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Multi-electron excitation contributions towards primary and satellite
states in the photoelectron spectrum†

Torsha Moitra,a‡ Alexander C. Paul,b‡ Piero Decleva,c Henrik Kochb,d∗ and Sonia Coriania,b∗

The computation of Dyson orbitals and corresponding ionization energies has been implemented
within the Equation of Motion Coupled Cluster Singles, Doubles and Perturbative Triples (EOM-
CC3) method. Coupled to an accurate description of the electronic continuum via a time-dependent
density functional approach using a multicentric B-spline basis, this yields highly accurate photoion-
ization dynamical parameters (cross-sections, branching ratios, asymmetry parameters and dichroic
coefficients) for primary states (1h) as well as satellite states of (2h1p) character. Illustrative re-
sults are presented for the molecular systems H2O, H2S, CS, CS2 and (S)-propylene oxide (a.k.a.
methyloxirane).

1 Introduction
Significant advancements in high-resolution photoelectron spec-
troscopy have led to a renewed quest for accurate theoretical as-
signments, in particular of the high energy region of the photo-
electron spectrum, comprising low intensity peaks.1,2 Under the
sudden approximation limit,3 the photoelectron is assumed to be
removed instantaneously from the system, without allowing for
the other electrons to adjust to the hole potential. Under such
circumstances, there is a finite probability of ionic state to be in
its excited state, generating a satellite in the photoelectron spec-
trum. Starting from the initial state N–electron configuration,
these satellite states are attributed to multielectron excitations
of 2h1p or higher order character.4 The appearance of satellites
in the theoretical spectra is guided by both correlation and relax-
ation effects, the former describing the multi-electron excitation
character, whereas the latter accounts for the rearrangement of
the orbitals around the ionized hole. However, these two effects
are inseparable to a certain degree.4–6

For the theoretical description of the shake-up satellite states, a
method capable of capturing many-body effects is thus required.
Based on Koopmans theorem, only primary (1h) states are acces-
sible. This “breakdown of the molecular orbital picture” in molec-

∗Corresponding authors:
henrik.koch@sns.it (H. Koch); soco@kemi.dtu.dk (S. Coriani)
aDTU Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
bDepartment of Chemistry, NTNU - Norwegian University of Science and Technology,
N-7491 Trondheim, Norway.
cIstituto Officina dei Materiali IOM-CNR and Dipartimento di Scienze Chimiche e Far-
maceutiche, Università degli Studi di Trieste, I-34121 Trieste, Italy
dScuola Normale Superiore, I-56126 Pisa, Italy
† Electronic Supplementary Information (ESI) available: [details of any supplemen-
tary information available should be included here]. See DOI: 00.0000/00000000.
‡ These authors contributed equally to this work

ular photoionization due to correlation effects was pointed out
decades ago, see e.g. the work of Cederbaum and collabora-
tors.4,7,8 Ever since, numerous efforts have been directed towards
the development of theoretical methods that go beyond the sim-
ple Koopmans’ picture of the process. The literature on the subject
is vast and steadily growing. Without any ambition to give an ex-
haustive account, and starting from the correlated description of
the bound states, we mention here various Green’s function (GF)
methods (see, e.g., Ref. 9 for a recent review) like the Dyson
and non-Dyson variants of the Algebraic Diagramatic Construc-
tion to third order (ADC3),10–12 and the ‘outer valence’ GF ap-
proach (OVGF),13 see also Ref. 14; the symmetry-adapted-cluster
configuration interaction general-R approach;15,16 the Configura-
tion Interaction method;17 multiconfigurational approaches like
complete active space self-consistent field (CASSCF),18 restricted
active space SCF (RASSCF) and CAS/RAS with a second-order
perturbation theory (CASPT2/RASPT2).5,6,19–24

Popular correlated frameworks to compute molecular proper-
ties and spectra, including photoelectron spectra and photoion-
isation dynamical properties,25–28 are coupled cluster response
theory (CCRT)29,30 and the equation of motion (EOM) coupled
cluster method.31–34 CCRT provides size-intensive excitation en-
ergies and transition moments;29,30 EOM-CC31–34 gives the same
excitation energies as CCRT, but the transition moments are dif-
ferent and not strictly size-intensive. On the other hand, the
computational cost of EOM transition moments is less demand-
ing than for CCRT and the size-intensivity errors are expected
to be small. We therefore here use equation of motion coupled
cluster singles, doubles and perturbative triples (EOM-CC3)35–39

ionization energies and corresponding Dyson orbitals13,25,40–43

to represent such transitions. The 2h1p satellites are in principle
also attainable at the EOM coupled cluster singles and doubles
(EOM-CCSD)25,27,31–33 level; however, their ionization energies
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can be rather overestimated.44 The triples’ correction is the basic
requirement for the precise calculation of both ionization energies
and corresponding intensities. The square norms of the Dyson
orbitals13,40–42 are proportional to the intensities of the photo-
electron spectrum. Thus, it can be considered that the satellite
state borrows intensity from the primary states that are mixed
into it, leading to a decrease in intensity of the primary ionized
states. In some cases, especially for transition metal complexes,45

it becomes difficult to distinguish between primary and satellite
states.

The simulation of the individual channel photoionization ob-
servables additionally requires an explicit description of the out-
going electron in conjunction with the bound state of the system.
A popular strategy to evade this is to reconstruct the total cross-
section from purely bound-state pseudo-spectral representations
spanning over the post-ionization region using Stieltjes Imaging
or Padé approximant techniques.46–53 However, these techniques
are limited by the lack of proper asymptotic boundary conditions,
which are needed to compute individual channel photoionization
observables.

Several strategies have been developed to account for the
continuum electrons. A straightforward method is to use simple
analytic functions like plane waves and Coulomb waves.26

Though conceptually simple, these methods fail to reproduce
complex phenomena like the appearance of Cooper minima
or shape resonances.27 More accurate approaches determine
the continuum orbitals numerically using stationary conditions
formulated within the R-matrix,54,55 Schwinger variational,56,57

complex Kohn58 and least-square or Galerkin methods.59,60

While grid methods can be easily implemented in one-center
(OCE) expansion approaches,61 current trend is to employ a
multicenter basis set, with a long range OCE and a small number
of additional functions centered on the nuclei, in the spirit of the
linear combination of atomic orbitals (LCAO) approach. For the
one center radial functions, B-splines55,59,62,63 or similar finite
elements64 are popular. A hybrid approach joining short-range
Gaussians and long-range B-splines overlapping over an interme-
diate interval has also been shown viable.65,66 Gaussians or the
same B-splines are used for the LCAO part.

As anticipated, we here present a study on the effect of the
inclusion of triple excitations in the bound state description on
both the primary and satellite ionized states. For this purpose,
firstly the EOM-CC3 Dyson orbitals have been implemented in
the eT software package.67 In order to account for the outgoing
electron, multicentric B-spline time-dependent density functional
theory is used.44 The Dyson orbitals are utilized not only to es-
timate the intensities in the photoelectron spectra, but first and
foremost to compute the single-particle photoelectron matrix ele-
ments needed to obtain the photoionization observables.5,25,27

In Section 2, we detail the composite theoretical approach, with
emphasis on the implementation of the EOM-CC3 Dyson orbital.
The computational protocol used is described in Section 3. In Sec-
tion 4, the devised formalism is validated by studying the valence
ionization dynamics of simple molecules like H2O, H2S, CS, CS2

and (S)-C3H6O. Emphasis on the inner valence region of the spec-

tra is given due to the presence of multiple closely-lying ionized
states of substantial 2h1p nature. Comparison of CCSD and CC3
coupled to TDDFT for the bound and continuum part, respec-
tively, has been presented wherever deemed meaningful. Sec-
tion 5 summarizes our findings.

2 Theory

The key quantity encapsulating all the information of the initial
(ΨN

i ) and final composite state (Φ f ) of the system is given by the
photoelectron matrix element,

Di f = 〈ΨN
i |~d|Φ f 〉 . (1)

In eqn (1), ~d is the electric dipole moment. The most general
approach is to expand Φ f in a configuration interaction (CI) type
fashion, called the “close-coupling” form.68 A number of close-
coupling implementations are available, and can give accurate re-
sults for small molecules, especially close to threshold.55,57,65,66

However, ab initio computations using the full expansion are com-
putationally expensive and often unnecessary. We have restricted
ourselves to the single channel approximation, where the final
composite state is represented by the anti-symmetrized product
of the photoelectron and the bound ionized state accessible at
that particular energy

Φ f ≡ΦEIα = A (ΨN−1
I φEIα ) . (2)

Under these assumptions, the photoelectron matrix element in
eqn (1) boils down to a single particle photoelectron matrix ele-
ment, given by

Di f = 〈φ D
i f |~d|φEIα 〉 . (3)

All information about the bound initial N-electron and final
(N−1)-electron states is now compressed into the orbital func-
tion φ D

i f , called the Dyson orbital.40–42 From now onward, we
will drop the suffix i f from φ D

i f . For details on how to obtain
the above simplified expression, we refer to, e.g., Ref. 44 and the
Supplementary Information of Ref. 27.

2.1 EOM-CC3 Dyson orbitals

The coupled cluster (CC) wave function is defined by

|CC〉= eT |HF〉 , T = ∑
µ

tµ Xµ , (4)

where the cluster operator T is composed of the excitation op-
erator Xµ and the amplitudes tµ . The excitation operator con-
sists of strings of singlet excitation operators, Eai, and maps the
Hartree-Fock determinant into excited determinants |µ〉. We use
the standard notation where indices i, j,k, . . . refer to occupied,
a,b,c, . . . to virtual, and p,q,r, . . . to general orbitals. The hier-
archy of coupled cluster methods is obtained by truncating the
cluster operator at a certain number of excitations.69 We intro-
duce the similarity transformed Hamiltonian,

H̄ = e−T HeT , (5)
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where the electronic (spin-free) Hamiltonian, H, in second quan-
tization is defined as69

H = ∑
pq

hpqEpq +
1
2 ∑

pqrs
gpqrs(EpqErs−Epsδrq). (6)

The amplitudes are obtained by solving the projected coupled
cluster equations69

〈µ|H̄|HF〉= Ωµ = 0, (7)

and the energy is given as

ECC = 〈HF|H̄|HF〉 . (8)

The projection space is generated by the contravariant excitation
operator, X̃µ , such that the determinants are biorthogonal to the
determinants created by the cluster operator

〈µ|= 〈HF| X̃µ , |ν〉= Xµ |HF〉 , 〈µ|ν〉= δµ,ν . (9)

In equation of motion coupled cluster theory,31 additional oper-
ators, Lm and Rm, are introduced that generate the m-th EOM
states, 〈Lm| and |Rm〉:

Lm = lm
0 +∑

µ

Lm
µ X̃µ (10)

〈Lm|=
(
〈HF| lm

0 +∑
µ

〈µ|Lm
µ

)
e−T (11)

Rm = rm
0 +∑

µ

Rm
µ Xµ (12)

|Rm〉= eT
(

rm
0 |HF〉+∑

µ

Rm
µ |µ〉

)
(13)

These additional parameters are determined as left and right
eigenvectors of the similarity transformed Hamiltonian

H̄HHT LLLm = EmLLLm (14)

H̄HHRRRm = EmRRRm, (15)

where the eigenvalue, Em, corresponds to the total energy of the
state. Assuming that the ground state equations have been solved,
the Hamiltonian matrix has the following form

H̄HH =

(
ECC ηηηT

000 JJJ+ECCIII

)
, (16)

where JJJ is the Jacobian, Jµν = 〈µ|[H̄,Xν ]|HF〉 (also known as AAA)
and ην = 〈HF|[H̄,Xν ]|HF〉. From the structure of the Hamiltonian
matrix and the biorthonormality of the states, we find the left and
right ground state solutions

〈L0|= 〈C̃C|=
(
〈HF|+∑

µ

〈µ|λµ

)
e−T (17)

|R0〉= |CC〉= eT |HF〉 , (18)

where the multipliers, λµ , are determined from λλλ
T JJJ = −ηηη . The

excited states are obtained as

〈Lm|= ∑
µ

〈µ|Lµ e−T (19)

|Rm〉= eT
(

r0 |HF〉+∑
µ

Rµ |µ〉
)
, (20)

where m is larger than 0 and the superscript was removed from
the amplitudes for simplicity. The parameter r0 is defined as
r0 =−∑µ λµ Rµ to ensure biorthogonality to the left ground state,
〈C̃C|. Transition properties for a one-electron operator (in second
quantization) O = ∑pq OpqEpq are given as biorthogonal expecta-
tion values,

O0,m = 〈C̃C|O|Rm〉 〈Lm|O|CC〉 (21)

expressed in terms of transition densities

D̃0−m
pq = 〈C̃C|Epq|Rm〉 (22)

Dm−0
pq = 〈Lm|Epq|CC〉 . (23)

In order to obtain the CC3 equations, we divide the Hamiltonian
into a one-particle operator (F) and a fluctuation potential (U),

H = F +U . (24)

The single excitation amplitudes are considered zeroth order pa-
rameters as they are crucial for orbital relaxation, while double
and triple excitation amplitudes are first and second order in the
perturbation, U , respectively. Introducing the perturbation ex-
pansion into the expression for the energy of the EOM states,

Em = LLLT
mH̄HHRRRm (25)

and neglecting terms of fifth order and higher, yields the CC3
equations. Details about the derivation of the explicit terms and
their implementation can be found in Refs. 36,37,39.

In EOM CC theory, ionization energies can be rigorously ob-
tained by replacing the singlet excitation operators, X̃µ and Xµ , in
eqn (10) and (12) by particle nonconserving excitation operators
like 1h, 2h1p, . . . operators, which defines the EOM-CC method
for ionization potentials, EOM-IP-CC.32 However, as proposed by
Stanton and Gauss,70 we can also compute the ionization ener-
gies by including a bath orbital in the virtual orbital space which
does not interact with the other orbitals, and then projecting out
all excitations that do not include the bath orbital during the solu-
tion of the eigenvalue equation.71 This approach has the advan-
tage of requiring only a small modification to an existing EOM CC
code for excitation energies (EOM-EE-CC). As a disadvantage, its
scaling is the same as EOM CC for excitation energies, whereas a
rigorous implementation of EOM-IP-CC scales one order less with
the number of virtual orbitals (nv).

Dyson orbitals can be described as the overlap between a
N-electron wave function and a (N − 1)-electron wave func-
tion.13,25,40,41 Expressing a Dyson orbital, φ D, in terms of molec-
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ular orbitals, φp, gives

φ
D = ∑

p
γpφp, (26)

where the expansion coefficients are defined as

γp =
〈

Ψ
N−1

∣∣∣ap

∣∣∣ΨN
〉

(27)

for general (N − 1) and N electron states, ΨN−1 and ΨN .The
squared norm of the Dyson orbital is called the pole strength,
RF ,

RF = ∑
p
|γp|2 (28)

which is related to the intensity of the bands in the photoelec-
tron spectrum. As coupled cluster is a non-Hermitian theory, two
Dyson orbitals are obtained corresponding to the left and right
ionized state for a given ionization potential

γ
L
p = 〈Lm|ap|CC〉 ; (29)

γ
R
p = 〈C̃C|a†

p|Rm〉 . (30)

In analogy to EOM CC transition strength,72,73 we define the pole
strength as27,44

RF = ∑
p
〈Lm|ap|CC〉 〈C̃C|a†

p|Rm〉 . (31)

Due to the biorthonormality of the EOM states, the pole strength
assumes values between zero and one, while the norms of indi-
vidual left and right Dyson orbitals depend on the norm of the
corresponding ionized states, which can be significantly larger
than one. If b denotes the bath orbital, eqn (29) and (30) can
be rewritten as

γ
L
p = 〈Lm|Ebp|CC〉 (32)

γ
R
p = 〈C̃C|Epb|Rm〉 . (33)

These expressions demonstrate that the left/right Dyson orbitals
can be obtained as the row/column corresponding to the bath or-
bital of the EOM CC transition densities Dm−0 and D̃0−m.25 As
the bath orbital is part of the virtual orbital space, only two of the
four blocks of Dm−0 and D̃0−m need to be constructed. Addition-
ally, the ground state amplitudes ttt and multipliers λλλ are zero if
one of their indices corresponds to the bath orbital. Therefore,
the CC3 contribution to the right Dyson orbital consists of only
four terms, and there is only a single term for the left Dyson or-
bital. We list these additional terms as follows (where we also
use the symbol += to highlight that these terms are added to the

CCSD-like ones):

γ
R
k +=

1
2 ∑

ab
i j

λ
ab
i j
(
Rabb

i jk −Rabb
ik j
)
− 1

2 ∑
ab
i jl

λ
abc
i jl tbc

jk Rab
il −

1
4 ∑

ab
i jl

λ
abc
i jl tabc

i jk Rb
l

(34)

γ
R
c +=

1
4∑

ab
i jk

λ
abc
i jk Rabb

i jk (35)

γ
L
c +=

1
2∑

ab
i jk

Labb
i jk tabc

i jk (36)

The CC3 ionization energies and Dyson orbitals have been imple-
mented in a development version of the eT program package67

using a bath orbital. The bath orbital is added to the virtual space
after the Hartree-Fock step and its corresponding integrals are set
to zero. For a description of the algorithms to solve for the ground
state, the excited states and transition densities we refer to Ref.
39.

Table S1 summarizes the scaling per iteration to obtain the
ground state amplitudes, ttt and λλλ , the excited state parameters,
LLL and RRR, as well as the cost per left/right Dyson orbital as imple-
mented in eT . In the current implementation, the Jacobian trans-
formation of a trial vector is carried out in a triple loop over the
occupied indices i, j,k. This allows us to use the full permutational
symmetry of the triples amplitudes while keeping a dense block of
the virtual indices for efficient matrix-matrix multiplications.74,75

For the ionized states this algorithm computes some unnecessary
terms scaling as 8n4

vn3
o floating point operations (FLOP), because

all amplitudes Lµ and Rµ that do not involve the bath orbital are
zero. Switching to a loop over the virtual orbitals the scaling for
the ionized states could be reduced to 8n3

vn3
o FLOP. However, the

computation of the ground state parameters and the left Dyson
orbitals would still scale as shown in Table S1 and the cost for
the right Dyson orbitals could only be reduced to 6n4

vn3
o FLOP. For

large systems and if many ionized states are requested, the sav-
ings would be significant, but for the systems considered in this
work the scaling was not an issue and the optimization of the
code is deferred.

2.2 Multicentric B-spline TDDFT

In order to describe continuum orbitals, conventional L 2 Gaus-
sian type or Slater type orbitals are not very accurate, despite ef-
forts to adapt them.76–78 Instead, we use a highly flexible linear
combination of primitive B-spline functions (ζ ),

ζ jlm(r,θ ,φ) =
1
r

B j(r)Ylm(θ ,φ) . (37)

Within the Kohn-Sham (KS) static-exchange DFT approach, the
Schrödinger equation has the form,

HKSφi = εiφi ; i = 1,2, · · · ,n (38)
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where,

HKS =−1
2

∇
2−∑

M

ZM

|r̄− R̄M |
+
∫

ρ(r̄′)dr̄′

|r̄− r̄′|
+VXC[ρ] . (39)

In the above expressions, ρ is the ground state electron den-
sity obtained from a preliminary conventional SCF calculation,
ZM and R̄M are the atomic number and nuclear coordinate, re-
spectively. VXC is the exchange-correlation potential. As previ-
ously shown, the LB94 functional outperforms the LDA or GGA
functionals for simulating KS photoionization, due to the correct
asymptotic Coulomb behaviour.79 The continuum KS orbitals are
then extracted as the eigenfunctions of the Hamiltonian in eqn
(39), with given positive eigenvalue equal to the kinetic energy
(E) of the photoelectron. The problem is recast as to obtain the
eigenvectors (c) with a minimum modulus eigenvalue (a) of the
energy-dependent matrix A†A(E),

A†A(E)c = ac , A(E) = H−ES , (40)

where H and S are the Hamiltonian and overlap matrices, respec-
tively.63,80

The natural extension of KS-DFT approach to include inter-
channel coupling effects while still restricting the bound states to
a single determinant representation is the TDDFT method within
the linear response formalism. The linear response of the electron
density (δρ) due to an external potential is evaluated following
the scheme by Zangwill and Soven.81 The effective self-consistent
field potential (V SCF) is the sum of the external potential (µext)
and Coulomb and exchange-correlation screening. Using the adi-
abatic local density approximation (ALDA)81 for the exchange-
correlation kernel, the effective potential becomes,

V SCF(r̄,ω) = µext(r̄,ω)+
∫

δρ(r̄′ω)dr̄′

|r̄− r̄′|
+

∂VXC

∂ρ

∣∣∣∣
ρ(r̄)

δρ(r̄,ω) .

(41)
The response density is obtained from the KS dielectric suscepti-
bility (χ) and the effective potential as,

δρ(r̄,ω) =
∫

χ(r̄, r̄′,ω)V SCF(r̄,ω)dr̄′ . (42)

Inserting eqn (42) in eqn (41) gives the integral equation,

V SCF(r̄,ω)= µext(r̄,ω)+
∫ ∫

κ(r̄, r̄′)χ(r̄′, r̄′′,ω)×V SCF(r̄′′,ω)dr̄′dr̄′′

(43)
where,

κ(r̄, r̄′) =
1

|r̄− r̄′|
+δ (r̄− r̄′)

∂VXC

∂ρ
. (44)

Eqn (43) is solved with respect to V SCF, avoiding the need for a
self-consistent procedure.63

2.3 Photoionization Observables

Once the Dyson orbitals and the continuum orbitals are known,
all photoionization parameters can be computed. The photoelec-
tron matrix element (eqn (3)) is related to the differential pho-

toionization cross-section

dσ

d~k
= 4π

2
αω|Di f |2 , (45)

where α is the fine structure constant, ω is the photon energy
and ~k is the momentum of the photoelectron in the molecular
frame. Following the mathematical manipulations proposed by
Chandra,82 one obtains

dσ

d~k
=

σ

4π

[
1+
(
−1

2

)|mr |
βP2(cosθ)+mrβ1P1(cosθ)

]
. (46)

It is evident from eqn (46) that the angular distribution of the
photoelectron is guided by three parameters, namely the partial
cross-section (σ), the asymmetry parameter (β) and the photo-
electron dichroic parameter (β1). The light polarization, mr, can
have values 0 (linearly polarized light), +1 (left circularly po-
larized light) and −1 (right circularly polarized light); Pi are the
Legendre polynomials of order i and θ is the angle between the
photoelectron moment and the light polarization, for linear polar-
ization, or light propagation, for circular polarization. Addition-
ally, we report the branching ratio, which is defined as the ratio
between the partial photoionization cross-section of an individual
channel and the sum of the partial cross-sections of all ionization
channels considered.

3 Computational details

Experimental geometries from the NIST database83 have
been used for H2O, H2S, CS and CS2. The geometry of
(S)-methyloxirane was taken from a previous work.84 The Dyson
orbitals were obtained from the eT program package67 using the
aug-cc-pVTZ basis set for H2O, H2S, CS and (S)-methyloxirane
and the aug-cc-pVDZ set for CS2. The ground state electronic den-
sities were computed with the ADF software,85 using the LB94
exchange-correlation functional and DZP basis set.86 Occupied
and continuum orbitals were obtained solving eqn (38) in a ba-
sis of B-spline functions. A long range expansion of the B-spline
functions with angular momentum Lmax is placed at the origin of
the coordinate system (center of mass), up to a maximum radial
grid length of Rmax with nstep grid points. Additional off-center
functions were placed on the non-center atoms with an angular
momentum of lmax and radial grid length of rmax. The parameters
used are listed in Table S2. This choice of parameters ensured
accurate convergence of the photoionization observables. The
projected bound (Dyson) and continuum orbitals on the multi-
centric B-spline basis, and finally the photoionization observables
were obtained using the Tiresia code.62 Dyson orbital plots were
prepared with UCSF ChimeraX.87

4 Results and discussions

4.1 Water

We start by showcasing the applicability and performance of our
implementation of the EOM-CC3 ionization energy and Dyson or-
bitals in the case of the H2O molecule. The importance of in-
corporating triple excitations is evaluated for the outer and inner
valence regions of the photoelectron spectrum.
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Table 1 H2O. Comparison of ionization energies (in eV) and pole strengths. Experimental results are taken from Ref. 88. The percentage of singles
character (%|R1|) in the right EOM-CCSD ionization vectors is given in parenthesis beside the computed IEs. The notation i−1( j−1a) is used to specify,
respectively, the ionization and the excitation (in parenthesis) components of the 1p transitions (where i, j and a indicate specific molecular orbitals).
The reported “dominant amplitudes” correspond to the largest amplitudes in the right ionization vector. The HF ground-state electronic configuration
is 1a2

12a2
11b2

23a2
11b2

1.

Peak EOM-CCSD/aug-cc-pVTZ EOM-CC3/aug-cc-pVTZ Exp 88

IE (%|R1|) RF Dominant amplitudes IE RF Dominant amplitudes IE (Intensity)
X 2B1 12.62 (95%) 0.9149 1b−1

1 12.67 0.8839 1b−1
1 12.20

A 2A1 14.83 (96%) 0.9155 3a−1
1 14.89 0.8838 3a−1

1 15.00
B 2B2 19.00 (97%) 0.9250 1b−1

2 19.04 0.8990 1b−1
2 18.51

26.09 0.0076 1b−2
1 4a1, 1b−2

1 6a1
26.11 0.0034 3a−1

1 (1b−1
1 4a1), 1b−1

1 (3a−1
1 4a1)

27.70 0.0019 1b−1
1 (3a−1

1 4a1), 3a−1
1 (1b−1

1 4a1)
29.88 0.0066 1b−1

1 (3a−1
1 5a1), 3a−1

1 (1b−1
1 5a1)

30.02 0.0121 3a−1
1 (1b−1

1 2b1), 1b−1
1 (3a−1

1 2b1)
30.33 0.0143 1b−2

1 2b1
30.68 0.0025 1b−2

1 2b1, 3a−1
1 (1b−1

1 4a1)
30.73 0.0654 1b−2

1 4a1
30.80 0.0081 3a−2

1 4a1, 3a−2
1 6a1

32.80 (72%) 0.6876 2a−1
1 31.93 0.1327 2a−1

1 , 1b−1
1 (3a−1

1 2b1), 3a−1
1 (1b−1

1 2b1) 32.20 (0.58)
32.08 0.0017 1b−1

2 (3a−1
1 4a1), 1b−1

2 (3a−1
1 6a1)

32.09 0.0021 1b−1
2 (1b−1

1 4b2), 3a−1
1 (1b−1

1 5a1)
32.22 0.0093 1b−1

1 7a1
32.58 0.3024 2a−1

1 , 1b−1
1 (3a−1

1 2b1)
32.60 0.0013 1b−1

1 (3a−1
1 4a1), 3a−1

1 (1b−1
1 4a1)

32.96 0.0017 3a−1
1 (1b−1

1 3b1), 1b−1
1 (3a−1

1 3b1)
33.45 0.0771 2a−1

1 , 1b−2
1 8a1

33.47 0.0124 1b−1
1 , 1b−1

1 (1b−1
2 5a1), 1b−2

1 3b1

34.33 0.0133 1b−1
2 , 1b−1

2 (1b−1
1 2b1), 1b−1

1 (1b−1
2 2b1)

34.50 0.0353 2a−1
1 , 3a−2

1 4a1, 1b−1
2 (3a−1

1 5a1)
34.87 0.0089 3a−2

1 5a1
35.14 (17%) 0.1526 2a−1

1 , 1b−2
1 6a1 35.05 0.0155 2a−1

1 , 1b−1
1 (3a−1

1 3b1), 3a−1
1 (1b−1

1 3b1) 35 (0.18)
35.07 0.0012 1b−1

2 (1b−1
1 5a1), 1b−1

1 (3a−1
1 8a1)

35.59 0.0112 2a−1
1 , 3a−2

1 4a1
35.78 0.0058 1b−1

2 (1b−1
1 2b1), 1b−1

1 (1b−1
2 2b1)

35.93 0.0471 2a−1
1 , 3a−1

1 (1b−1
2 5a1), 1b−2

1 9a1
36.14 0.0358 2a−1

1 , 1b−2
1 9a1

36.15 0.0043 1b−1
2 (3a−1

1 5a1), 3a−1
1 (1b−1

2 5a1)
36.45 0.0049 2a−1

1 , 1b−1
1 (1b−1

2 1a2), 1b−1
2 (1b−1

1 1a2)
36.62 0.0025 1b−1

2 (1b−1
1 3b2), 1b−1

1 (1b−1
2 5a1)

A comparison of the ionization energies and spectral strengths
computed at EOM-CCSD and EOM-CC3 level is reported in Ta-
ble 1, with details on the dominant amplitudes and percentage
of singles character (%|R1|) in the right ionization vectors. Fig-
ure 1 is a rendering of the photoelectron spectrum of each method
based on the tabulated data, compared vis a vis with experimen-
tal data from Ref. 89 for the whole spectrum, and from Ref. 88
for the inner region satellite. The three lowest ionization ener-
gies correspond to primary ionizations, characterised by electron
ejection from a particular molecular orbital. The corresponding
Dyson orbitals are also equivalent to the dominant molecular or-
bital. No significant difference in ionization energy is observed
upon inclusion of the perturbative triples excitations. However, a
consistent decrease in pole strengths RF is reported at the EOM-
CC3 level, in comparison to EOM-CCSD. This gives way for redis-
tribution of the intensity among satellite peaks.

In the experiment,88 three peaks were identified in the inner
valence region at 32.2, 35.0 and 38.9 eV, with the last one being
an order magnitude weaker than the first two. We have computed

the ionization spectrum of H2O up to 37 eV using both EOM-
CCSD and EOM-CC3 methods, in order to characterise the first
two satellite bands. As envisaged, the inner valence ionization
region comprises more low intensity peaks at the EOM-CC3 level,
versus only two peaks obtained at the EOM-CCSD level (at 32.80
and 35.14 eV). The two ionized states obtained at the EOM-CCSD
level have corresponding Dyson orbitals with major contribution
from the 2a1 molecular orbital.

The corresponding 2a1 Hartree-Fock/aug-cc-pVTZ molecular
orbital energy is 36.82 eV. Somewhat surprisingly, the energies
of these two EOM-CCSD ionizations agree well with the exper-
imental observation. Nevertheless, the spectral strength of the
primary (2a1)

−1 band is overestimated while that of the second,
satellite peak is underestimated.

Due to the inclusion of approximate triple excitations at the
EOM-CC3 level, the description of 2h1p states is significantly im-
proved. This results in reduced ionization energies for these
states. Therefore, there appear multiple satellite states in the
high energy region of the spectrum, not only of (2a1)

−1 charac-
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Fig. 1 H2O. Comparison of experimental and computed photoelectron
spectrum. Experimental results are taken from Ref. 89 and 88.

ter. The photoelectron spectrum in the inner valence region is not
well resolved, and is rather a broad feature, see Figure 1. Thus,
it is reasonable that it envelopes numerous low intensity peaks.
The energy region between 26.09 eV and 30.80 eV consists of
multiple very low intensity satellites of (1b1)

−1,(3a1)
−1 (1b2)

−1,
the total intensity of these peaks being approximately 0.12. The
first ionized state of contribution from (2a1)

−1 ionization arises
at 31.93 eV. The peaks between 31–34 eV and 34–37 eV have an
overall spectral intensity of about 0.56 and 0.18, which is in ex-
cellent agreement with the experimental monopole strengths of
0.58 and 0.18,88 respectively.

The photoionization observables for the primary peaks, gen-
erated using the B-spline TD-DFT continuum orbitals and the
EOM-CCSD and EOM-CC3 Dyson orbitals for the bound part, are
shown in Fig. 2. They are indistinguishable, when comparing
the two CC methods. This is also reasonable given that even at
the EOM-CCSD level, the agreement with the experimental re-
sults is quite accurate, not leaving much scope for improvement.
However, a slight variance is noticed for the A 2A1 band (middle
row in Fig. 2) near the ionization threshold. The partial cross-
section computed using EOM-CC3 Dyson orbitals clearly is a bet-
ter match with the experimental observations. The sharp features
obtained in the near-threshold region are due to autoionization
resonances, which are not seen in the experiment due to vibra-
tional motion. The features are attributed to discrete excitations

to Rydberg states lying in the electronic continuum of the lowest-
energy ionization channel.
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Fig. 2 H2O. Partial cross-section σ (left panels) and asymmetry parameter β (right panels) for the primary ionization channels obtained using EOM-
CCSD and EOM-CC3 Dyson orbital descriptions of the bound state. B-spline TD-DFT is used for the continuum orbital description. Experimental
results are taken from Ref. 89–91.
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4.2 Carbon monosulphide

The CS molecule is a favourite test case for theory due to the pres-
ence of experimentally well characterized primary and satellite
peaks. The experimental photoelectron spectrum of CS exhibits
four well separated peaks between 10–18 eV.92 The calculated
ionization energies are listed in Table 2. The two lowest-energy
spectral peaks are assigned to ionizations from the HOMO (7σ)
and HOMO–1 (2π) molecular orbitals, respectively. As they are
dominantly 1h type ionizations, the Dyson orbitals are essentially
equivalent to the corresponding molecular orbitals as predicted
by Koopmans’ theorem.

In CS, the complexity arises in accurately simulating the third
and fourth peak. They both originate due to (6σ)−1 transition.
The 6σ Hartree-Fock molecular orbital energy is 18.83 eV, sig-
nificantly higher than the third experimental ionization energy
(15.84 eV), but comparable to the fourth one at 18.0 eV. The

Koopmans description is clearly failing for CS. At the EOM-CCSD
level, the two 6σ peaks are captured but at much higher energy
and with a larger separation of 3.06 eV between them, in con-
trast to an experimental gap of 2.16 eV. Furthermore, experimen-
tally the intensities of the third and fourth bands are compara-
ble, whereas, at CCSD level, the third has a much larger spectral
strength than the fourth one. EOM-CC3 significantly improves the
ionization energies as well as the intensity distribution between
the third and fourth peak (see Fig S1). As also shown in Tables 2
and S4, considerable differences exist in the singles character
and in the dominant amplitudes of the last two ionized states at
the CCSD and CC3 levels.

In line with our findings for H2O, we observe that CC3 allows
for more redistribution of spectral intensities from the primary to
the satellite peaks, thereby reducing the RF values of the primary
Dyson orbitals in comparison to the CCSD values. A comparison
of the photoionization observables computed using EOM-CCSD
and EOM-CC3 Dyson orbitals is presented in Fig. 3. The over-
all spectral shape is the same for the primary ionization bands (X
and A). Significantly different partial cross sections and asymme-
try parameters have been obtained for the B 2Σ and C 2Σ band
using the CCSD and CC3 Dyson orbitals. We note however that
it is difficult to further comment on the correctness of the bound
state description for the B 2Σ and C 2Σ band due to lack of ex-
perimental observations to corroborate our findings. The overall
asymmetry parameter profiles for the B and C bands are distinct,
indicating differences in the nature of the underlying transitions.
This also aligns with the findings reported in Ref. 5, obtained us-
ing CASSCF Dyson orbitals for the description of the bound part.

4.3 Hydrogen Sulphide

The computed EOM-CC3/aug-cc-pVTZ photoelectron spectral
data of H2S are listed in Table 3, together with EOM-CCSD/aug-
cc-pVTZ data. HF results are reported in Table S8, along with
CCSD and CC3 results with a smaller basis set. The experimental
spectrum93 is split into two parts, an outer valence region be-
tween 10-17 eV and an inner valence region above 19 eV charac-
terized by low intensity, closely-spaced, peaks. The photoelectron
spectrum of the inner valence region is shown in Fig. S3.

The primary ionization features are due to ionization from the
2b1, 5a1 and 2b2 molecular orbitals. The corresponding Dyson or-
bitals of these three ionizations resemble the molecular orbitals,
with dominant contributions from the central sulphur atom, as
shown in Fig. 4, in the order of X>A>B, as previously dis-
cussed.44,93 The Dyson orbital of the X band is a pure S(3p) lone-
pair orbital, orthogonal to the molecular plane. That of the B
band is of S-H σ bonding type. Ionizations from 3p atomic or-
bitals of third row elements are known to exhibit Cooper minima
at around 40 eV. The depth of the minimum in the asymmetry
parameter of the first three bands, shown in Fig. 5, correlates
with the extent of the contribution from the sulphur 3p orbital
to the Dyson orbital. The X band, having the deepest minimum,
has the largest contribution from the S(3p) orbital, while the B
band exhibits, amongst the three, the smallest contribution and
the most shallow minimum.
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Table 2 CS. Comparison of Koopmans’ theorem Hartree-Fock (HF) molecular orbital energies, EOM-CCSD and EOM-CC3 ionization energies (IE),
percentage of singles character (%|R1|), and spectral strengths (RF ) obtained using the aug-cc-pVTZ basis set. All energies are reported in eV.
Experimental results taken from Ref. 92. The corresponding photoelectron spectrum is shown in Fig. S1. The “major MO” is the orbital contributing
the most to the Dyson orbital. The HF electronic configuration for the ground state is 1σ22σ23σ24σ21π45σ26σ27σ22π4.

Peak Major HF EOM-CCSD EOM-CC3 Exp 92

MO IE IE (%|R1|) RF Dominant amplitude IE (%|R1|) RF Dominant amplitude IE
X 2Σ 7σ 12.82 11.52 (96) 0.8672 7σ−1 11.29 (94) 0.8330 7σ−1 11.33
A 2Π 2π 12.60 13.06 (98) 0.9091 2π−1 12.94 (97) 0.8812 2π−1 12.79
B 2Σ 17.26 (90) 0.7683 6σ−1 16.54 (67) 0.4093 6σ−1,2π−1(7σ−13π) 15.84
C 2Σ 6σ 18.83 20.32 (37) 0.1056 6σ−1,2π−1(7σ−13π) 18.40 (73) 0.4000 6σ−1,2π−1(7σ−13π) 18.0
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Fig. 3 CS. Partial cross section and asymmetry parameters computed using EOM-CCSD and EOM-CC3 Dyson orbitals with the B-spline TD-DFT
continuum description. Basis set aug-cc-pVTZ.

Experimentally, the inner valence region is attributed to ioniza-
tions from the 4a1 molecular orbital. Our CC3 calculations reveal
six ionization channels in this energy span, of which four have
4a1, one 2b1 and one 2b2 as major contributors to the Dyson or-
bital

The Dyson orbitals are shown in Fig. 4. As the satellites have

pronounced 2h1p excitation character, the schematic representa-
tion of the Dyson orbitals does not have an unambiguous one-
to-one correspondence to the dominant molecular orbital. In the
bottom panels of Fig. 5, the branching ratio and asymmetry pa-
rameter for the composite ionization channels arising from the
4a1 molecular orbital have been reported. Here, we do not take
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Table 3 H2S. Ionization energies (eV) and intensities computed using EOM-CC3/aug-cc-pVTZ. Experimental results are taken from Ref. 93 and 94.
The “major MO” is the orbital contributing the most to the Dyson orbital. The HF ground-state configuration is 1a2

12a2
11b2

23a2
11b2

14a2
12b2

25a2
12b2

1.

Peak Major EOM-CCSD EOM-CC3 Exp 93 Exp 94

MO IE (%|R1|) RF Dominant ampl. IE (%|R1|) RF Dominant ampl. IE IE Intensity
X 2B1 2b1 10.42 (98) 0.9291 2b−1

1 10.38 (98) 0.9051 2b−1
1 10.5 10.50

A 2A1 5a1 13.43 (98) 0.9128 5a−1
1 13.40 (97) 0.8935 5a−1

1 13.4 13.10
B 2B2 2b2 15.69 (98) 0.9141 2b−1

2 15.64 (97) 0.8927 2b−1
2 15.6 15.60

2b2 21.98 (4) 0.0019 2b−2
1 5b2, 2b−2

1 4b2 19.35 (7) 0.0047 2b−2
1 5b2, 2b−2

1 4b2 18 0.018
4a1 22.41 (68) 0.4130 4a−1

1 , 2b−2
1 9a1 20.29 (28) 0.0709 4a−1

1 , 2b−2
1 9a1, 2b−2

1 8a1, 2b−2
1 6a1 20 19.9 0.059

4a1 24.35 (54) 0.2617 4a−1
1 , 2b−2

1 8a1 22.27 (50) 0.2268 4a−1
1 , 2b−2

1 6a1 22.1 22.08 0.210
2b1 22.62 (2) 0.0007 2b−1

1 (5a−1
1 8a1), 2b−1

1 (5a−1
1 6a1), 22.7 22.68 0.060

2b−1
1 (5a−1

1 9a1)
4a1 26.26 (17) 0.0232 2b−2

1 9a1, 2b−2
1 6a1 23.26 (34) 0.1026 4a−1

1 , 2b−2
1 10a1 23.05 23.00 0.030

4a1 23.72 (41) 0.1576 4a−1
1 , 2b−2

1 10a1 23.31 23.43 0.190

19.35 eV  20.29 eV   22.27 eV

22.62 eV  23.26 eV  23.72 eV

X (10.38 eV) A  (13.40 eV) B (15.64 eV)

Fig. 4 H2S: Left Dyson orbitals for the satellite states computed us-
ing EOM-CC3/aug-cc-pVTZ. The corresponding right Dyson orbitals are
similar.

into consideration the very weak satellite states of B1 and B2 sym-
metry, as the experimental results (green dots) are for 4a1 ion-
ization channels. For the asymmetry parameter of the individ-
ual satellite ionization channels, see Fig. S4. The minimum in
the asymmetry parameter β is computed to be at a slightly lower
photon energy, and the depth of the minimum is underestimated,
as shown in the bottom right panel of Fig. 5. The experimen-
tal branching ratio for the satellite state shows oscillations above
60 eV. On the contrary, our simulations produce an almost flat
structure. This is reasonable as we have only taken into account
ionizations up to 25 eV, thereby neglecting contributions from all
higher-energy ionization channels.

4.4 Carbon Disulphide

The computed and experimental ionization energies and spectral
strengths of CS2 are reported in Table 4 and S9. The four outer-
most primary ionizations are simple and already well described at
the EOM-CCSD level.44 Here, we focus on the fifth band, which
has been experimentally characterized to be of 2Πu symmetry. Ac-
cording to Koopmans’ theorem, the fifth band should be due to

pure ionization from the 4σu orbital, which, on the other hand,
has a much higher ionization energy. Even though at the EOM-
CCSD level we do obtain an ionization at 17.78 eV, which is
comparable to the experimental position, its intensity is signifi-
cantly underestimated. This is also translated to the partial cross-
section, which is also underestimated by an order of magnitude
in comparison to experiment, as shown in Fig. 6. However, an
appreciable agreement is seen for the asymmetry parameter due
to the correct symmetry of the underlying transition. An analysis
of the ionization vector also reveals that the CCSD ionization at
17.78 eV has exclusively double excitation character, so we expect
it to move significantly upon inclusion of the effect of triples.44

Another 2Πu state is obtained at 21.68 eV, with a sizeble amount
of single excitation character.

Indeed, using EOM-CC3, the ionization energy is considerably
lowered from 17.78 eV to 14.74 eV, and the other 2Πu satellite at
21.68 eV moves down to 17.60 eV. While the ionization energy of
this latter peak is still overestimated, the agreement with the fifth
band of the experiment is substantially improved. The photoion-
ization cross-section and asymmetry parameter computed using
this 21.68 eV EOM-CCSD Dyson orbital provide a good match
with experiment. However, in case of the asymmetry parameter,
it is difficult to comment on the performance of the Dyson orbital
treatment as the experimental results are scattered.

4.5 Methyloxirane

As final example, Fig. 7 illustrates the results of our approach
for the photoelectron circular dichroic parameter, β1, of (S)-
methyloxirane, a prototypical chiral molecule. We study the six
lowest-energy ionization channels, which are characterized as
ionization from one particular molecular orbital. The computed
photoelectron spectral details are reported in Table S10. The
corresponding EOM-CC3 Dyson orbitals are shown in Fig. S9.
It has been shown previously,27 that Koopmans’ theorem-based
Hartree-Fock molecular orbitals fail to reproduce the experimen-
tal trends in the near-threshold region. Here, we see that our
combined method matches the experimental data well. Not sur-
prisingly, since all six channels correspond to primary ionizations,
the CC3 and CCSD results are very similar, as it can be appreci-
ated from Fig. S10. Also, static DFT and TDDFT representations
of the continuum yield the photoelectron dichroic parameters of
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Fig. 5 H2S. Branching ratio (left panels) and asymmetry parameter β (right panels) obtained using the EOM-CC3/aug-cc-pVTZ Dyson orbital
description of the bound state with the B-spline TD-DFT continuum (solid blue line) versus experiment (green circles). The summation in the bottom
panels refers to the four 4a1 states listed in Table 3. The experimental results were re-digitized from Ref. 93.

similar quality, as seen in Fig. S10.

5 Conclusions
In summary, we have devised a technique combining EOM-CC3
Dyson orbital coefficients to describe the bound state character of
the system with B-spline TD-DFT continuum orbitals, allowing for
the accurate simulation of photoelectron spectra and photoioniza-
tion dynamical observables, namely partial cross-sections, asym-
metry parameters, branching ratios and photoelectron dichroic
parameters. The study involved two main components, the im-
plementation of the EOM-CC3 Dyson orbital coefficients and their
interface with the B-spline (TD-)DFT continuum for the compu-
tation of the spectroscopic parameters.

A detailed investigation of the outer as well as inner valence
region of the photoelectron spectrum of exemplary molecular sys-
tems has been carried out. For outer valence ionizations, CCSD

results are already accurate, and CC3 brings little improvement.
The accuracy of CCSD may be gauged by the pole strengths RF

of the individual ionizations, and the percentage of 1h states. As
a rule of thumb, CCSD results may be considered accurate when
RF > 0.85 and the 1h-percentage > 0.90.

The perturbative triples correction is necessary for reproducing
complex satellite bands of higher order excitation character. The
inner valence region of the spectrum comprising satellite peaks
is a direct probe of correlation effects and quite challenging to
accurately reproduce theoretically. Recent developments in ex-
perimental facilities have made it possible to capture such low
intensity features with high accuracy, giving impetus to concomi-
tant theoretical advancements. Even though EOM-CCSD is ca-
pable of describing 2h1p ionizations, the ionization energy is of-
ten highly over-estimated making it difficult to assign the ionized
states to the corresponding experimental bands. This is exten-
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Table 4 CS2. Ionization energies (in eV) and pole strengths computed using EOM-CCSD and EOM-CC3 with the aug-cc-pVDZ basis set. Ex-
perimental results are taken from Ref. 95. The corresponding photoelectron spectrum is shown in Fig. S5. HF ground state configuration
1σ2

u 1σ2
g 2σ2

g 2σ2
u 3σ2

g 3σ2
u 4σ2

g 1π4
g 1π4

u 5σ2
g 4σ2

u 6σ2
g 5σ2

u 2π4
u 2π4

g .

Peak Major EOM-CCSD EOM-CC3 Exp
MO IE (%|R1|) RF Dominant ampl. IE (%|R1|) RF Dominant ampl. IE 95

X 2Πg 2πg 9.90 (98) 0.8970 2π−1
g 9.84 (97) 0.8630 2π−1

g 10.1
A 2Πu 2πu 13.20 (93) 0.8250 2π−1

u 12.74 (86) 0.6993 2π−1
u , 2π−2

g 3πu 12.9
B 2Σu 5σu 14.45 (96) 0.8734 5σ−1

u 14.20 (94) 0.8240 5σ−1
u 14.6

2Πu 2πu 17.78 (14) 0.0136 2π−2
g 3πu 14.74 (23) 0.0290 2π−2

g 3πu
2Πu 2πu 15.82 (8) 0.0056 2π−2

g 3πu
C 2Σg 6σg 16.42 (93) 0.8140 6σ−1

g 15.93 (86) 0.6798 6σ−1
g 16.2

D 2Πu 2πu 21.68 (32) 0.0573 2π−1
u , 2π−2

g 3πu 17.60 (43) 0.1480 2π−1
u , 2π−2

g 3πu 17.2
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Fig. 6 CS2. Individual channel photoionization cross-section σ and asym-
metry parameter β of the D band computed using B-spline TD-DFT
continuum orbitals with Dyson orbitals computed using the aug-cc-pVDZ
basis set. The experimental results (green dots) are from Ref. 95. The
CCSD results were also reported in Ref. 44, together with CCSDR(3)
corrected counterparts.

sively corrected at the EOM-CC3 level. The proposed EOM-CC3
Dyson orbital treatment of the bound state in conjunction with
B-spline TD-DFT continuum orbitals constitutes a state-of-the-art
theoretical methodology capable of quantitative comparison with
experiments.

The presented protocol is general and can be extended and ap-
plied to investigate sophisticated experimental observations. For
instance, open shell systems could be studied using the method.

Core ionization spectra will also be studied in the future, as they
are known to exhibit a plethora of satellite peaks, difficult to
handle using only singles and doubles excitations. The method
can also be suitably extended to include nuclear dynamic effects,
in order to describe vibrationally resolved photoelectron spectral
features.

Author Contributions

S.C., H.K and P.D. conceptualized and supervised the project.
A.C.P. implemented the EOM-CCSD and EOM-CC3 Dyson or-
bitals in the eT program package. T.M. developed the composite
methodology interfacing the B-spline Tiresia code and the eT pro-
gram. T.M., A.C.P., and P.D. carried out the calculations and vali-
dation. All authors contributed to the writing of the manuscript.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We acknowledge support from the the European UnionâĂŹs
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