Molecular docking studies of *Alpinia galanga* metabolites against human placental aromatase for estrogen-dependent breast cancer treatment

Joe Anthony H. Manzano\(^1,2\), Cecil Laurence M. Cruz III\(^1,3\), Allan Patrick G. Macabeo\(^1\)*

\(^1\)Laboratory for Organic Reactivity, Discovery, and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015 Philippines

\(^2\)Department of Biological Sciences, College of Science, University of Santo Tomas, España Blvd., Manila 1015 Philippines

\(^3\)Senior High School Department, University of Santo Tomas, España Blvd., Manila 1015 Philippines

Keywords: *Alpinia galanga*, aromatase inhibitors, breast cancer, molecular docking, human placental aromatase

Corresponding Author: agmacabeo@ust.edu.ph; +632-34061611 local 4057
ABSTRACT

Breast cancer is the leading cause of cancer-related deaths among women. With the clinical success of several synthetic aromatase inhibitors (AIs) as therapeutic agents in post-menopausal estrogen receptor-positive breast cancer, natural products have been tapped in search of chemically diverse compounds with potential better effectiveness against aromatase while conferring reduced adverse effects. *Alpinia galanga* is among the Philippine native medicinal plants with extensive studies on its phytopharmacological properties yet reports on its human placental aromatase inhibitory activity remain rudimentary. Thus, a total of 119 database-derived *A. galanga* secondary metabolites was molecularly docked onto the catalytic site of human placental aromatase using the UCSF Chimera platforms according to the AutoDock Vina Broyden-Fletcher-Goldfarb-Shanoo (BFGS) algorithm. Drug-likeness was assessed *in silico* using SwissADME. Of the screened compounds, galanolactone (1), 4-(3,4-dimethoxy-trans-cinnamoyl)-trans-cinnamic acid (2), isocoronarin D (3), quercetin (4), β-sitosterol (5), (E)-8β,17-epoxylabd-12-ene-15,16-dial (6), galangin (7), labda-8(17),12-diene-15,16-dial (8), 7-(4-Hydroxy-3-methoxyphenyl)-1-phenylhept-4-en-3-one (9), and 3,5,7-trihydroxy-4-methoxyflavanone (10) conferred highest binding affinities against aromatase ranging from binding energies of -8.7 to -8.0 kcal/mol with notable formed hydrogen bonds and interactions against key amino acid residues. Top-ranked compounds exhibited druggability with at most one violation of the Lipinski Rule of Five (LRo5). Overall, the study indicates the potential of top *A. galanga* secondary metabolites as promising drug pharmacophores in developing therapeutics against breast cancer.
INTRODUCTION

Cancer remains among the deadliest maladies to mankind. In women, breast cancer ranks second as the leading cause of cancer-related deaths (American Cancer Society 2020). In the Philippines, the highest breast cancer incidence in Asia is observed with 16% of all cancer cases (Kim et al. 2015). With a survival rate of less than 50%, it kills 300,000 lives per year (Department of Health 2021). According to Youlden and colleagues (2014), these statistics are expected to increase every year.

Human placental aromatase, a key enzyme implicated in postmenopausal estrogen receptor-positive breast cancer, catalyzes the final step in estrogen biosynthesis from the conversion of androstenedione and testosterone. Estrogens in general are known to promote cancer cell growth, proliferation, metastasis, and recurrence in hormone-dependent breast cancers. Thus, reduction of estrogen levels via inhibition of the catalytic activity of aromatase is recognized as one of the effective therapeutic armamentariums in breast cancer management (Amir et al. 2011; Lonning et al. 2013). Although estrogen production in the ovaries ceases after menopause, surrounding tissues continue to produce adequate concentrations to stimulate tumor growth and eventual proliferation. Globally, 50-80% of breast cancers are estrogen-dependent where tumor cell proliferation is due to estrogen binding to its receptor. Thus, estrogen receptor-positive breast cancer therapy through use of aromatase inhibitors (AIs) is widely recognized as an emerging less invasive treatment modality (Brueggemeier et al. 2001; Chumsri et al. 2011).
Figure 1. Top ranking *A. galanga* compounds 1-10 with *in silico* inhibitory activity against aromatase.

Alpinia galanga (L.) Willd. (Zingiberaceae), commonly known as *langkawas*, is a medicinal plant found in Southern Luzon provinces in the Philippines. It is also used as an Asian spice due to its aromatic odor and spicy flavor. In Chinese traditional medicine, it is used to remedy gastrointestinal ailments such as stomachache, dyspepsia and frigid gastro-vomiting (Xiao-Lu *et al.* 2009). Natural products isolated from the genus *Alpinia* have shown broad range of biological activities such as anticancer, antioxidant, antibacterial, antiviral, and cardiovascular health-promoting properties (Zhang *et al.*, 2016). Yet studies on inhibitory activities against human placental aromatase remain...
rudimentary. As part of our efforts to explore natural products with anti-cancer properties (Macabeo et al. 2014; Macabeo et al. 2017; Phukhamsakda et al. 2019; Quimque et al. 2020a; Malaluan et al. 2022), we report herein the anti-human placental aromatase activities of *A. galanga* constituents through molecular docking studies (Figure 1).

MATERIALS AND METHODS

Ligand selection and preparation

A library of 119 secondary metabolites previously identified from *Alpinia galanga* was screened against human placental aromatase (Appendix Figure I). The ligands in SMILES notation were converted to SYBYL mol2 file format and optimized in Avogadro (version 1.2.0). The prepared ligands were added to UCSF Chimera (version 1.14) for molecular docking (Magpantay et al. 2021).

Target protein preparation and minimization

The crystallized three-dimensional structure of human placental aromatase in complex with androstenedione (PDB ID: 3EQM, chain A) was fetched from the Protein Data Bank (https://www.rcsb.org/) using UCSF Chimera (version 1.14) (Leechaisit et al. 2019; de Leon et al. 2021). Non-standard residues, co-crystallized ligands and water molecules were removed to clear the active pocket. Protein minimization was performed using the steepest descent method in tandem with the conjugate gradient method protocol. A total of 100 steps (step size at 0.02 Angstrom) was utilized. Charges were obtained based on Amber’s Antechamber module computation using the Gasteiger charge mode (Wang et al. 2006; Fernandez et al. 2021).
Molecular docking studies

Prepared ligands 1–119 in mol2 format was inputted to UCSF Chimera together with the minimized protein (Pettersen et al. 2004). A 3D grid box which encompasses the active site of the protein and as predicted by COACH algorithms in AutoDock Vina was generated. The actual docking was performed using Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Visualization of docked complexes was carried out in BIOVIA Discovery Studio (version 4.1) (Yang et al. 2013).

Drug-likeness, ADME and pharmacokinetic profile

Absorption, distribution, metabolism and excretion (ADME) properties of top compounds were computationally predicted using SwissADME (http://www.swissadme.ch/index.php). Pharmacokinetic profiles of compounds were evaluated according to Lipinski’s rule of five which determines drug-likeness based on the following criteria: molecular weight < 500, calculated lipophilicity (MLogP) < 5, number of hydrogen-bond acceptors < 10, and number of hydrogen bond acceptors < 5 (Macabeo et al. 2020; Quimque et al. 2020b).

RESULTS AND DISCUSSION

A total of 119 secondary metabolites from Alpinia galanga which include polyphenolics, diterpenoids, flavonoids, sterols, cinnamic acids and alkaloids were molecularly docked onto the androstenedione-binding active domain of aromatase (Appendix Table I).

Molecular docking against human placental aromatase
Molecular docking was performed to investigate binding modalities of the *Alpinia galanga* compounds and the target protein, human placental aromatase. Inhibition of aromatase is a crucial modality in the prevention of growth stimulation effect of estrogens in postmenopausal breast cancer. So, aromatase inhibitors have been investigated and developed as anti-breast cancer therapeutics. Generally, two types of AIs are known and are classified based on their mechanism of action – steroidal and nonsteroidal AIs. The latter bind reversibly to the active site *via* noncovalent bonds while the former one may interact to the active site through competitive manner *via* covalent interactions (Yadav *et al.* 2015; Adhikari *et al.* 2017).

In our study, the top ten *A. galanga* compounds exhibited binding energies ranging from -8.7 kcal/mol to -8.0 kcal/mol (Table 1). The drug control androstenedione showed -9.4 kcal/mol binding energy (Appendix Table I). Diterpenoid galanolactone (1) conferred the highest binding affinity. Its non-methylated cyclohexyl moiety (ring B) interacted with Val373 and Val370 *via* alkyl interactions. The fused ring A cyclohexyl group and its dimethyl group also showed alkyl interactions with Cys437. Both Ala306 and Ile133 formed alkyl bonding with the furanone moiety (Figure 2).
Table 1. Binding affinities and interacting residues of *A. galanga* compounds against aromatase.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Binding affinity (kcal/mol)</th>
<th>Hydrogen bond</th>
<th>Other Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>galanolactone (1)</td>
<td>-8.7</td>
<td>None</td>
<td>Val373, Ala306, Ile133, Val370, Cys437 (alkyl)</td>
</tr>
<tr>
<td>4-(3,4-dimethoxy-trans-cinnamoyl)-trans-cinnamic acid (2)</td>
<td>-8.4</td>
<td>Met374, Gly439</td>
<td>Ala306 (pi-sigma), Leu477, Val370, Cys437, Leu152, Ile132, Ile133, Phe148 (alkyl, pi-alkyl)</td>
</tr>
<tr>
<td>isocoronarin D (3)</td>
<td>-8.5</td>
<td>None</td>
<td>Ile132, Ala438, Phe148, Cys437, Ile133, Ala306, Trp224 (alkyl, pi-alkyl), Leu477, Leu372 (hydrophobic)</td>
</tr>
<tr>
<td>quercetin (4)</td>
<td>-8.3</td>
<td>Met374</td>
<td>Ile133 (pi-sigma), Ala438 (pi-alkyl)</td>
</tr>
<tr>
<td>β-sitosterol (5)</td>
<td>-8.3</td>
<td>Cys437</td>
<td>Ile133, Val370, Ala438, Ile132, Met303, Ala307, Phe203, Leu152, Phe148, Ala306 (alkyl, pi-alkyl)</td>
</tr>
<tr>
<td>(E)-8ß,17-epoxylabd-12-ene-15,16-dial (6)</td>
<td>-8.3</td>
<td>Arg115, Met374</td>
<td>Ala306, Ile133, Cys437, Phe148, Ala438, Ile132 (alkyl, pi-alkyl)</td>
</tr>
<tr>
<td>galangin (7)</td>
<td>-8.2</td>
<td>Arg115, Leu372</td>
<td>Phe134, Trp224 (pi-pi), Ile133 (pi-sigma), Ala306 (pi-alkyl)</td>
</tr>
<tr>
<td>labda-8(17),12-diene-15,16-dial (8)</td>
<td>-8.1</td>
<td>Met374, Arg115</td>
<td>Cys437, Ala306, Ile133, Trp224, Phe221 (alkyl, pi-alkyl)</td>
</tr>
<tr>
<td>7-(4-hydroxy-3-methoxyphenyl)-1-phenylhept-4-en-3-one (9)</td>
<td>-8.1</td>
<td>Ala438</td>
<td>Ala306 (pi-sigma), Ala307, Phe148, Cys437, Ile113, Leu152 (alkyl, pi-alkyl)</td>
</tr>
<tr>
<td>3,5,7-trihydroxy-4-methoxyflavanone (10)</td>
<td>-8.0</td>
<td>Asp309, Arg115, Met374, Leu477</td>
<td>Ile133 (pi-sigma), Phe134 (pi-pi stacked), Ala306 (pi-alkyl)</td>
</tr>
</tbody>
</table>

Corresponding Author: agmacabeo@ust.edu.ph; +632-34061611 local 4057
Figure 2. Docked poses of (a) galanolactone (1), (b) 4-(3,4-dimethoxy-\textit{trans}-cinnamoyl)-\textit{trans}-cinnamic acid (2), (c) isocoronarin D (3), (d) quercetin (4), (e) β-sitosterol (5), (f) (E)-8β,17-epoxylabd-12-ene-15,16-dial (6), (g) galangin (7), (h) labda-8(17),12-diene-15,16-dial (8), (i) 7-(4-Hydroxy-3-methoxyphenyl)-1-phenylhept-4-en-3-one (9), and (j) 3,5,7-trihydroxy-4-methoxyflavanone (10) against aromatase (PDB ID: 3EQM).
Table 2. Summary of key amino acid domains in the active side and side residues of aromatase (Park et al. 2013).

<table>
<thead>
<tr>
<th>Location</th>
<th>Type of Interaction</th>
<th>Key Amino Acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side</td>
<td>Van der Waals</td>
<td>Phe134, Phe221, Trp224, Ile305, Ala306, Val370, Val373, Met374, Leu477</td>
</tr>
</tbody>
</table>

(-) = not specified

Previous studies have identified key interacting amino acids for ligands in the aromatase active site such as Met374, Arg115, Ile133, Phe134, Phe221, Trp224, Ala306, Thr310, Asp309, Val370, Val373, Leu477, and Ser478 (Ghosh 2009; Roy & Roy 2010). A more recent study added more key residues in both the active site and its periphery with
specified side residues that need to be involved in hydrogen bonding to confer inhibitory activity (Park et al. 2013) (Table 2).

Comparing the data on key amino acid residues by Park and colleagues (2013) and the results of our interaction analysis, 3,5,7-trihydroxy-4-methoxyflavanone (10) displayed the most hydrogen bonding to the key domains with four hydrogen bonds, followed by (E)-8ß, 17-epoxylabd-12-ene-15, 16-dial (5) and labda-8(17),12-diene-15,16-dial (8) with two hydrogen bonds. 4-(3,4-dimethoxy-trans-cinnamoyl)-trans-cinnamic acid (2), isocoronarin D (3), quercetin (4), and galangin (7) formed only one hydrogen bond whereas no hydrogen bonding was noted for galanolactone (1), β-sitosterol (12), and 7-(4-Hydroxy-3-methoxyphenyl)-1-phenylhept-4-en-3-one (9). In addition, compounds 1, 2, 7, and 8 yielded four interactions with the side chain residues, followed by compounds 3 and 5 with three interactions, 6, 9, and 10 with two interactions, and lastly compound 4 with only one interaction.

Overall, seven of the ten top-ranking compounds displayed at least one hydrogen bond to the key amino acid residues on the active site of aromatase while all ten compounds showed at least one interaction with the side residues. Several residues in the active pocket also bound to the top ligands either via alkyl, π-alkyl, or hydrophobic interactions. These interactions are prerequisites for the specific binding of a ligand to aromatase which may elicit a biological activity. It can be suggested that these compounds may bind to the active site and nearby pockets and possibly induce changes in the sensitive molecular structures which may interfere with the intricate process of aromatization, thereby inhibiting production of estrogens and consequently lowering the risk of
Manzano et al.: Molecular docking studies of *Alpinia galanga* compounds against aromatase

In silico ADME, pharmacokinetic profiling, and drug-likeness analysis

To assess druggability of top compounds, their ADME and pharmacokinetic profiles were predicted *in silico*. All top-binding compounds were highly druggable as correlated with their favorable ADME (absorption, distribution, metabolism, excretion) results with at most one violation to Lipinski’s rule of five. Meanwhile, four compounds (2, 4, 7, and 10) showed non-permeability to the blood-brain barrier. All ten compounds except β-sitosterol (5) exhibited high gastrointestinal absorption, and good fat solubility properties (Figure 3, Table 3).

![BOILED-Egg of top-ranking compounds showing blood-brain barrier permeability and predicted human intestinal absorption of top-ranking compounds.](image)

Figure 3. BOILED-Egg of top-ranking compounds showing blood-brain barrier permeability and predicted human intestinal absorption of top-ranking compounds.

Corresponding Author: agmacabeo@ust.edu.ph; +632-34061611 local 4057
Table 3. Drug-likeness and pharmacokinetic profile of top compounds according to Lipinski's rule of five.

<table>
<thead>
<tr>
<th>Cpd #</th>
<th>Molecular Weight (<500 g/mol)</th>
<th>H-bond donors (<5)</th>
<th>H-bond acceptors (<10)</th>
<th>Lipophilicity (MLogP<5)</th>
<th>Lipinski violations</th>
<th>Drug-likeness</th>
<th>Pharmacokinetic absorption/permeability</th>
<th>GI</th>
<th>Blood Brain Barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>318.45</td>
<td>0</td>
<td>3</td>
<td>3.75</td>
<td>None</td>
<td>Yes</td>
<td>High</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>338.35</td>
<td>1</td>
<td>5</td>
<td>2.34</td>
<td>None</td>
<td>Yes</td>
<td>High</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>318.45</td>
<td>1</td>
<td>3</td>
<td>3.66</td>
<td>None</td>
<td>Yes</td>
<td>High</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>302.24</td>
<td>5</td>
<td>7</td>
<td>-0.56</td>
<td>None</td>
<td>Yes</td>
<td>High</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>414.71</td>
<td>1</td>
<td>1</td>
<td>6.73</td>
<td>1 (MLogP)</td>
<td>Yes</td>
<td>Low</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>318.45</td>
<td>0</td>
<td>3</td>
<td>2.85</td>
<td>None</td>
<td>Yes</td>
<td>High</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>270.24</td>
<td>3</td>
<td>5</td>
<td>0.52</td>
<td>None</td>
<td>Yes</td>
<td>High</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>302.45</td>
<td>0</td>
<td>2</td>
<td>3.64</td>
<td>None</td>
<td>Yes</td>
<td>High</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>310.39</td>
<td>1</td>
<td>3</td>
<td>3.36</td>
<td>None</td>
<td>Yes</td>
<td>High</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>302.28</td>
<td>3</td>
<td>6</td>
<td>0.15</td>
<td>None</td>
<td>Yes</td>
<td>High</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
CONCLUSION

This study reported the in silico inhibitory activity of the constituents of the Philippine medicinal plant *Alpinia galanga* against human placental aromatase, a pharmaceutical target in estrogen-dependent breast cancer. Results of molecular docking studies indicate the potential of *A. galanga* phytoc compounds namely galanolactone (1), 4-(3,4-dimethoxy-trans-cinnamoyl)-trans-cinnamic acid (2), isocoronarin D (3), quercetin (4), β-sitosterol (5), (E)-8ß,17-epoxylabd-12-ene-15,16-dial (6), galangin (7), labda-8(17),12-diene-15,16-dial (8), 7-(4-Hydroxy-3-methoxyphenyl)-1-phenylhept-4-en-3-one (9), and 3,5,7-trihydroxy-4-methoxyflavanone (10) for discovering new anti-breast cancer agents and their proposed binding mechanisms in the target protein active site and its side residues. All compounds were also predicted in silico to be highly druggable. The present study also corroborates with previously reported in vitro pro-apoptotic effects of *A. galanga* ethanolic extracts against a breast cancer-derived cell line in a concentration- and time-dependent manner (Samarghandian *et al.* 2014). Considering the overall results, *A. galanga* compounds may serve as natural product-based templates for new generation aromatase inhibitors.

STATEMENT ON CONFLICT OF INTEREST

None

REFERENCES
Manzano et al.: Molecular docking studies of Alpinia galanga compounds against aromatase

Corresponding Author: agmacabeo@ust.edu.ph; +632-34061611 local 4057

Corresponding Author: agmacabeo@ust.edu.ph; +632-34061611 local 4057

Corresponding Author: agmacabeo@ust.edu.ph; +632-34061611 local 4057
Manzano et al.: Molecular docking studies of *Alpinia galanga* compounds against aromatase

Corresponding Author: agmacabeo@ust.edu.ph; +632-34061611 local 4057

Corresponding Author: agmacabeo@ust.edu.ph; +632-34061611 local 4057