does not fare as well as E1, affording 2a in 46% yield and 72% ee (in favor of the R enantiomer) (entry 9). The enantioselectivity of recovered 1a is also low (68% ee) as is the selectivity factor.

With optimized conditions in hand, the functional group tolerance was evaluated to probe the efficiency of this bifunctional chiral ligand-enabled Cu-catalyzed electrochemical oxidative kinetic resolution (Table 2). Various 1,4-diols bearing substituted benzyl ethers (1) are well tolerated under the standard conditions, affording the corresponding lactones (2) and the enriched diols 2' both in good enantioselectivities. For example, 1 bearing halogen, including Cl, Br, and I, afforded the corresponding lactones (2b-2e) in overall high enantioselectivity (93% to 98% ee) while the recovered 1,4-diols (2b'-2e') are also well-enriched (87% to 97% ee). The selectivity factors are good or excellent (s = 91 to 419). Benzyl substituents bearing alkyl, naphthyl, and phenyl groups afford the corresponding lactones (2f-2i) with excellent enantioselectivity (93% to 97% ee), and high s factors (82 to 203). The recovered chiral diols (2f-2i') are also highly enriched (90% to 98% ee). Additionally, diols bearing heterocyclic analogues of benzyl ethers are also compatible with the protocol, providing the corresponding enantioenriched lactones 2j-2l in excellent enantioselectivity (95% to 97%), with good regioselectivity (>94:6), and high s factors (180 to 203). To determine the absolute configuration of the recovered chiral 1,4-diols, we converted the diol 2k’ to the dibromide 4, the absolute configuration of which was determined to be R by X-Ray diffraction analysis (Fig. 2A). It is worth noting that relatively sensitive functional groups including -PMP, -methylthio, -amine, -alkenyl, -alkynyl, are also tolerated in the presence of the bifunctional Cu-catalyzed systems, giving the corresponding lactones with good enantioselectivity, regioselectivity, and s factor (2m-2s). An analogue bearing an NHBOc group affords the corresponding lactone 2p in excellent enantioselectivity (97% ee), and the recovered chiral diol 1p is obtained in 91% ee and high selectivity factor of 314 (2o and 2p, 2o’ and 2p’). Excitingly, this bifunctional electrocatalyst also enables oxidative kinetic resolution of a cyclic 1,2-amino alcohol and an acyclic 1,3-amino alcohol, affording the corresponding amino aldehydes 2t and 2u and chiral protected amino alcohols 2t’ and 2u’ with good enantioselectivities and s factors.
Table 2. Enantioselective electrochemical lactonization of alcohols.a-e

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Yields (\text{ee} \text{ %})</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2b</td>
<td>40, 50</td>
<td>(p = 115, \chi = 60.5)</td>
</tr>
<tr>
<td>2c</td>
<td>41</td>
<td>(p = 115, \chi = 60.5)</td>
</tr>
<tr>
<td>2d</td>
<td>47, 56</td>
<td>(p = 115, \chi = 60.5)</td>
</tr>
<tr>
<td>2e</td>
<td>45</td>
<td>(p = 115, \chi = 60.5)</td>
</tr>
<tr>
<td>2f</td>
<td>60, 64</td>
<td>(p = 91, \chi = 64.5)</td>
</tr>
<tr>
<td>2g</td>
<td>67</td>
<td>(p = 91, \chi = 64.5)</td>
</tr>
<tr>
<td>2h</td>
<td>60, 64</td>
<td>(p = 115, \chi = 60.5)</td>
</tr>
<tr>
<td>2i</td>
<td>60</td>
<td>(p = 115, \chi = 60.5)</td>
</tr>
<tr>
<td>2j</td>
<td>45</td>
<td>(p = 115, \chi = 60.5)</td>
</tr>
<tr>
<td>2k</td>
<td>43, 75</td>
<td>(p = 203, \chi = 60.5)</td>
</tr>
<tr>
<td>2l</td>
<td>43</td>
<td>(p = 203, \chi = 60.5)</td>
</tr>
<tr>
<td>2m</td>
<td>43</td>
<td>(p = 203, \chi = 60.5)</td>
</tr>
<tr>
<td>2n</td>
<td>57</td>
<td>(p = 203, \chi = 60.5)</td>
</tr>
<tr>
<td>2o</td>
<td>44</td>
<td>(p = 203, \chi = 60.5)</td>
</tr>
<tr>
<td>2p</td>
<td>44, 75</td>
<td>(p = 203, \chi = 60.5)</td>
</tr>
<tr>
<td>2q</td>
<td>44</td>
<td>(p = 203, \chi = 60.5)</td>
</tr>
<tr>
<td>2r</td>
<td>45</td>
<td>(p = 203, \chi = 60.5)</td>
</tr>
<tr>
<td>2s</td>
<td>43, 75</td>
<td>(p = 203, \chi = 60.5)</td>
</tr>
<tr>
<td>2t</td>
<td>43</td>
<td>(p = 203, \chi = 60.5)</td>
</tr>
<tr>
<td>2u</td>
<td>43</td>
<td>(p = 203, \chi = 60.5)</td>
</tr>
<tr>
<td>2v</td>
<td>45</td>
<td>(p = 203, \chi = 60.5)</td>
</tr>
<tr>
<td>2w</td>
<td>43, 75</td>
<td>(p = 203, \chi = 60.5)</td>
</tr>
<tr>
<td>2x</td>
<td>43</td>
<td>(p = 203, \chi = 60.5)</td>
</tr>
</tbody>
</table>

aUnless otherwise indicated, the reaction was performed at 0.25 mmol scale in an undivided cell with two platinum electrodes (each 1.0 x 1.0 cm\(^2\)). bIsolated yields. cThe \(r\) value was analyzed by \(^1\)H NMR. dThe ee value was determined by chiral HPLC analysis. eThe selectivity factor \(s\) were calculated as \(s = \text{ln}[(1-C)/(1-\text{ee}(2'))]/\text{ln}[(1-C)/(1+\text{ee}(2'))], C = \text{ee}(2')/(\text{ee}(2')+\text{ee}(2'))\).

We carried out several experiments to probe the reaction mechanism. Replacing the benzyl ether with a methyl group dramatically decreases enantioselectivity of the corresponding lactone 6, suggesting that coordination of the OBn group to the copper catalyst is crucial for achieving good enantioselectivity (Fig. 2B). A parallel kinetic isotope effect (KIE) experiment comparing independent rates of reactions of 1c and [\(\delta_6\)]-1c affords a primary KIE value \((k_H/k_D)\) of 6.3. (Fig. 2C). This result indicates that
the abstraction of C–H is the rate-determining step and that the reaction involves a single electron transfer (SET) process.\(^{(45)}\) To understand the effect of NMI, several cyclic voltammetric (CV) experiments were conducted. CV analysis of a mixture of \(1\alpha\) and NMI indicate that NMI functions as a base. Both ligand E1 and Cu(I)OTf exhibit an anodic feature at 0.47 V (red line, Fig. 2D) and 1.20 V (blue line), respectively (vs Ag/AgNO\(_3\)). A mixture of Cu(I)OTf and E1 exhibits an irreversible anodic CV feature at 0.77 V and 1.94 V (green line). The former peak is attributed to the oxidation of the TEMPO component to TEMPO\(^+\) in E1 (subsequently, TEMPO\(^+\) may be responsible for the oxidation of Cu\(^+\) complex to Cu\(^{2+}\)). The addition of 1.0 equivalent of substrate \(1\alpha\) and NMI causes the anodic oxidative potential of \(1\alpha\) (1.97 V vs Ag/AgNO\(_3\)) to be significantly shifted to 0.76 V (yellow line). This large 1.2 V difference in potential suggests strong coordination of \(1\alpha\) to Cu-E1 in the course of oxidative lactonization. We also probed the existence of a non-linear effect to understand the Cu-E1 coordination behavior.\(^{(46)}\)

Fig. 2. Absolute Configuration Determination and Mechanistic study.

Enantioselectivity-determining step might involve a single E1 ligand and single Cu species (Fig. 2E). Electron paramagnetic resonance (EPR) analysis of Cu(I)-E1 under electrolysis conditions exhibits signals resulting from both TEMPO and Cu(II), which is consistent with cooperative Cu(II)-E1 catalysis (Fig. 2F). Notably, ligand E1 performs more efficiently than when TEMPO and BOX are present but not linked. This was ascertained by conducting experiments on the relationship between the yield of \(2a\)
and electrolysis time in the presence of either ligand \textbf{E1} or \textbf{L4}/4-OCOPh-TEMPO (green line, Fig. 2G). Interestingly, the reaction proceeds nearly twice as fast when using \textbf{E1} than when \textbf{L4} and 4-OCOPh-TEMPO are combined.

Although our mechanistic studies are far from comprehensive, a plausible catalytic cycle can be proposed based thereupon and in light of the reactivity trends. As shown in Fig. 3, active intermediate \textbf{T1} may be formed upon coordination of \textbf{E1} to precatalyst [Cu(MeCN)\textsubscript{4}]OTf. Oxidized \textbf{T2} can then be accessed via either indirect TEMPO-involved (Path A involving \textbf{T3}) or direct (Path B) anodic oxidation. Intermediate \textbf{T4} is generated upon base-mediated coordination of the benzyl ether and hydroxyl groups of substrates \textbf{1a}. Subsequently, cooperative H+ abstraction from the substrate via both Cu2+–mediated oxidation and H atom transfer to TEMPO affords enantioenriched intermediate \textbf{Int 1}. After an intramolecular addition and another round of oxidation, product \textbf{2a} forms, with concomitant formation of double reduced species \textbf{T5}. Catalytic precursor \textbf{T1} is re-generated by anodic oxidation of \textbf{T5}.

\begin{center}
\textbf{Fig. 3.} Plausible catalytic cycle
\end{center}

In summary, we have discovered and developed a novel bifunctional chiral TEMPO-BOX ligand for copper electrocatalysts that enables a “two in one” strategy and developed a cooperative intramolecular Cu(II)-TEMPO oxidative strategy to achieve copper-catalyzed highly chemo-, regio-, and enantioselective electro-oxidative lactonizing kinetic resolution in an undivided cell. The electrocatalyst exhibits improved reaction selectivities and enhanced rates compared to catalytic reactions involving ‘unlinked’ BOX ligands and TEMPO. Further research to improve mechanistic understanding of this process and to achieve kinetic resolutions using green best practices is ongoing in our laboratory.
References and Notes

ACKNOWLEDGEMENTS
Funding: This work was financially supported by National Key R&D Program of China (No. 2021YFA1500100), the NSF of China (Grants 21821002, 21772222, 21801087, and 91956112), the S&TCSM of Shanghai (Grants 18JC1415600 and 20JC1417100), and Bayer AG (Germany). Author contributions: P.-S.G. and T.-S.M. designed the project and wrote the manuscript. P.-S.G., H.-L.L., Y.-L.H., K.-J.J., and C.M. performed all experiments. All authors analyzed the results. Competing interests: Authors declare that they have no competing interests. Data and materials availability: Crystallographic data are available free of charge from the Cambridge Crystallographic Database Centre (CCDC) under CCDC 2034091 (for 2a, see also the x-ray crystallographic data section of the supplementary materials) and CCDC 2074135 (for 4). All other characterization data are in the supplementary materials.”

SUPPLEMENTARY MATERIALS

Materials and Methods
Figs. S1 to S23
Schemes S1 to S26
NMR and HPLC Data
References (47–51)