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Abstract 

To improve the performance of data-driven reaction prediction models, a new data 

augmentation method for augmenting data volumes is presented that aims to add fake 

data in training dataset. This method is only pay attention to small-scale reactions, and 

manually generates fake data which is chemical and credible molecules by replacing 

functional groups in reaction sites. And we call this method as virtual data augmentation. 

Additionally, the transformer model is introduced to explore the effectiveness of virtual 

data augmentation method in the task of reaction prediction based on small data sets. 

We apply our method to five classic coupling reactions, the results show that the overall 

performance of the transformer-baseline model and transformer-transfer learning 

model combined with virtual data augmentation method is obviously improved, 

compared to raw datasets. Especially for Suzuki reaction, combining transfer learning 

strategy and virtual data augmentation method, reaches top-1 accuracy of 97.8%. To 

sum up, virtual data augmentation can be used as a measure to face up the problem of 

insufficient data and significantly improves the performance of reaction prediction.  

Introduction 

Organic synthesis is not only occupying a core position in organic chemistry field, 

but also support the research and development of others fields, such as material science, 

environment science and drug discovery. With the maturity of artificial intelligence 

techniques, there are many successful applications of integrated organic chemistry and 

artificial intelligence,1-4 such as reaction prediction.5-8 As the name implies, reaction 

prediction task is that inferred products from the given reactants or reagents by learning 

chemical rules based on deep learning methods. Since Schwaller et al. creatively used 

sequence-to-sequence model to assist predict the generation of organic chemical 

reactions,9 reaction prediction has been a heated topic. Indeed, this new mode can 

reduce the cost of material and human resources, even guide chemists and help design 

new molecules by reducing the number of synthesis attempts compared with traditional 

organic experiments depending on the professional chemical knowledge of organic 
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chemistry experts.  

However, it’s well known that the deep learning methods are determined by large 

datasets and previous researches have demonstrated that focusing on massive reaction 

dataset can achieve considerable efforts.10,11 While when it comes to a particular 

reaction type, the data volumes are insufficient to support related applications, due to 

high cost and time-consuming experiments. For example, Wang et al. applied 9959 

heck reactions to the transformer-baseline model for reaction prediction, and only got 

66.3% accuracy. 11 As a result, deep learning methods must be able to comprehensively 

deal with small datasets to solve project-tailored task in cross domain with chemistry.  

Luckily, many strategies are designed for the poor performance in small dataset of 

deep learning methods.12-16One of the effective methods is transfer learning, which 

transfer prior-knowledge learned from abundant data to another domain task with less 

data available in similar scenario.10,11,17-19 Reymond et al. had performed transfer 

learning on carbohydrate reactions and showed better performance than a model trained 

on carbohydrate reactions only.19 Apart from transfer learning method, data 

augmentation strategies are crucial for deep learning pipelines aiming at reaction 

prediction tasks, as model’s performance increases with the amount of training data. 

Data augmentation is the process of modifying, or “augmenting” a dataset with 

additional data, which is a powerful strategy used in image processing.20-22 Also, 

previous research by Tetko et al. had proved that simultaneously augmenting input and 

target data can improve the performance for prediction of new sequences.23 Broadly 

speaking, augment training set sequences makes deep learning methods achieve better 

accuracy according to the characteristic of simplified molecular-input line-entry system 

(SMILES).24,25 It’s worth noting that all the augmented SMILES are valid structure 

without changing chemical meaning. Unlike these methods, synthetic data 

augmentation is another powerful data augmentation. Maimaiti et al. manually created 

a batch of fake data to increase the target training set by deleting words, randomly 

sampling or replacing some words in the text in the task of text generation.26 Through 

this way, synthetic data augmentation was realized by transforming the text in the low-

resource language scenarios. As a result, inspired by text replacement and similarity 

between SMILES representation and text, we attempt to adding fake data instead of 

“random SMILES” into training dataset to improve models’ accuracy and called it as 

virtual data augmentation. The fake data are generated by replacing substituent with 

equivalent functional groups in reactants, which do not change reaction site and atom 

valence of reactant molecules. It can be expected that this method can better improve 

the performance of the data-driven mode. 

In this paper, we apply and securitize virtual data augmentation regime and show 

that fake data lead to better performance on transformer model, which is a state-of-art 

natural language process model.23,27,28 Although the transformer model shows excellent 

performance in various reaction tasks, the data-driven model is still powerless when 

facing low data resources. We also clearly mention that our study is to predict the 

outcomes of reaction, and the detailed process can be seen in Fig. 1. For the datasets 

used in this study are coupling reactions, an organic chemical reaction in which two 

chemical entities (or units) combine to form one molecule. When the virtual data 



augmentation method is trained on the transformer-baseline model, compared with the 

raw data, the accuracy of reaction prediction is improved from 2.74% to 25.8%. Also, 

integrated with transfer learning methods, the transformer model increased from 1% to 

53%, which prove that this virtual data augmentation can help to improve model’s 

performance. All in all, this virtual data augmentation aims to expand the density of 

sample data points in the chemical space already covered by the existing documentary 

data set. And we believe that this method can be a useful tool in low resource scenarios 

to tackle small dataset task with deep learning methods.     

    

 
Fig. 1 Schematic illustration of the virtual data augmentation method. 

2 METHODS  

2.1Data 

2.1.1Dataset Preparation 

In this work, we exported Buchwald-Hartwig, Chan-Lam, Kumada, Hiyama and 

Suzuki five coupling reaction datasets based on the name and structure search from the 

‘Reaxys’ database.29 Each data set is preprocessed with following procedures. First, 

these data sets are deleted irrelevant information (e.g., pressure, temperature and yield 

et al) and remained reaction entries and reagent entries. Secondly, the reaction SMILES 

were canonized and all the duplicated reaction entries were removed. Finally, these five 

reaction datasets were filtered using template screening followed respective reaction 

rule. 

Next up, the virtual data augmentation method was divided into two types 

according to general characteristics of reactants in these five coupling reactions. The 

first augmentation method is augmenting one of the reactants and we defined it as single 

augmentation. As Fig.2(a) shows, to the Chan-Lam reaction, the virtual data 

augmentation was carried out in the reactants with halogen functional group, while the 

Buchwald-Hartwig reaction augmented the reactants with boron functional group. The 



other one virtual data augmentation method is simultaneously augmented multiple 

reactants. As shown in Fig. 2(b), the Hiyama reaction is simultaneously augmented the 

reactants with silicon functional group and reactants with halogen functional group 

respectively. The Kumada reaction simultaneously augmented the reactants with 

halogen functional groups respectively and Grignard reagents containing halogen 

functional groups; Suzuki reaction simultaneously increases reactants with halogen 

functional groups and reactants with boron functional groups.  

 

Fig. 2 The schematic diagram of virtual data augmentation. (a) The single augmentation 

method of Buchwald-Hartwig and Chan-Lam coupling reactions. (b) The representative 

example of simultaneously virtual data augmentation method of Hiyama coupling 

reaction. 

 

Table 1 Comparison of data quantity of five coupling reactions before and after using 

virtual data augmentation method. 

name depiction raw dataset virtual dataset 

Hiyama 
 

2067 19011 

Buchwald-

Hartwig  
4419 7640 



 

In addition, Table 1 shows the data quantity of five coupling reactions before and 

after data augmentation, and describes the corresponding reaction formulas. It can be 

seen that the amount of data is obviously increased after using the virtual data 

augmentation method, which is 2-6 times of the raw data. 

Ultimately, for the augmented dataset and raw dataset, we randomly divided the 

datasets into training, validation, and test datasets at a ratio of 8: 1: 1. To avoid 

contingency, we augmented the training dataset of these five reactions without 

augmenting validation and test datasets. It is worth noting that the repetitive reaction 

produced by virtual data amplification method has been deleted by us. In addition, all 

scripts are written in Python (version 3.7) and using RDKit for processing.30  

2.1.2 USPTO dataset:  

The data we used to pre-train the model were derived from the U.S. Patent and 

Trademark Office (USPTO), and this data set comes from Lowe's patent mining work, 

which extracted instances of USPTO patent reactions granted between 1976 and 2016 

as available public data.31 Coley et al. extracted 480k reactions from the USPTO 

authorized patents.32 We processed the data of Coley et al., deleted reaction reagents 

and chirality, filtered out incomplete or wrong reactions, and then after pretreatment 

such as standardization and repeat removal, recovered chirality from the USPTO for 

each reaction originally containing chirality. In particular, we should emphasize that 

there is only one single product of the reaction we extracted, and the raw data set and 

the augmented data set have also been deleted from the data set of the USPTO. Finally, 

about 41W single product reactions were obtained as pre-training data set. 

2.2Model 

During the work, the transformer baseline, transformer transfer learning was 

adopted to verify the augmented method’s validation. 

The model we used is entirely based on the Transformer model, which is a powerful 

model for handling Natural Language Processing (NLP) task and was proposed by 

Google in 2017.14 The model was originally designed and applied to the neural machine 

translation task. When the reaction prediction task is regarded as a language translation 

task, the Transformer model can be applied to this task. This model relies entirely on 

attention mechanism, and it can handle text tasks without using RNNs and convolution, 

and it also avoids the recursion problem in encoder-decoder architectures. It contains 

Chan-Lam 
 

5276 9170 

Kumada 
 

9657 54062 

Suzuki 
 

92399 424194 



several identical encoder-decoder layers. In addition, the application of Multi-Headed 

Attention (MHA) in the decoder makes the calculation speed faster and improves the 

performance of the model. The reaction prediction process of transformer model is that 

the reactants are transmitted to the encoder in the form of SMILE code as input, and 

then transferred to the next encoder until the last encoder is transmitted to the decoder, 

which outputs the predicted results. The model used in our work for reaction prediction 

originated from Zhang et al.33   

We also introduced transfer learning strategy into the Transformer model. During 

the pretraining process, a large chemical reaction dataset USPTO-41W was used to 

pretrain the model. The model transfers the general chemistry information learned from 

pretraining to the target task of predicting the outcomes of these five coupling reactions. 

In addition, the transfer learning is combined with virtual data augmentation to further 

improve model’s performance. With this new strategy, the model can abundantly learn 

chemical information from USPTO-41Wdataset and fake data adding to the training 

dataset. 

 

Result and discussions 

In this work, the transformer model was used to predict the outcomes of several 

coupling reactions. To avoid the occurrence of overfitting or underfitting, the accuracy 

of the transformer-baseline model was carried 10-fold cross validation. The virtual data 

augmentation method was first tested on the Hiyama coupling data set, the smallest 

dataset of five reaction dataset. Table 2 shows the accuracies of Hiyama, Burcharld-

Harwig, Chan-Lam, Kumada, Suzuki reaction based on the transformer-baseline model. 

The development of this model with raw datasets as training sets provided 23.67%, 

41.63%, 64.71%, 78.99%, 95.05% accuracy, respectively. An attempt to use the 

transformer model to predict the test set through augmented training sets resulted in 

much higher top-1 predictions of 49.47%, 49.32%, 68.50%, 85.40 ,97.79% respectively.  

Overall, though the model got a poor performance in predicting outcomes of these five 

reactions, an obvious increasement can be found before and after augmented training 

dataset. This result can be expected, for that adding fake data to expand data volume 

can assist model to improve predictive performance.  

 

Table 2. Accuracy comparison of several coupling reactions between raw data and 

augmented data based on the transformer-baseline model and transformer-transfer 

model 

Model Dataset 

Reaction Types 

Hiyama 
Buchwald-

Hartwig 
Chan-Lam Kumada Suzuki 

Transformer-

baseline model 
Raw data 23.67 41.63 64.71 78.99 95.05 



 

To better verify whether this virtual data augmentation is effective, transfer 

learning method was integrated with transformer-baseline model. Table 2 also 

summarized the accuracies of these five reactions in the transformer-transfer learning 

model. On the one hand, with introduced the transfer learning strategy, compared with 

the augmented datasets, the overall accuracy of transformer-transfer learning model 

improved nearly 20% on average compared with the transformer-baseline model. On 

the other hand, the gaps between raw datasets and augmented datasets had great 

improvement after combined to transfer learning method, especially in Buchwald-

Hartwig dataset. These results indicated that adding fake data can be combined with 

transfer learning method to jointly solve the problem of data scarcity. Another important 

point is that adding fake data to the training dataset had better performance compared 

to raw datasets, which indicated this virtual data augmentation method is effective and 

had generality that be used in different scenarios. 

Since the virtual data augmentation method made a great difference in transformer 

models, it is desirable to visualize the relation location of datasets in chemical space 

and how the model allow for interpretation. We first visualized raw data and augmented 

data among these five reactions using Uniform manifold approximation and projection 

(UMAP) and the tree-map (TMAP).34,35 In this section, we generated the plots of 

reactant molecules belonging to raw datasets and augmented datasets using UMAP, 

which represent molecules as Morgan fingerprints to create a two-dimensional 

representation of high-dimensional data distributions. Taking Hiyama reaction and 

Chan-Lam reactions as examples, As Figure3(a) demonstrated that the silicon-

containing molecules generated by virtual data augmentation occurring in the training 

set of Hiyama reaction (light pink) are closely to the Hiyama raw datasets (pink), and 

the halogen-containing molecules generated by virtual data augmentation occurring in 

the training set of Hiyama reaction (light blue) are closely to the Hiyama raw 

datasets(blue). Also, we generated the UMAP plot of Chan-Lam reactions in Figure3(b), 

which has only boron-containing molecules been augmented singly. The boron-

containing molecules generated by virtual data augmentation (blue) are still very close 

to the raw datasets (light blue). This graphical analysis confirms that the effectiveness 

of virtual data augmentation based on text replacement for maneuvering in chemical 

space from the source to the objective. It is believed that this theory is also applicable 

in other reaction data sets.  

Additionally, to further explore the relationship of the datasets we used, all the 

datasets except USPTO-41W was visualized by the TMAP. TMAP is another powerful 

visualization tool to represent large high-diversional datasets as two-diversional 

Augmented data 49.47 49.32 68.50 85.40 97.79 

Transformer-

transfer model 

Raw data 60.87 94.57 96.39 96.48 97.84 

Augmented data 69.57 95.93 96.77 97.00 98.63 



connected tree. In this TMAP plot, both raw reactions and virtual data augmentation 

reactions are represented a point according to the reaction fingerprint RXNFP, for which 

dates from a neural network trained to classify patent chemical reactions. It is worth 

noting that the data we put into TMAP are 5,000 reactions randomly selected from the 

data of five coupling reactions before and after amplification, and if there are less than 

5,000 reactions in the raw data set, we put all the data into the visualization tool. As 

Fig.3(c) shows, the raw datasets and augmented datasets derived from the same type 

reactions were well overlapping, and the reactions belongs to different reaction types 

can be obviously separately, illustrating that the fake data produced by this virtual data 

augmentation method is relatively similar to the raw data. Taken together, from the 

perspective of training model, adding the fake data derived from virtual data 

augmentation according to text replacement is effective and create positive effort in 

improving deep learning models’ performance. 

 

 

 

Fig. 3 UMAP plot of molecules from raw data and virtual augmented data and TMAP 

plot ofrxnfp of reactions from raw data and virtual augmented data. (a)UMAP map of 

Hiyama coupling reaction before and after virtual data augmentation. (b)UMAP map 

before and after virtual data augmentation of Chan-Lam coupling reaction. (c)TMAP 

before and after virtual data augmentation of five classic coupling reaction. 

 

 

 

 

 

 

 

 

 

 



Finally, we use attention weight to visualize the learning process of model for 

transformer model.36 Attention weights is the key to take into account long-distance 

dependencies and has been used in reaction predictions and other fields. For predicting 

the outcomes of variable coupling reaction, specific reagents have certain impact on the 

output of model. Especially, using attention weights can provide us a straight form of 

how the model learning the molecules SMILES input and output. Fig.4(a) shows the 

visualization of attention weight of a group of raw Hiyama reactions. The darker the 

token, the more noticeable it is in this particular layer or output step. It can be seen from 

the figure that [F-] in the reagent activates the Si-R bond with low polarization in 

silicone, so as to exchange with R-X, resulting in cross-coupling reaction. Fig.4(b) 

corresponds to a group of reactions after Hiyama augmentation, and the weight of 

attention in reaction is almost the same, focusing on the position where cross-coupling 

occurs. The results show that there is no difference between the reaction sites of the 

augmented Hiyama data and the raw data. This means that the fake data we put forward 

is meaningful in training the model. 

 

Fig. 4 Visualization of attention weight before and after Hiyama reaction augmentation. 

The horizontal axis contains two reactants and reagents, and the vertical axis is the 

product. 

(a)SMILES:CC(=O)c1ccc(I)cc1.F[Si](c1ccccc1)(c1ccccc1)c1ccccc1.[F-].[K+]>>CC(

=O)c1ccc(c2ccccc2)cc1 

(b)SMILES:CC[Si](Cl)(Cl)c1ccc(C)cc1.N#Cc1ccc(Br)cc1.[F-].[K+]>>Cc1ccc(-

c2ccc(C#N)cc2)cc1 

 

 

 

 



Table 3. The comparisons of different augmented reactants.  

 

 

Reaction 

types 

Accuracy (%) 

Augmented 

halogen 

Augmented 

silicon (or boron)  

Simultaneously 

Augmented 

Hiyama 44.44 48.31 49.47 

Kumada 80.85 84.68 85.40 

Suzuki 96.82 95.26 97.79 

 

In addition to augmenting both reactants in simultaneously augmentation (As 

shown in Table 1 above), we conduct augmenting experiments based on either reactant 

in reactions that can be augmented simultaneously. For these reactions, we augmented 

the one reactant and the other one reactant in the order. The results are shown in Table 

3. For Hiyama reactions, augmented reactant with halogen, the transformer-baseline 

model achieves 44.44% accuracy, and augmented reactants with silicon, the accuracy 

is on par with halogen augmented. While the two reactants are augmented at the same 

time, the transformer-baseline model’s performance increased nearly 5%. This similar 

phenomenon can be observed in Kumada reactions and Suzuki reactions. Especially for 

Kumada reaction, after simultaneously augmented reactants, the performance of 

transformer-baseline model increases from 80.85% to 85.40%. For the Suzuki reaction, 

it may be that its own data sets are more than other data sets, so the accuracy rate is not 

improved much, but the overall accuracy rate is still improved to nearly 98%. After 

augmented all the reactants, the transformer model can learn more chemical 

information about the reaction, and thus achieving a higher performance in reaction 

prediction. It can be attribute to transformer model’s ability to encoder and decoder text 

sequence.  

 

Table 4. Compare the accuracy of Suzuki reaction datasets of different sizes in the 

transformer-baseline model before and after data augmentation. 

 

To better understand the model training, we conduct several experiments where 

different number of training data sets were randomly chosen to monitor its prediction 

performance in the transformer-baseline model. Different from others tests, this test is 

based on Suzuki reaction, which is the largest dataset in all of datasets we self-built. We 

aimed at the one-fold set of Suzuki reaction, and randomly sampled 1k, 3k, 5k, 7k, 1w, 

3w, 6w training dataset in raw data. Then these datasets were augmented according to 

the reactants containing halogen and boron. On the one hand, the transformer model’s 

performance is affected by the size of training set. For instance, As the table 4 shows, 

 

Suzuki Dataset 

Accuracy（%） 

1k 3k 5k 7k 1w 3w 6w 

raw data 1.20 45.04 69.50 78.34 83.57 91.17 93.13 

Augmented data 1.58 60.38 74.52 81.11 85.87 93.84 95.90 



sampled 1k reactions from Suzuki dataset, the transformer-baseline model only 

provided the smallest performance of 1.20% based on the row dataset, even if integrated 

with virtual data augmentation, this model reached 1.58%. In contrast, we sampled 1w 

row data, the model calculated top-1 performance of 83.57%, and increased nearly 2.3% 

after applying virtual data augmentation method. With the augmentation of the training 

set, the performance of the model has been significantly improved, demonstrated that 

direct data augmentation can be great for improving model’s performance. On the other 

hand, the effect of virtual data augmentation does not always increase accompanying 

with the increasement of training set amount. For example, when training 1k raw data 

and relevant augmented data, the transformer-baseline model increased 0.4% before 

and after applying virtual data augmentation. The gap of augmented 3k training dataset 

reach the largest increasement of 15%. While sampled dataset surpass 5k dataset, the 

virtual data augmentation method keeps steady gradually, and there is no obvious 

upward trend. Therefore, despite the fact that the transformer-baseline model is faced 

with more samples, the transformer-baseline model may be overused, and no new 

knowledge is acquired from chemical reactions.  

 

Table 5. The number of error types in reaction prediction for five coupling reactions. 

 

 

We further analyzed wrong predictions predicted by the transformer-baseline 

model of these five reactions before and after adding fake data to the training set to 

evaluate the validity of virtual data augmentation. As Table 5 shows, there are mainly 

four errors: invalid SMILES errors, the number of atom errors, chirality errors and 

functional group isomerism errors. Fig. 5 and Fig. 6 respectively list several 

representative examples in the reaction of Hiyama and Suzuki. In these four errors, no 

matter training on the raw dataset or the augmented dataset, the most common error 

besides other messy errors is the SMILES error. The error rate of functional group 

isomerization is second only to that of smiles error, especially for Hiyama reaction. It 

can be attributed to the data augmentation method we applied is based on replace 

variable functional group, which makes the functional groups confuse the predictive 

performance of the model. 

For the other errors, they were observed in multiple reaction predictions project. 

The result for these errors is that the transformer-baseline model’s modest ability in 

tacking small reactions. Furthermore, compared the amounts of wrong predictions of 

raw data to the errors of augmented dataset, we found that applied virtual data 

Wrong type 

Hiyama 

lift rate 

（%） 

Suzuki  

lift rate 

（%） 

Buchwald-

Hartwig lift 

rate(%)  

Cham-Lam 

lift rate 

(%) 

Kumada 

lift rate 

(%) 

Chirality error 1.00 5.50 1.63 1.71 4.05 

Group isomerism error 10.67 9.50 15.51 10.86 13.51 

Number of carbon error 16.50 11.00 11.43 10.29 16.22 

SMILES error 11.65 33.50 33.06 28.57 28.38 

Other’s error  60.19 40.50 38.37 48.57 37.84 



augmentation method, the ratio of each error is reduced nearly 20%. That means the 

method we proposed actually improved the model’s performance from source. 

 

 

 

Fig. 5 Typical error analysis of Hiyama coupling reactions. (a) chirality errors 

(b)SMILES errors (c) the number of atom errors (d) functional group isomerism errors 

 

 



Fig. 6 Typical error analysis of Suzuki coupling reactions. (a) chirality errors 

(b)SMILES errors (c) the number of atom errors (d) functional group isomerism errors 

 

Conclusion： 

This study exhibited that an innovative data augmentation method can improve the 

performance of transformer model by augmenting data size of training set. Training the 

model to learn more latent chemical information in organometallic coupling reactions 

by equivalently replacing groups in reactants corresponding to the raw datasets 

expanded the training set and increased the predictive performance of models. This 

concept has been intensively used in image recognition field, while in solving chemical 

problem has not been reported. 37-39 For the first time, we showed the application of 

virtual data augmentation in chemical reaction field and found that adding fake data 

from chemical level boost predictive performance in reaction prediction. We also found 

that virtual data augmentation method combined with transfer learning strategy can 

achieve a better accuracy of prediction. Additionally, we used visualization tools to 

represent the effectiveness of virtual data augmentation method and applied attention 

weight to visualize the prediction process. The accurate visualization demonstrated that 

virtual data augmentation is meaningful in chemical level and showed this model 

became more sensitive to the selection of reaction sites. To sum up, our work shows 

that the transformer model is suitable for small-scale reaction and what we have done 

provides a new possibility for data augmentation methods. Also, it is an important step 

to improve the reaction prediction performance in small data sets. Due to the lack of 

available institutional data, the development of integrating deep learning methods with 

chemical filed may be limited. However, the above results all confirm that this virtual 

data augmentation strategy can contribute to reaction prediction based on small data 

sets. We believe that this method can be applied to other tasks that with limited data 

sets by augmenting training dataset. 
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