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ABSTRACT7

We report a dataset of 96,962 new crystal structures discovered and computed using our previously published autonomous,
density functional theory (DFT) based, active-learning workflow named CAMD (Computational Autonomy for Materials
Discovery). Of these, 931 are within 1 meV/atom of the convex hull and 27,075 are within 200 meV/atom of the convex hull.
The dataset contains DFT-optimized pymatgen crystal structure objects, DFT-computed formation energies and phase stability
calculations from the convex hull. It contains a variety of spacegroups and symmetries derived from crystal prototypes derived
from known experimental compounds, and was generated from active learning campaigns of various chemical systems. This
dataset can be used to benchmark future active-learning or generative efforts for structure prediction, to seed new efforts of
experimental crystal structure discovery, or to construct new models of structure-property relationships.
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Background & Summary9

Crystal structure data from high-throughput density functional theory (DFT) calculations has become increasingly available,10

shareable, and valuable. Efforts like the Open Quantum Materials Database (OQMD)1, AFlowLib2, and Materials Project311

have disseminated hundreds of thousands of new crystal structures derived from both experimental reports via the Inorganic12

Crystal Structure Database (ICSD) and from high-throughput studies focused on specific applications and structure prototypes13

such as perovskites4–6, spinels7, 8, garnets9, and Heusler alloys10, 11.14

To aid in the augmentation of these datasets, we developed a scheme to accelerate the curation of crystal structures predicted15

as thermodynamically stable using DFT. In our previous work, we outlined an autonomous system that, with prescriptive16

search input for a given chemical system, would collect new crystal structures in that chemical system using a combination of17

machine learning, uncertainty-estimate enabled acquisition strategies, thermodynamic phase analysis, and design-of-experiment18

heuristics12. In that system, termed Computational Autonomy for Materials Discovery (CAMD), decision-making components19

were encapsulated in an agent, an entity responsible for choosing new simulations based on past results.20

Over the past two years, we have deployed the CAMD workflow on a scalable AWS cloud compute infrastructure which21

both runs the agent processes for choosing new DFT calculations from crystal structure prototypes and the associated DFT22

calculations themselves. In this work, we report the aggregated results of the continuous operation of the CAMD system. To23

date, CAMD has computed 96,962 crystal structures, including 27,075 within 200 meV/atom of the convex hull and 931 new24

ground states. The convex hull includes by default all known experimental compounds available in the OQMD at the time of the25

campaigns, and hence stability of new hypothetical compounds are measured against this comprehensive, realistic baseline. The26

dataset features a wide range of crystal structures, stabilities, and chemistries that may be used to seed experimental discovery27

campaigns, assist in the characterization of known materials, and enhance further active learning for crystal structure discovery.28

Methods29

The CAMD workflow consists of a set of campaigns, each campaign aims to identify the stable and metastable structures30

(defined herein as structures with 200 meV/atom energy above the convex hull) of a specific chemical system from a pool of31

candidates. Put simply, a CAMD campaign is an iterative process with an research agent where, in each iteration, the agent32

would propose a batch of possible stable structures from the pool of candidates and send them to be validated with a DFT33

simulation. The simulation results are then passed back to update the agent for the next iteration, and recorded in this dataset.34

This process is repeated until any of the pre-set termination conditions are met. Therefore, the three most important components35

of the CAMD workflow are the generation of candidate crystal structures, setting of the active-learning campaigns, and the36

DFT calculations (for experiments in this case). The details of these components are explained in this section, and we refer the37

reader to our previous work for a more detailed explanation of CAMD12.38



Generation of candidate crystal structures39

To construct this dataset, we explored 1,457 unique chemical systems with up to 4 elements. To generate the candidate crystal40

structures for a specific chemical system, a system of heuristic-based generation of chemical formulas followed by domain41

generation of structures is adapted. As the first step, the candidate stoichiometric formulas of crystals are generated by a42

grid-based algorithm: for chemical system AxByCz..., the coefficients x,y,z, ... are allowed to take integer values 1,2,3, ... up to43

gmax. Here, gmax is generally set to be 4 (inclusive) for binary and ternary systems. Charge balance constraints are applied to44

systems containing one or more of the following elements: O, Cl, F, S, N, Br, and I. This constraint is enforced based on the45

common oxidation states of these elements as implemented in pymatgen13. For these charge balanced formulas, larger values46

of gmax (up to 7) are allowed so that at least 20 candidates can be generated.47

With the set of stoichiometric formulas for a chemical system, structure candidates are created using protosearch14, 15, a48

crystal structure generation algorithm based on crystallographic prototypes. Starting from the ICSD entries in the OQMD49

database1 (OQMD-ICSD), 8,050 unique structural prototypes of crystals are first identified. This includes 131 unary, 107050

binary, 3196 ternary, 1970 quaternary, 1013 quinary, 542 sexinary, 104 septenary and a few higher order structures. Based on51

the desired compositions and the crystal prototypes, candidate crystal structures are then generated via element substitution, and52

unique structures are identified from the pool using the space group and Wyckoff positions. Finally, a rough optimization of the53

lattice constants is performed by assuming atoms are hard spheres with radii equal to 90 percent of the elements’ covalent radii,54

and avoiding any atomic overlap. Anisotropic scaling is also applied to relevant structures.55

This process in total proposed more than 3.3 million candidate crystal structures across all the chemical systems. A set of56

273 features based on composition and structure (Voronoi-based, as introduced by Ward et al.16) is calculated for each of the57

candidate structures using the Python package matminer17. These features are used in the following active learning campaign.58

Active-learning of formation energy and stability59

Decision-making for each active-learning campaign is conducted by an autonomous agent, which in CAMD’s case includes60

both a machine learning model and an acquisition strategy. The model is trained and continuously updated (i.e. once every61

iteration) by currently available DFT data (termed the “seed data” of each iteration), and it proposes stable structures from the62

candidate set in each iteration by predicting and ranking the phase stabilities (i.e. energy per atom above the convex hull) of all63

of the remaining candidate structures in the pool. The agent simulation, benchmarking, and selection process are detailed in64

Ref12.65

By testing various machine learning models, exploration-exploitation trade-offs (e.g. ε-greedy or confidence bound based66

methods) and uncertainty estimation techniques, an agent which uses an Adaboost regressor and a lower-confidence bound67

(LCB) uncertainty estimator was determined to be the most effective at discovering new materials and was therefore chosen to68

conduct the campaigns resulting in the included dataset. In these agents, ε refers to the proportion of the simulation budget69

devoted to randomly chosen candidates in each iteration, and the most effective agents from our benchmarking used no pure70

random exploration, thus have their epsilon values set to zero. Instead, the estimated uncertainty (σ ) of the predictions from71

the Adaboost ensemble is used by the agent to compute a lower confidence bound (LCB) in the predicted formation energy72

∆E f according to ∆E f ,LCB = ∆E f ,AdaBoost −ασ . Here α is a uncertainty weighting parameter, and is set to be 0.5 in the chosen73

agent. The agent subsequently constructs a convex-hull using ∆E f ,LCB of candidates and the entire dataset with known E f , and74

prioritizes candidates based on their distance to the convex-hull calculated this way.75

For the campaigns themselves, the research agents are initially seeded with the OQMD-ICSD dataset (34,463 structures).76

During each iteration of a campaign, a budget of 10 DFT calculations is allocated, where each calculation is allowed a wall-time77

of 8 hours on 16 CPUs on an AWS EC2 instance. Each campaign runs for at least 5 iterations, and subsequently runs until (i) the78

agent identifies no new materials meeting the stability criteria within any of the three most recent iterations, (ii) the campaign79

consumes 25% of its candidates, (iii) the campaign completes 22 iterations, or (iv) the agent predicts no new structures meet the80

LCB stability criteria.81

DFT parameters82

All DFT calculations were performed using the Perdew-Burke-Ernzerhof (PBE)18 density functional with projector augmented83

wave (PAW)19 pseudopotentials as implemented in the Vienna Ab initio Simulation Package (VASP)20. The workflow of DFT84

calculations consists of a structural optimization followed by a static calculation, for which input parameters are generated85

using qmpy21 to keep consistency with the seed data derived from the OQMD. The Experiment API of the CAMD package86

submits, monitors, and fetches the output of DFT simulations to provide energy-structure pairs back into the seed data set. DFT87

simulations were performed in containerized environments using the AWS Batch service.88
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Technical Validation89

There are in total of 96,962 structures discovered in the aggregated CAMD campaigns, of which 27,075 are within 20090

meV/atom to the convex hull (metastable), and 931 are within 1 meV/atom of the convex hull. The total discovered materials91

cover 76 elements, with a heavy population of oxides, chalcogens (e.g., S, Se), pnictogens (e.g., P, Sb), earth alkali metals (e.g.,92

Mg), and transition metals (e.g., Cu, Zn). The metastable structures share a similar distribution as the total discovered structures.93

Meanwhile, among the newly discovered stable structures, phosphides and oxides are significantly populated. Considering94

phosphides are relatively under-explored compared to oxides in the seed data, it is promising to see that the variance in the95

completeness of phase information has limited influence on the CAMD agent’s ability to discover new phases.96

The discovered structures represent seven crystal systems and 181 distinct space groups, demonstrating a wide range of97

crystal symmetry (Figure 2). The distribution of crystal symmetry is largely determined by the structure prototypes distilled98

from the OQMD-ICSD seed data. The loose positive correlation between the frequency and the symmetry of the crystal systems99

is expected, given that symmetry often confers stability to a crystal structure.100

The effectiveness of the CAMD workflow is evidenced in how the dataset has grown over the past two years. To illustrate101

this, Figure 3 plots the cumulative number of discovered stable and metastable structures over time. Our discovery rate is102

roughly linear, demonstrating that CAMD can ensure consistent discovery of new structures. In addition, the distribution of103

phase stabilities acquired by CAMD demonstrates how our statistical approach can ensure consistency in acquiring materials104

fulfilling this figure of merit. Shown in Figure 4 are both the distributions of formation energies and energies above hull of105

the the CAMD dataset, compared to those of the OQMD-ICSD dataset. The ICSD is naturally highly biased towards stable106

structures. The CAMD dataset, in contrast, seemingly peaks and decays smoothly past the cutoff stability threshold of 200107

meV/atom above the hull, reflecting how CAMD includes structures with estimated uncertainties that bring them below this108

threshold. While there is still considerable room for improvement of the CAMD agent, as nearly 75% of the computations are109

wasted, this reflection of the intention encoded into the agent gives us hope that it may be made even more effective in the110

future.111

With the diverse and strategically collected structures, the CAMD dataset is a fitting complement to the currently existing112

datasets and could improve modeling of prototype compounds. Figure 5 plots the distribution of the structures from the CAMD113

dataset compared the that from the OQMD-ICSD dataset. To generate the plots, a Umap model22 is trained on the combined114

dataset that reduces the number of features of the systems to 2 (from 274), so that they can be visualized. From the first plot, it115

is evident that the new CAMD dataset not only fills the gaps of the OQMD-ICSD dataset, but also significantly expands its116

domain. The clusters of the umap plots roughly correspond to different chemical systems, as shown in the second plot. In this117

plot, the scatter points are colored by the chemical systems that the crystal structures belong to. The clusters are relatively118

homogeneous and correspond to one specific chemical system, and structures of the same chemical system tend to cluster119

together. For example, looking at the Cd − I cluster located on the left side of the plot, it contains structures from both the120

CAMD and OQMD-ICSD datasets. Clusters of similar chemical systems locate near each other on the plot.121

Consequently, better machine learning (ML) models can be trained to predict material properties. As an example, ML122

models are trained to predict the formation energies of materials using the CAMD dataset collected up to different point in123

time and tested on the remaining dataset. The results are shown in Figure 6, and it shows clearly that the overall accuracy124

of the Adaboost model used in CAMD’s agent models improves systematically over time. Since the campaigns for different125

chemical systems are submitted sequentially, the dataset split here is different than random split of the overall CAMD dataset.126

On the contrary, the test set of a model - containing structures of chemical systems that were explored after the given time -127

is effectively a set of unseen and novel materials. At present, CAMD does not use information gained in one campaign (i.e.128

chemical system) in another, but this benchmark model improvement suggests that future active learning systems could benefit129

from a more global awareness of past acquired structures.130

Usage Notes131

Two json files comprising the entire dataset, one with and one without computed matminer features, may be downloaded at132

data.matr.io/7. Sample jupyter notebooks for analyzing the dataset can also be found there.133

Code availability134

The CAMD code used to generate the data described herein is available at http://github.com/TRI-AMDD/CAMD.135

Scripts used to generate and analyze the dataset, as well as reproduce the figures in this manuscript are all included in the above136

data repository.137
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Figures & Tables190

Field Content

data_id A unique ID of the structure, a string combines the data_source and an integer index with an underscore.
structure Structure file, a pymatgen Structure object

space_group Space group symbol
chemsys Chemical system

reduced_formula Reduced formula
delta_e Formation energy (eV/atom)
stability Energy above the hull (eV/atom)

data_source Source of the data, camd or oqmd

features
A vector of 273 features generated by a composition- and

structure-derived material featurization method introduced by Ward et al.16, implemented in matminer.17

Table 1. Metadata of data records
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Figure 1. Periodic tables of CAMD discoveries: the number of structures containing a given element are labelled for the entire
dataset (top), the dataset filtered to include metastable structures with Ehull ≤ 200 meV/atom, and the dataset filtered to contain
only stable structures with Ehull ≤ 1 meV/atom.
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Figure 2. Crystal symmetries and spacegroups discovered by CAMD: the dataset is subdivided first into crystal system, e.g.
cubic, and then into spacegroups. CAMD’s generative methods use crystal structure prototyping to allow for a wide range of
crystal symmetries.
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Figure 4. The distribution of formation energies and energy above the hull (phase stability) is shown alongside the same
distribution from the ICSD as disseminated by the OQMD.
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Figure 5. The dimensionality of the features is reduced to two by Umap (n_neighbors = 20,min_dist = 0.5) for both the
ICSD and the CAMD datasets, and the distribution of the systems in both datasets is plotted. In the first figure, the scatters are
colored by the data source, and in the second figure they are colored by their chemical systems. Specific chemical systems are
denoted in the second figure to illustrate how clustering occurs primarily by similar chemistry.
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Figure 6. The same machine learning model, using the same composition and structural features and Adaboost model as the
CAMD agent, is trained to the formation energies of materials using the CAMD dataset collected up to certain point in time.
The test set is the remainder of the CAMD dataset at that point in time. The model MAE over time is plotted in the main panel
on the top, showing the model is systematically improved with the growing dataset. On the bottom are the parity plots of the
model predictions for the remaining CAMD test set at January 2020, October 2020 and April 2021.
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