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ABSTRACT 

Rationalization of the “bulk” (ΔΕac) or “zigzag-end” (ΔΕzz) energy gaps of atomically precise 

AGNRs, which are directly related to fundamental applications in nanoelectronics, could be 

challenging and largely controversial with respect to their magnitude, origin, substrate influence 

(ΔΕsb), and spin-polarization, among others. Hereby a simple self-consistent, “economical” and 

highly successful interpretation is presented based on “appropriate” DFT (TDDFT) calculations, 

general symmetry principles, and plausibility arguments, which is fully consistent with current 

experimental measurements for 5-, 7-, and 9-AGNRs within less than 1%, although at variance with 

some prevailing views or interpretations for ΔΕac, ΔΕzz, and ΔΕsb. The excellent agreement with 

experiment and the new insight gained is achieved by invoking the approximate equivalence of 

Coulomb correlation energy with the staggered sublattice potential. Breaking established 

stereotypes, we suggest that the measured STS gaps are virtually independent of the substrate, 

essentially equal to their free-standing values, and that the “true” lowest energy state is closed 

singlet with no conventional magnetism. The primary source of discrepancies is the finite length of 

AGNRs together with inversion/reflexion symmetry conflict and the resulting topological end/edge 

states. Such states invariably mix with other “bulk” states making their unambiguous 

detection/distinction difficult.  This can be further tested by eliminating end-states (and ΔΕzz), by 

eliminating “empty” zigzag rings.  
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Graphical Abstract 

 

Conflicting results and open questions (?) on various “bulk” (ΔΕac) and “surface” (ΔΕzz, 

Δεζζ) energy gaps of AGNRs have very simple answers in accord with Occam’s razor. 

Based on “inexpensive” DFT calculations and inversion-sublattice symmetry arguments 

we achieve very high accuracy (!) 
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 1. Introduction Edge or end states in graphene nanoribbons (GNRs), and in particular armchair 

GNRs (AGNRs) have attracted very much interest lately,1-8 due to their anticipated magnetic 

properties,9-10 although their presence in finite nanographenes (NGRs) has been predicted long time 

ago.11 However, the significance and importance of end states for AGNRs was recognized only 

recently1-8, after the pioneering bottom-up synthesis of atomically precise AGNRs of finite lengths 

L with short zigzag ends, and their characterization by scanning tunnelling microscopy (STM) and 

spectroscopy (STS). 3-16 Clearly no end states appear in the common infinite AGNRs fabricated by 

the usual top-bottom techniques, which are theoretically described by periodic boundary conditions 

at their two ends1. The new developments have brought to the forefront new concepts and properties 

such as the “bulk band gaps” ΔΕac (or Δac
1,6) i.e., the energy gaps between delocalized states, and 

the energy separation of the zigzag-end-localized “end-states”, denoted here by (ΔΕzz) (or Δzz 
6-8), 

thus increasing both quantity and quality of key properties to be rationalized, understood, or 

interrelated at the atomic scale. At the same time, despite the increased complexity, such advances 

have also allowed the study of the L-dependence of key-quantities such as the bandgaps4-7 (both, 

ΔΕac and ΔΕzz), conductivity, aromaticity1, 3-4, and even Raman spectra.17 The L-dependence 

studies4-5 revealed that the changes in such properties versus length are not always gradual (or 

smooth). The presence of a metal-insulator-like phase transition at a critical length Lc was 

advocated by two different recent works, Lawrence et al.8 and Zdetsis et al.4, almost 

simultaneously. However, the two works have offered different assessments and interpretations for 

the nature of the transition and magnetism, as well as the value of Lc.
4, 8 This is not something new 

or unusual in a rapidly grown pioneering field like this1, and this is not the only existing 

“discrepancy”. Other conflicting (or conflicting-looking) results (experimental and theoretical) 

include the magnitude and nature of the bandgaps1, 6-7, 12-13, the existence and nature of magnetism 

in the edge states1, 3-7, as well as the magnitude of the substrate influence on these properties.1, 5-7  

For example, the magnitude of the bandgap for the 5-AGNRs has been measured by (at least) three 
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different groups8, 12-13 to be 0.85eV8, 2.8 eV12, and 0.1 eV13 respectively, while the theoretical values 

vary from 0.1 eV1 to 1.7 eV.14 For the 7-AGNRs the measured values of ΔΕzz
 vary between 1.9 eV6 

and 2.5 eV7, whereas the measured ΔΕac values range from 2.3 eV to 3.2 eV6-7,9,15, overlapping 

significantly with the range of ΔΕzz.
 Thus, the unambiguous distinction between ΔΕac and ΔΕzz is 

another subtle point together with the bridging of the measured and calculated ΔΕac values, which 

also vary widely from 2.3 eV to 3.7 eV.1, 6, 7, 14 Some of the (different) measured or calculated values 

correspond to AGNRs of different length, but in the literature the quoted values are usually given 

without reference to the actual length which is, thus, treated as a hidden variable. However, the 

biggest problem seems to be the large difference between the measured values of the gap(s) in 

relation to the “official” theoretical values obtained by the GW method14, which are widely 

recognized as an almost universal point of reference. Such large differences (almost ~1.5 eV for the 

7-AGNRs) between experimental and theoretical GW gaps (ΔΕac) are usually attributed to the 

screening from the metallic (Au) substrate ΔEsb, even though identical values of gap (within the 

experimental uncertainties) have been obtained for AGNRs grown on non-metallic substrates, such 

as NaCl6 and MgO7. This is clearly (at least) problematic. As a result, it appears that there are 

several conflicting results and interpretations or high-braw “solutions” about the STS gaps, 

although the real solution could be much simpler (but not always obvious), as could be possibly 

argued on the basis of Occam’s principle. Along these lines the present work aims at deciphering 

all these subtle points, also including the confusion in distinguishing between ΔΕac and ΔΕzz gaps. 

Thus, the present work can be considered as a positive synthesis of various conflicting views. Based 

on previous experience,1, 3, 19 it is expected that such synthesis should be proven successful and 

constructive, facilitating the successful and accurate functionalization of AGNRs for realistic 

applications. As is demonstrated below, we can fully rationalize all known experimental data for 

the 5-, 7-, and 9-AGNRs within less than 1% accuracy, predict non-measured gaps, and pinpoint at 

the same time the sources of discrepancies.  
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 2. Theoretical framework. For a consistent and transparent understanding and interpretation of 

the origin and magnitude of ΔΕac, ΔΕzz as well as the factors that influence their size, it is important 

to realize that practically all these quantities are dominated by the influence of the (“many-body”) 

Coulomb correlation energy combined with sublattice frustration, which gives rise to the staggered 

sublattice potential20 across the zigzag ends of finite length AGNRs. In fact, the sublattice frustration, 

which is the driving force for the generation of the end/edge states, as we have illustrated earlier,2-4 

constitutes the largest (or even the full) contribution on the Coulomb correlation energy. The 

understanding that most (or all) of the Coulomb correlation energy is devoted to counterbalance the 

topological frustration between sublattice and molecular symmetry-groups is the starting (and key) 

point of the present investigation. This principle together with the established2-5 (hidden) strong 

contributions of aromaticity and shell structure2-5 constitute the basis for the deeper understanding of 

all these quantities (ΔΕac, ΔΕzz, Δεζζ, and ΔΕs). Thus, if we can properly alleviate the sublattice-

molecular group symmetry frustration (which is equivalent with inversion/reflection symmetry 

conflict), under the natural constrains of shell structure and aromaticity, we could effectively account 

for the (largest part of) Coulomb correlation energy. At the same time this would explain why the 

open shell states (singlet or triplet) are not the real lower energy states, but rather “pseudo-states”.21   

 2.1 Calculation of ΔΕzz and ΔΕac from the one-body DFT calculations. Within the 1-electron 

approximation underlining the DFT and Hartree-Fock (HF) self-consistent fields, the symmetry 

frustration between molecular (D2h) and sublattice (C2V) symmetry groups can be alleviated by 

effectively breaking (or redefining) the symmetry of the additional degrees of freedom (besides 

spatial coordinates) i.e., the spin and/or pseudospin (for real-space calculations). In the first case we 

can introduce non-zero spin values preserving the molecular symmetry,3 whereas in the second case 

we are forced to break molecular symmetry, by introducing open-shell singlet states, which when 

optimized geometrically converge normally to C2v symmetric geometries compatible with sublattice 

symmetry, thus breaking the molecular symmetry as well. This occurs because the HOMO (and 
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LUMO) orbitals of the open singlet are obtained, by construction, by mixing the HOMO and LUMO 

orbitals of the closed singlet. These orbitals have opposite parities, u, or g, (and opposite behaviour 

under σy or σxz reflection plane). Thus, by losing the σy (or σxz) reflection plane of the D2h symmetry 

group, as is illustrated in Fig. 1(a), we can get sublattice distribution with opposite sublattice points 

at the two ends (or antisymmetric with respect to y-axis, but symmetric with respect to the x-axis, 

which is the axis of the AGNR). This facilitates frontier molecular orbitals (HOMO, LUMO) 

localized only at one end (left or right) of the AGNR, producing an antisymmetric (pseudo)spin 

density, as is shown in Fig. 1(b), reflecting the sublattice symmetry and structure. Obviously, the 

reverse picture with the pseudospins interchanged is equally valid. On the other hand, the molecular 

D2h symmetry demands same type (same sublattice) atoms at the two ends, as shown in the lower 

part of Fig. 1(a), thus producing a symmetric, with respect to the y-axis, (pseudo)spin distribution 

(bottom of Fig. 1(b)). In both cases the (pseudo)spin distribution is almost zero at the middle part of 

the AGNR. This is reproduced in the corresponding “spin” densities (b). Such spin densities, in Figs. 

1(b), 1(c) and 1(d), which are generated self consistently (through the DFT convergence process) are 

in fact pseudospin densities.  As mentioned above, the open singlet reflects the sublattice symmetry 

(with different type atoms at the two ends) with equal number of up and down (pseudo)spins, or A 

and B sublattice points, resulting in a balanced (nearly zero spin distribution in the middle). The 

triplet state on the other hand has also a region of zero spin in the middle, exactly where the sublattice 

imbalance occurs. In the ordinary “atomistic” calculations the sublattice degree of freedom does not 

enter in the spatial Hamiltonian and can only be introduced as (pseudo) spin. Then, due to the better 

account of Coulomb interaction, open shell states (triplet or singlet) appear energetically lower than 

the closed singlet state. This is because the additional degree of freedom of “pseudospin”, introduced 

to take care of the sublattice topology (and the staggered potential), facilitates the optimization of 

Coulomb interaction by keeping away of each other electrons of different spin (for which Pauli 

repulsion is not operative), but of identical pseudospins. Moreover, based on the shell model2-3, the 
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unoccupied states of the “previous” (shell number smaller by 1) AGNR are the occupied of the current 

AGNR. This is responsible for the interplay between odd and even parity HOMOs as the width of 

AGNRs is growing (3n AGNRs have odd HOMO and even LUMO, whereas 3n+1 AGNRs are 

characterized by even HOMO and odd LUMO).2-3 
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FIGURE 1. Molecular and sublattice symmetry of the 3x6 (7,12) AGNR (a), reflected in the spin 

densities (b). Isovalue=0.004. The vertical elliptic curve indicates the region of sublattice imbalance 

(and frustration). Comparison of the corresponding spin densities for the 4x4 (9, 8) AGNR at the 

HF,  MP2 and DFT/PBE0 level is given in (c) and (d). 

This is also responsible for the well-known 3n, 3n±1 width rule for AGNRs.3 Note that the 

(pseudo)spin densities invariably reflect the sublattice (pseudospin) structure within the frustrated 

molecular (D2h) symmetry3 in the first case, or the sublattice symmetry (C2v) in the latter (see also 

Fig. S1), where opposite end sites have opposite spins. It should be emphasized at this point that for 

wider AGNRs (where n>1 in the above rule for width3), higher spin states are required3 to lower the 

total energy (within the molecular D2h symmetry group). Such larger (pseudo) spin-polarized states 

optimize better the sublattice distribution (within the D2h molecular group),3 whereas the open-shell 

singlets lye higher in energy and revert to the closed singlet state. This illustrates emphatically that 

the open-singlet state is not the true ground (lowest energy) state of AGNRs (and, consequently, no 

conventional magnetism is truly present). Nevertheless, the open singlet state is still a very useful and 

efficient concept for the description of end-states, as is illustrated below. It should be emphasized 

that in both cases of Fig. 1, when correlation is introduced even at the MP2 level, the energetical 

ordering is reversed and the lowest energy structure is a closed singlet.4 In addition, the MP2 

correlated “spin” density of the triplet, as we can see in Fig. 1 (c), is rather correcting the HF failure 

(having the opposite sign) than reflecting the full sublattice structure. Note also in Fig. 1 (c, d) that 

the triplet state is slightly lower than the open singlet, and that the energy difference of the open shell 

singlet and triplet states (which are practically isoenergetic) from the closed singlet is about 0.95 eV. 

This should be a good estimate of the “missing” Coulomb energy in this case, and, based on the 

(approximate) electron-hole symmetry, the expected (HOMO-LUMO) separation of the open singlet 

(or the triplet) should be about twice as large (~2 eV). Indeed, the calculated open-singlet HOMO-

LUMO gap for the 9-AGNRS  (or 4x) is 2.2 eV, and so is ΔΕzz (vide infra). Even more important is 
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the fact that the corresponding value for the 3x6 or (7,12) AGNR is also about 0.93 eV, suggesting 

an open-singlet gap of about 1.9 which is in excellent agreement with both the measured value6 of 

ΔΕzz (1.90 eV), and the calculated open singlet gap. It is important to observe also that the open-

singlet value “ΔΕzz” = 1.2 eV for the 5-AGNRs and the 1.9 eV open singlet gap for the 7-AGNRs are 

practically equal to the correlation improved GW-LDA bandgap differences,14 which is highly 

suggestive for the essential correctness of our claim. Thus, within the one-electron approximation we 

have established the correct basis for discussion and analysis of both ΔEzz and ΔEac. ΔΕzz is identified 

as the open-singlet HOMO-LUMO gap, whereas ΔΕac can be identified as the difference |(HOMO-

1)-(LUMO+1)|, with the understanding that both HOMO and LUMO are end-states. Nevertheless, as 

will be illustrated below, similar values of gaps and analogous estimates can be found in the triplet 

state as well. Furthermore, it should be emphasized that the central meaning of ΔΕzz is only valid for 

lengths L longer than the critical length ( L≥Lc), although the open-singlet HOMO-LUMO is defined 

for almost all lengths and is practically constant, as is verified also by Wang et al.6  

2.2 Introducing many-body corrections to the gaps. For both gaps (ΔΕac and ΔΕzz) we can 

further correct if we wish their (one-body) values by considering additional many body 

contributions through time-dependent DFT (TDDFT), which has been shown1 to provide very good 

(“many-body”) estimates of the gaps, so that the STS spectrum overall looks very much alike the 

(luminous) optical spectrum, because both are dominated by molecular overlaps between transition 

states. This is further illustrated and “verified” from the results below. Furthermore, the use of 

TDDFT allows the clear and unambiguous identification of the energy separation of the end/edge 

states, which according to the present investigation is not given by ΔΕzz, as Wang et al.6 have 

suggested, but by another type of gap which here is denoted as Δεζζ. In the usual one-body 

approximation Δεζζ corresponds to the HOMO-LUMO separation of the closed singlet true ground 

state for L≥Lc, which is always only a few 0.1 eV (~0.1 eV, for L→∞) in accord with the association 

of the end states with the Dirac points3-4 (and charge neutrality points4) located “very close” to the 
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fermi level. TDDFT indeed verifies that in contrast to Δεζζ which involves transition from one 

purely end-localized HOMO state to an opposite-parity end-localized LUMO state, the ΔEzz gap 

always involves transitions from a mixture (~ 60% - ~ 40%) of “surface”-“bulk” states to another 

state of about equal amount of mixing. Thus, although ΔEzz involves a large amount of localized 

end-states, it should not be associated with the energy separation of the end-states. Another way, 

besides TDDFT, to distinguish between “bulk” and “surface” energy gaps is by comparing to the 

corresponding “edge-modified” AGNRs,5 obtained by eliminating “empty” (i.e., non-aromatic) 

end-rings, which also eliminates topological end-states (and, therefore, ΔEzz and Δεζζ). 

2.3 The Substrate influence on the measured STS gaps. As we have mentioned above, the 

main crucial property under possible dispute is the magnitude of the substrate influence (screening) 

ΔEsb on the measured STS gap. According to our earlier estimates1 ΔEsb should be of the order of 

a few 0.1 eV. However, almost in all cases ΔEsb larger than 1 eV is needed to bridge the 

experimental STS measurements for AGNRs deposited on metal surfaces (usually Au) and the 

theoretical values for free standing AGNRs. The theoretical values widely recognized as an almost 

universal point of reference are the GW results of Yang et al.,14 which among the theoretical values 

reported earlier are clearly the largest, and many times by far. As a result, ΔEsb which is defined as 

the difference of the STS measurements and the theoretical reference values are unrealistically 

large. For example, for the 7-AGNRs the theoretical GW gap14 is 3.7 eV, whereas the experimental 

STS gap value obtained by various groups6-7, 9,15 is 2.5±0.2 eV. Thus, ΔEsb should be at least 1.2 

eV. However, the STS value of 2.5 eV was also obtained for 7-AGNRs deposited on non-metallic 

substrates, such as NaCl 6 and MgO7, for which such large ΔEsb value is clearly unrealistic. On the 

basis of their STS measurements on samples grown on MgO, Kolmer et al.7 concluded that ΔEsb 

should be marginal, which is in full agreement with our present results. However, the general 

consensus, with few exceptions1,7,18 is largely different (up to now). In this work we are led to 

conclude that the GW results14 overestimate the bandgaps mainly due to the size effect, since the 
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GW results of Yang et al.14 were obtained for infinite AGNRs, whereas the atomically precise 

AGNRs have finite length (and topological end-states). This could be sufficient to explain the 

resulting unrealistically large ΔEsb values. Yet, besides the infinite size (and the corresponding 

periodic boundary conditions) the lack of exact exchange in the LGA wavefunctions building the 

Green’s function could be also important since exchange interaction is very sensitive to inversion 

symmetry frustration. Nevertheless, judging from our TDDFT results, it is more reasonable to 

attribute the gap difference between the infinite and the finite size AGNRs (size effect) to the mixing 

of edge/end states with the infinite “bulk” states (and the scattering at the zigzag edges) which can 

drastically reduce the gap. This is corroborated by the GW results6 of Wang et al.6 for the finite (7, 

24) AGNR (and slightly longer), who obtained a gap of 2.8 eV clearly closer to the measured (by 

several groups) gap, and substantially smaller compared to the 3.7 eV (G0W0) value14 for the infinite 

7-AGNR. Parenthetically, it should be mentioned at this point that even in the worst-case scenario 

where the substrate interaction is strong (especially when the distance of STS tip from the surface 

is small), this leads to mixed substrate-AGNR states1 which can be easily recognized (and excluded) 

from the measurements by comparing the two separate STS spectra. Moreover, such states would 

be expected to have low overlap with the pure AGNR- excited-states, and consequently the 

corresponding transition(s) would have very low intensity and would be difficult to detect. Thus, 

we assert here that ΔEsb should indeed be marginal, in full agreement with the experimental results 

(for 7-AGNRs grown directly on MgO substrate) and conclusions of Kolmer et al.7. 

2.4 Computational details. The theoretical and computational details of the present investigation 

have been described in references 1 through 5. The computations, as before, have been performed 

with the Gaussian22 program package using the DFT and TDDFT employing the PBE0 functional23 

(which includes “exact” exchange, in contrast to PBE) and the 6-G31(d) basis set. The same 

computational package was used for the Møller-Plesset many-body perturbation theory of 2nd order 
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(MP2) calculations, with the same basis set. The visualization of the results was accomplished 

using the GaussView software.24 

2.5 Synopsis of the theoretical approach. For the atomically precise AGNRs examined here it 

has been illustrated that although the closed singlet is the correct lowest energy state, due to 

(inversion) symmetry frustration (which is also a sublattice frustration), open shell states, such as 

open shell singlet and triplet appear energetically lower due to better account of the Coulomb 

correlation energy (within the 1-electron approximation).3 Thus, such open shell states should be 

considered as “pseudo-states”, and their resulting spin distribution within the one-electron DFT 

framework should be characterized as “pseudospin” distribution. The full amount (or most of it) 

of the Coulomb correlation energy can be estimated from the total energy difference of the closed 

singlet and the open singlet or triplet states. Thus, using standard DFT calculations (with 

functionals including exact exchange, such as the PBE023) for the closed and open singlet, and/or 

triplet states we can have a very good estimate of all (“surface” and “bulk”) energy gaps, measured 

by STS as follows:  

1st) The HOMO-LUMO gap of the closed singlet corresponds to the real energy separation of the 

end-states localized at the zigzag ends, Δεζζ. This is true for long enough AGNRs for which both 

HOMO and LUMO are zigzag-end-localized.  

2nd) In this case the (HOMO-1)-(LUMO+1) difference corresponds to the “bulk” bandgap ΔΕac 

between states delocalized over the entire AGNR.  

3rd ) ΔΕac can be further verified, if desired, by comparing to the HOMO-LUMO gap of the edge 

modified AGNRs4-5, which contain no zigzag  end bonds, and no end-states. 

4th) On the other hand, the zigzag-end-localized HOMO-LUMO gaps of the open-shell singlet or 

the triplet states provide a very good estimate of the “mixed” ΔΕzz gap.  
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5th) Further refinement of all these three gaps (“bulk”, “surface”) can be obtained, if needed, by 

the analysis of the orbital composition of the main peaks of the excitation spectrum obtained by 

TDDFT. This can also help the correct identification (and nature) of the gaps.    

3. Results and discussion 

3.1  5-AGNRs. Figure 2 summarizes the present results for the 5-AGNRs (or 2x AGNRs) 

which, as mentioned earlier, have been also studied by several groups.1,4, 8, 12-13, 16 

 

FIGURE 2. (a): Variation of the open singlet, ΔΕzz, and the “bulk” |(HOMO-1)-(LUMO+1)|= 

ΔΕac gaps (in eV) in terms of length L (in Å) for the 5-AGNRs (2x). (b): Variation of ΔΕac gap (in 

eV) as a function of length for the edge modified 5-AGNRs together with the usual polynomial fit 

(see text). (c): excitation spectrum of the 2x22 and 2x23 AGNRs. Intensity (I) is in arbitrary units 

and excitation energy (ΔΕ) in eV. (d): Variation with length of the HOMO-LUMO, and ΔΕzz , Δεζζ 

gaps, calculated by TDDFT as  “first” and “second” optical gaps respectively, including the 

corresponding experimental values from refs. 8, and 13 (see text). 

 

In Fig.2(a) the open singlet HOMO-LUMO gap, ΔΕzz, and the “bulk” gap ΔΕac are plotted versus 

length L. Here, following the discussion above for the open singlet gap and its relation to ΔEzz, we 

have defined ΔEzz as the HOMO-LUMO gap of the open singlet state, contrary to the original 

definition of Wang et al.6 as the energy separation of the end states.  Obviously, for an open singlet 
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ground state both definitions are equivalent, but this is not the case. As we can see in Fig. 2(a), the 

“one-body” ΔΕac=|(HOMO-1)-(LUMO+1)| gap after the discontinuity (or transition) at L≈100Å, 

which we have discussed in detail in a previous work,4 starts opening up at Lc, contrary to the “one-

body” ΔΕzz (i.e., the open singlet HOMO-LUMO gap) which varies slowly and smoothly over the 

entire range of lengths. This is very strange indeed, if ΔΕzz is going to represent the real separation 

of the edge states, since ΔΕzz first appears at and after the transition at Lc. Such behaviour (smooth 

variation) should be better suited for ΔΕac.  This is indeed verified in Fig. 2(b), which shows the 

HOMO-LUMO gap of the “edge modified AGNRs”, which seems to saturate to the value of 1.22 

eV, very close to the value of 1.25 eV, suggested from the behavior of the “normal” AGNRs in Fig. 

2(a). The edge modified AGNRs by construction have no edge states and their HOMOs and 

LUMOs are delocalized over their entire length,4 and therefore their fundamental gap corresponds 

to ΔΕac. Such edge-modified AGNRs are obtained by eliminating the empty (non-aromatic) end-

rings5 of the standard AGNRs, which also eliminates end-states and zigzag end-bonds.5 This is a 

clear manifestation of the importance of aromaticity for AGNRs (and graphene itself).2-3 

Comparing the behavior of the “bulk gap” in Figs. 2(a) and 2(b), we can see that due to quantum 

confinement (both lateral and longitudinal) the (HOMO-1) and (LUMO+1) states defining the “one-

body” ΔΕac are also affected by the abrupt appearance of the edge states, in sharp contrast to the 

(“one-body”) open singlet gap which seems to be  practically insensitive to the appearance of the 

end-states, contrary to what is expected from its original definition. This in fact emphasizes the 

“many-body” nature of the end states through their connection with inversion symmetry conflict, 

which is further supported from Figs. 2(c) and S1. The “correct” behavior (with length variation) 

of the “one-body” ΔΕac is given by the (delocalized) HOMO-LUMO gap of the edge-modified 

AGNRs in Fig. 2(b). As we can see in Fig. 1(b) the value of ΔΕac (HOMO-LUMO gap of the edge-

modified AGNRs) as a function of length, as L →∞, seems to saturate to the value of 1.22 eV. This 

could be misleading since only lengths up to about 140 Å have been considered. To remedy this 
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problem we have recently suggested25 to fit the calculated ΔΕac as a function of L efficiently and 

transparently1, 25 to a polynomial of the form ΔΕac(L)=A+B×L-C , where the value A corresponds to 

the gap at infinity, ΔΕac(∞)=A, and the constant C to some short of effective (“fractal”) 

dimensionality (here equal to 1.20).1, 25 As we can see in the inset in Fig. 2(b), the projected ΔΕac 

value is 1.07 eV, which is also verified by the TDDFT result ΔΕac =1.01 eV (see Fig. S1). The 

TDDFT value (1.01 eV) is clearly closer to the value of 0.85 eV measured by Lawrence et al.8, 

assuming a very reasonable substrate screening (of about 0.15 eV), as we have suggested recently.4 

However, further correct information is given in Fig. 2(c), showing the spectra of the 2x22 and 

2x23 AGNRs immediately before and after transition, respectively (see Fig.2(d) too). As is 

illustrated in Fig. 2(c), in the 2x23 AGNR (immediately after the transition) there is a strong peak 

value at 0.87 eV, very close to the recently measured8 STS gap of 0.85 eV. Detailed analysis of the 

TDDFT results shows that this peak includes transitions involving end-states to a large percentage 

(about 60%). Thus, the calculated value of 0.87 eV and the measured8 gap should be assigned to 

ΔΕzz. This, contrary to the “one-body” gap, restores the expected correct behavior of ΔΕzz at (and 

after) Lc. Even more interesting is the fact that extrapolating to longer AGNRs gives a gap of 0.85 

eV (exactly), which is an unexpected full agreement with experiment, as is shown in Fig. 2(d).  Fig. 

2(d) also shows that, contrary to the “one-body” (open-singlet) ΔΕzz gap of Fig. 2(a), both “many-

body” gaps, ΔΕzz, and Δεζζ (the latter corresponding to the “real energetical separation of the end-

states), and the one-body HOMO-LUMO gap, which involve end-states, change discontinuously at 

the critical length (~100 Å), where Δεζζ and HOMO-LUMO gaps drop, while ΔΕzz increases. Thus, 

the observed8 gap opening (of about 0.30 eV) is due to the increased aromaticity at the critical 

length, and the mixing of bulk and end-states at an almost equal amount. Lawrence et al.8 have 

attributed such gap opening to the different electrostatic potential felt by valence electrons at 

different regions of the ribbon due to the positive partial charge on the hydrogen atoms along the 

sides of the AGNR. However, the paradigm of edge-modified AGNRs contradict such 
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interpretation.4 Our present work reveals that the gap opening is a many-body effect related with 

the aromatic transition and the change from bulk-like (ΔΕac) to coupled “surface-bulk” end-states 

(ΔΕzz).  On the other hand, the calculated Δεζζ gap of 0.1 eV in Fig. 2(d) is in full agreement with 

the results of Kimouche et al.13 Thus, Kimouche et al.13, and Lawrence et al.8, have apparently 

(“correctly”) measured different kinds of gaps. Moreover, the same could be true for the value of 

2.8 eV measured by Zhang et al.12, which could be assigned as a tentative ΔΕac value, either for 

very short AGNRs (without end-states), or for longer AGNRs with a strong “bulk” transition from 

deep occupied states (well below HOMO-1 orbital) to higher unoccupied states (well above the 

LUMO+1), and thus much larger than the real ΔΕac (which is technically determined by the HOMO-

1, LUMO+1 difference). We can also observe in the 5-AGNRs that differences between the “one-

body” and “many-body” (TDDFT) methods for assigning ΔΕac, ΔΕzz, and Δεζζ are relatively large 

(or even unusual) compared to the 7- and 9-AGNRS, discussed below, where the corresponding 

differences are of the order of 0.1-0.2 eV. This could be related to the fact that the 5-AGNRs 

(contrary to 7- and 9-AGNRs) are topological and aromatic mixtures.3 Thus, the three seemingly 

conflicting measurements8, 12-13 for the 5-AGNRs could be attributed to different length samples 

(and/or different positions of the STS tip). Yet, alternatively, one could claim, based on the GW 

results14, that there is a substrate interaction of equal magnitude (0.85 eV) and the “real gap” is 1.7 

eV. Such conclusion is clearly considered here as highly improbable, in view of equally good (in 

fact better) agreement for the 7- and 9-AGNRs, not to mention Occam’s principle. Moreover, if this 

is indeed a general trend, it clearly illustrates that elaborate correlation calculations (e.g., GW) could 

be avoided (see also ref. 23) if topological frustration can be taken into account appropriately by 

simple DFT (one particle) calculations, provided that the DFT functionals include “exact” exchange 

which is sensitive to inversion symmetry conflict.4  

 3.2   7-AGNRs.  Figure 3 summarizes the results for the three spin states (closed singlet, open 

singlet, and triplet) for the 7- AGNRs, and in particular the (7, 12) or 3x6 AGNR. First of all, we 
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can comment on the significance of the exact exchange in the DFT functional, which was discussed 

above. The calculated DFT/PBE0 open singlet ΔΕzz gap is 1.9 eV in full agreement with the 

measured6 ΔΕzz gap for the 3x6 (7, 12) AGNR. In contrast the ΔΕzz gap calculated with the PBE 

functional, which does not include “exact exchange”, is less than half this value (~0.5 eV, in 

agreement with the PBE calculations of Wang et al.6). As we can see in Figs. 3(a), 3(b), and 3(c), 

which show the one-body DFT picture for the triplet, closed singlet, and open singlet, respectively, 

there are gaps in all of them between HOMO (or HOMO-1) and LUMO, which are equal or very 

nearly equal to the measured ΔΕzz value of 1.9 eV. We must rremember also that this value is 

practically equal to the correlation energy obtained from the difference between the GW and LDA 

values14 for these AGNRs. Let us first focus on the open singlet, which is commonly accepted as 

the “ground state”. Figure 3(d) is practically identical with figure(s) 2(b) and 2(c) of Wang et al.6 

where the definitions of ΔΕzz and ΔΕac (which are designated as Δzz and Δac respectively) are 

illustrated. Moreover, the calculated DFT/PBE0 ΔΕzz and ΔΕac values (contrary to those of 

DFT/PBE, with no “exact exchange”, used by Wang et al.6) are practically identical to the measured 

values for the 3x6 (7,12) AGNR deposited on non-metallic NaCl substrate (in full analogy to similar 

results for the 5-AGNRs, described above). Based on the closed singlet ground state, it becomes 

clear that the “real” energy separation of the end states is the HOMO-LUMO gap of the closed 

singlet state which is (almost always) about 0.1-0.3 eV (depending on the length). This is 

corroborated by the TDDFT results, giving rise to the Δεζζ gap, which discussed earlier for the 5-

AGNRs, and is consistent with the appearance of Dirac points close and around the Fermi level, 

whereas ΔEzz is due to mixed transitions involving both “end” and “bulk” states. This is verified by 

Fig. 3(d) which shows the excitation spectrum of the closed singlet state for the normal 3x6 (7,12) 

AGNR, in which there are two characteristic maxima at 1.9 eV and 3.2 eV, which practically 

coincide with the measured ΔEzz, and ΔEac values respectively for this AGNR.6 As we can see in 

the left part of Fig. 3(d), ΔEac involves transitions between (mixtures of) “bulk states” (from 
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HOMO-1 and HOMO-2, to LUMO+1 and LUMO+2), whereas ΔEzz corresponds to transitions 

from mixt , “bulk” + “surface” (HOMO-3 and HOMO) to LUMO+3 and LUMO. Thus, ΔEzz, 

although not equal to energy separation of the end states, is clearly associated with the first (lowest 

energy) transition involving end and bulk states, corresponding to the measured ΔEzz value of 1.9 

eV and the magnitude of the open singlet gap. 

 

FIGURE 3. Spin states of the 3x6 (7, 12) AGNR: (a) Triplet, (b) Closed Singlet, and (c) Open 

Singlet states, showing frontier MOs, and gaps, together with charge density and spin density (see 
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text). (d): Excitation spectrum for the standard (black line) and edge-modified (red line on line) 

AGNRs. Intensity is given in arbitrary units, and excitation energy in eV. Boxes (rectangular and 

elliptical) emphasize the calculated values in agreement with experimental measurements. Question 

marks indicate alternative possibilities and/or identifications of the corresponding gaps (see text). 

 

 

This is also supported by the TDDFT results in Fig. 3(d) showing the spectrum of the edge-modified 

closed singlet in which the peak of 1.9 eV is totally absent, whereas the peak of the “bulk” gap ΔEac 

is present and identical to the 3.2 eV peak of the normal (7,12) AGNR. The position of the ΔEac peak, 

contrary to ΔEzz, changes (decreases) as the length increases. Thus, for the 3x14 (7,28) AGNR we 

found a ΔEac value of 2.8 eV, as is shown in Fig. S2(a). This value of 2.8 eV, as could be expected, 

is in perfect agreement with the calculated GW value6 and the experimental measurements for the (7, 

24-28) AGNR(s) on insulating NaCl substrate.6  

 

 3.3   9-AGNRs. We can observe in Fig. S2(c) that the overall spectrum of the 4x6 AGNR 

which has the same length with the 3x6 AGNR, except for a suppression of the Δεζζ peak, looks at a 

first sight very much alike the one for the 3x6 AGNR. Clearly a (deep) “bulk” gap could be 

expected not to vary very much or be so sensitive to the exact AGNR’s width; but for the peak 

around 2.0 eV, which up to now was associated with the ΔEzz gap of the 3x- AGNRs, further 

investigation is needed, which is described in Fig. 4. Figures 4(a), 4(b), and 4(c) are the 

corresponding analogues of figures 3(a), 3(b), and 3(c) respectively. However, contrary to the 7-

AGNRs, the experimental data for the 9-AGNRs are very limited.16 Therefore most of the results 

shown in Fig. 4 should be considered as predictions of the present work. As we can see in Fig. 4(c) 

for the open singlet the two fundamental gaps ΔEzz and ΔEac are very close together (2.2 eV and 2.4 

eV respectively) and not exactly equal to the corresponding 3x6 gaps This is also true for the almost 
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equal values of ΔEzz and ΔEac obtained from triplet (and closed singlet).  Thus, the peak around 2.0 

eV in Fig. 4(d) is the result of the overlap of the ΔEzz and ΔEac gaps, whereas the peak around 3.2 

eV in the same figure, Fig. 4(d), although of “bulk” type (similarly to the 3x6 AGNR) is not the 

smallest “bulk” gap, and the real ΔEac for the 4x6 (9,12) AGNR should be around 2.0 eV. 

 

FIGURE 4. Spin states of the 4x6 (9, 12) AGNR: (a) Triplet, (b) Closed Singlet, and (c) Open 

Singlet, showing frontier MOs, gaps, and spin densities; (d)Excitation spectrum for the standard 

(black line), partially edge-modified (blue line on line), and fully edge modified AGNRs (red line 

on line). Intensity is given in arbitrary units, and excitation energy in eV. The frontier orbitals and 
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aromaticity patterns of partially and fully edge-modified AGNRs are shown in the right and left 

portions of the figure. 

 

This is verified in Fig. 4(d), which shows that the 2.1 eV “bulk” peak (together with the “deeper” 3.2 

eV “bulk” peak) survives the elimination (total and partial) of the empty (non-aromatic) end-rings 

which generates the edge modified AGNRs (without end states, and ΔEzz). As is well known, this 

“bulk” peak value, decreases as the length of the AGNR increases. For the 4x13 AGNR we find ΔEac 

=1.6 eV, but for the longer 4x18 (9, 36), and 4x24 (9, 48) AGNRs of lengths L ≈ 78Å, and L≈104 Å 

respectively, we obtain (by TDDFT) for both of them ΔEac = 1.45 eV. This value is in very good 

agreement with the recently measured gap of 1.4 eV by Talirz et al.16, as is illustrated in Fig. S3. The 

peak at 1.45 eV is further verified by Fig. S4 which shows the spectrum of the edge-modified 4x24 

AGNR. We can also clearly see in Figs. S3(b), S3(c) the “surface” ΔEzz gap at about 2.1-2.2 eV. 

Thus, for the 9-AGNRs the predicted values for the gaps are ΔEac = 1.45±0.1 eV, and ΔEzz = 2.1±0.1 

eV. 

4.Conclusions. We have achieved an excellent agreement (within 1% or less) with the measured 

STS gaps (“bulk” and “surface”) for the known 5-, 7- and 9-AGNRs, although the “surface” gaps, 

as is illustrated in Table 1. Namely: 

a) For the 5-AGNRs the measured8 gap value is 0.85 eV. The calculated here gap with 

DFT/PBE0 is 1.07, whereas the TDDFT/PBE0 value is exactly 0.85 eV, indicating also 

that this is a ΔΕzz gap. 

b) Moreover, the measured13 0.1 eV gap is recognized to fully coincide with the calculated 

here (by both DFT-TDDFT/PBE0) Δεζζ gap.   

c) For the 7-AGNRs the measured6,7,9,10,15 ΔΕac gap of 2.3±0.2 eV coincides with the 

calculated here ΔΕac gap (with both DFT-TDDFT/PBE). 



Zdetsis A. D. , Bandgaps of Atomically precise AGNRs and Occam’s Razor                                                        22 

 

d) Furthermore, for the (7, 28) AGNR the measured6 and GW-calculated6 2.8 eV gap fully 

coincides with the calculated here ΔΕac gap (with both DFT-TDDFT/PBE0), whereas for 

the (7,12) AGNR the measured6 and calculated6 ΔΕac gap is ~3.2 eV.  

e) The measured6 ΔΕzz gap of 1.9 eV for the 7-AGNRs, (7,12), and longer, is clearly identical 

to the calculated here ΔΕzz gap of 1.9 eV (with both DFT-TDDFT/PBE0). 

f) For the 9-AGNRs the only known (to the present author) measurement16 for the gap is 1.4 

eV. The present calculations (TDDFT/PBE0) yield a ΔΕac value of 1.45 eV, and also 

predict ΔΕzz=2.1±01 eV, quite close to the corresponding gap for the 7-AGNRs.  

Note that for the 5- and 9-AGNRs the ΔΕzz gaps are theoretical predictions of the present work, due 

to the lack of analogous experimental data.  

TABLE 1. Calculated and measured gaps for the 5-, 7-, and 9-AGNRs (in eV). Numbers with 

asterisk denote the present values, while numbers in parenthesis indicate the reference numbers of 

the original works. Numbers in bold emphasize the agreement between theoretical and experimental 

results, whereas underlined numbers in italics indicated the results of GW calculations.14   

AGNR Δεζζ 

Calculated 

Δεζζ  

Measured 

ΔΕzz 

Calculated 

ΔΕzz 

Measured 

ΔΕac 

Calculated 

ΔΕac 

Measured 

5-  0.1* (1) 0.1(13) 0.85 *  0.85(8) 1.1*, 1.7(14) - 

7- 0.1* (1) - 1.9* 1.9(6), 2.5(7) 2.5*, 2.8*, 2.8(6), 3.7(14) 2.8(6), 2.5±0.2(6,7,9,15) 

9-  0.1* (1) - 2.2* - 1.45*, 1.6 (1), 2.0(14) 1.4 (16) 

*Values obtained in the present work. 

At the same time the present work has provided a simple physical understanding/rationalization of 

the origin and properties of these gaps. We have shown that such excellent agreement can be 

obtained by a transparent approach, using a minimum of computational resources, avoiding high 

level many-body methods, such as the advanced GW approach.14 This is accomplished by 
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recognizing (and suitably exploiting) the fact that most (or all) of the Coulomb correlation energy 

is devoted to offset the (inversion) symmetry conflict. This is an added insight.  Thus, simple DFT 

calculations with or without “fictitious” open shell states (such as open shell singlets or triplets) can 

give accurate results, especially when augmented by TDDFT calculation which can further refine 

the results, provided that the chosen DFT functional includes the “exact” exchange (such as the 

PBE0 functional23 used here, proven to provide excellent results1-5, 24), and the finite length of the 

AGNRs is taken into account (recall the synopsis of the theoretical approach in section 2.5). Under 

the same provisions (finite size of AGNRs, and “exact exchange”) the GW approach would also 

give the correct results, as is illustrated in ref. 6, where taking account the finite size of the 7-

AGNRs has lowered the GW gap by about 1 eV, in very good agreement with the measured STS 

value. As a result, a similarly large overestimation of the expected substrate screening would be 

avoided, since the GW results14 are widely used as reference values for the free standing AGNRs. 

This is corroborated by STS measurements of AGNRs on non-metallic substrates.6-7 Thus, the 

measured STS gaps are practically independent of the substrate and virtually equal to the free- 

standing values, obtained by any of the three computational methods: DFT, TDDFT, and GW (from 

the simplest to the more complex), provided the finite size and the “exact” exchange are taken into 

account. Obviously, the simplest (and computationally most economical) approach should be 

normally preferred, in accord also with Occam’s principle. A combination of DFT and TDDFT, as 

is used here, should be considered ideal.   

  

Additional supplementary material with more details and comparisons for the spectra of 5-, 7-, and 

9-AGNRs is given in the Supplementary Information.  
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