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ABSTRACT Efficient and timely testing has taken center stage in the management, 

control and monitoring of the current COVID-19 pandemic. Simple, rapid, cost-effective 

diagnostics are needed that can complement current polymerase chain reaction (PCR)-

based methods and lateral flow immunoassays. Here, we report the development of an 

electrochemical sensing platform based on single-walled carbon nanotube screen-printed 

electrodes (SWCNT-SPEs) functionalized with a redox-tagged DNA aptamer that 

specifically binds to the receptor binding domain (RBD) of the SARS-CoV-2 spike protein 

S1 subunit. Single-step, reagentless detection of the S1 protein is achieved through a 
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binding-induced, concentration-dependent folding of the DNA aptamer that reduces the 

efficiency of the electron transfer process at the electrode surface and causes a 

suppression of the resulting amperometric signal. This aptasensor is specific for the target 

S1 protein with a dissociation constant (KD) value of 43 ± 4 nM and a limit of detection 

(LOD) of 7 nM. We demonstrate that the target S1 protein can be detected both in a buffer 

solution and in an artificial viral transport medium widely used for the collection of 

nasopharyngeal swabs, and that no cross-reactivity is observed in the presence of 

different, non-target viral proteins. This SWCNT-SPE-based format of electrochemical 

aptasensor may be extended to the detection of other protein targets for which nucleic 

acid aptamer ligands are made available.  

 

1. INTRODUCTION 

The COVID-19 pandemic caused by the spread of the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) continues to claim victims and to determine disruptions in 

healthcare systems, economies, and social life worldwide.1-3 The deployment at a fast 

pace of different COVID-19 vaccines has had a huge impact on the pandemic by offering 

protection from severe and acute forms of the disease and therefore helping reduce 

hospitalization and mortality.4,5 Nevertheless, vaccines alone are not able to contain the 

spread of the virus, and complementary measures must be enforced.6,7 Efficient and 

focused testing is necessary for timely spotting SARS-CoV-2 infection, monitoring the 

diffusion of the disease, and curbing transmission of the virus.8,9 COVID diagnostics has 

taken center stage in everyday life, especially where proof of a negative test is a 

requirement for traveling and for accessing public and private spaces.10,11 Currently, 
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polymerase chain reaction (PCR) is the gold standard method to detect SARS-CoV-2 

infection, enabling quantification of viral RNA with high sensitivity and specificity. 

However, PCR is reagent-intensive and requires trained personnel and relatively 

expensive instrumentation. This leads, on the one hand, to waiting times that are not 

compatible with the highly frequent testing enforced in wealthy countries, and determines, 

on the other hand, a series of practical obstacles to a widespread application in low-

resource settings.12,13 Cost-effective, time-saving point-of-care (POC) tests that can 

complement PCR-based methods are therefore much needed. Lateral flow 

immunoassays enable the rapid detection of a SARS-CoV-2 antigen by using low-cost, 

portable hardware.14 However, their relatively low sensitivity and specificity is a limit to 

their ability to deliver unambiguous and accurate diagnostics, and therefore to their 

potential to guide healthcare and policy measures.15 Alternatively, electrochemical 

biosensors are easy-to-use and cost-effective platforms that can be engineered into POC 

diagnostic devices for the rapid quantification of specific targets.16-18 Several 

electrochemical COVID-19 immunosensors were recently developed that enabled ultra-

sensitive detection of SARS-CoV-2 antigen proteins.19-21 A particular format of 

electrochemical sensors is E-DNAs. These are rapid, simple, reagent-free sensors that 

leverage target-induced conformational or structural changes in a DNA-based 

architecture or in a DNA aptamer to generate a measurable output following variation of 

the electron transfer efficiency between a redox reporter and the electrode surface.22-24 

In the context of COVID-19, Shana O. Kelley and coworkers achieved detection of viral 

particles within 5 minutes through a chronoamperometry strategy based on electrodes 

modified with hybrid DNA-antibody receptors targeting the SARS-CoV-2 spike (S) protein 
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displayed on the virion surface.25 In aptamer-based E-DNAs, an electrochemical signal is 

generated when a binding-induced change in the structure folding of a redox-tagged 

aptamer leads to a change in the relative position of the redox reporter with respect to the 

electrode surface.26 Recently, Idili et al. applied this strategy to COVID-19 diagnosis and 

performed electrochemical detection of the SARS-CoV-2 S protein by using gold 

electrodes modified with a DNA aptamer engineered to undergo a binding-induced 

conformational change.27 In such a context, here we report the development on a 

electrochemical sensing platform based on cheap, commercial single-walled carbon 

nanotube screen-printed electrodes (SWCNT-SPEs) functionalized with a redox-tagged 

DNA aptamer selected against the receptor binding domain (RBD) of the SARS-CoV-2 

spike protein S1 subunit.28 Binding-induced folding of this DNA aptamer in the presence 

of the target S1 protein leads to a concentration-dependent suppression in the registered 

amperometric signal. We demonstrate that this aptasensor specifically recognizes and 

detects the target S1 protein both in a buffer solution and in an artificial complex matrix, 

requiring only a few hours of incubation and no additional reagents.  

 
2. EXPERIMENTAL SECTION 

2.1. Materials. Sodium chloride (NaCl), sodium bicarbonate (NaHCO3), 

disodium hydrogen phosphate (Na2HPO4), potassium dihydrogen phosphate (KH2PO4), 

sodium dodecyl sulfate (SDS), Trizma® Base, N-(3-dimethylaminopropyl)-N′-

ethylcarbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS), 4-

morpholineethanesulfonic acid monohydrate (MES), pyrene, ethanolamine, hydrochloric 

acid (HCl, 37%), calcium chloride (KCl), ethanolamine, sodium hydroxide (NaOH), 

dimethyl sulfoxide (DMSO), were purchased from Sigma-Aldrich (Milan, Italy). Viral 
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Transport Medium (VTM) was purchased from CleaniSciences (Guidonia Montecelio, 

Italy). The following synthetic probes were purchased from Metabion International AG 

(Plannegg, Germany): redox-tagged SARS-CoV-2 aptamer :  5’ – AttoMB2 – CGC AGC 

ACC  CAA GAA CAA GGA CTG CTT AGG ATT GCG ATA GGT TCG GTT TTT – C7 

Amino – 3’; SARS-CoV-2 aptamer : 5’ – CGC AGC ACC CAA GAA CAA GGA CTG CTT 

AGG ATT GCG ATA GGT TCG GTT TTT – C7 Amino – 3’; redox-tagged thrombin 

aptamer:  5’ – AttoMB2 – TAA GTT CAT CTC CCC GGT TGG TGT GGT TGG T – C7 

Amino – 3’;  redox-tagged PDGF aptamer: 5’ – AttoMB2 – CAG GCT ACG GCA CGT 

AGA GCA TCA CCA TGA TCC TG – C7 Amino – 3’. SARS-CoV-2 Spike protein (S1) and 

Influenza A H1N1 (A/California/04/2009 (H1N1)) were purchased from Twin Helix Srl 

(Milano, Italy). Recombinant Coronavirus Spike Protein MERS-CoV S1 was purchased 

from Vinci-Biochem Srl (Vinci, Italy).  Buffers were prepared as follows : MES buffer: 0.1 

M MES (pH adjusted to 5 with NaOH); Tris Buffered Saline (TBS): 0.1 M Trizma® Base 

(pH adjusted to 7.4 with HCl); Carbonate buffer (CB): 0.1M NaHCO3, 0.1% w/v SDS (pH 

adjusted to 9 with NaOH); Phosphate Buffer Saline (PBS): 1.37 M NaCl, 0.08 M Na2HPO4, 

0.027 M KCl, 0.012 M KH2PO4 (pH adjusted to 7.4 with HCl); Reading buffer (RB): PBS. 

Single Walled Carbon Nanotubes Screen-Printed electrodes (SWCNT-SPEs) were 

purchased from Metrohm Italiana Srl (Varese, Italy).  

2.2. Aptamer immobilization on SWCNT-SPEs. The SWCNT surface was 

initially treated with 0,2 M EDC and 0,05 M NHS in MES buffer (50 μL) for 30 min to 

activate the carboxylic groups of the carbon nanotubes, followed by rinsing with water. 

Subsequently, 50 μL of redox-tagged SARS-CoV-2 aptamer (500 nM) solution in CB was 

deposited onto the SWCNT electrode and left incubating for 2 h. The electrode was then 
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thoroughly washed with water. A capping step of 30 min using ethanolamine in TBS (50 

mM) was carried out to quench the unreacted active ester groups. Next, the surface was 

washed with TBS. A solution of pyrene as a backfilling agent in DMSO (500 nM) was 

deposited on the electrode (50 μL) for 30 min, after which the electrode was rinsed first 

with DMSO and then with water. 

2.3.  Determination of the aptamer surface density. Fluorescence 

spectroscopy was selected as the technique to estimate the surface density of the 

covalently immobilised SARS-CoV-2 aptamer. The emission of AttoMB2 was collected in 

solution at λEm = 680 nm (λEx = 650 nm) before (Ii) and after (If) the aptamer immobilisation 

on the electrode (c.f. section 2.2). The ΔIi-f percentage was used to estimate the number 

of aptamer probes per mm2 tethered to the CNTs. The measurements were replicated 

three times and the value obtained is reported as the mean value ± standard deviation. 

2.4. Detection of S1 protein. A solution of S1 protein at different concentrations 

(0.3, 1, 3, 10, 25, 30, 50, 100, 300 and 500 nM) in PBS was incubated for 2 h, at room 

temperature, on the electrode surface, followed by rinsing with PBS. Next, 50 μL of PBS 

were deposited onto the surface and the electrochemical measurement was performed 

by acquiring a DPV scan with the following parameters: potential range from -1.1 to -0.2 

V; step potential +0.00495 V; modulation amplitude +0.04995 V; modulation time 0.102 

s; interval time 0.4 s. The same protocol was applied during specificity studies, when a 

thrombin aptamer and a PDGF aptamer, respectively, were immobilized onto the 

electrode surface and exposed to S1 protein, as well as when MERS-Cov S1 and 

Influenza-A H1N1 proteins were incubated onto the electrode surface previously 

functionalized with the SARS-CoV-2 aptamer. This protocol and acquisition parameters 
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were also used for measurements of S1 protein diluted in VTM as the binding buffer (50 

and 100 nM).  

2.5.  Competitive experiments of S1 protein binding. The electrode surface 

was functionalized as described above with a redox-tagged SARS-CoV-2 aptamer. The 

target S1 protein (100 nM concentration, PBS) was incubated with an unlabeled version 

of the same SARS-CoV-2 aptamer sequence for 2 h at room temperature. This solution 

was then transferred onto the electrode surface and left incubating for 2 h. Then, the 

electrode surface was washed with PBS and 50 μL of PBS were deposited onto the 

surface to carry out the electrochemical measurement by acquiring a DPV scan with the 

same parameters reported in section 2.3. 

2.6. Data analysis. The current signals obtained from the electrochemical 

measurements as a function of the corresponding S1 protein concentrations were 

analyzed in OriginPro (OriginLabTM) by using the Langmuir-type equation reported below:  

𝐼 = 	𝑎 + 	𝑐 ∗ 	 [	[𝑆1	𝑝𝑟𝑜𝑡𝑒𝑖𝑛] (𝐾! + [𝑆1	𝑝𝑟𝑜𝑡𝑒𝑖𝑛])⁄ ] 

where KD is the dissociation constant, a and c are fitting parameters of the Langmuir 

equation. All the measurements were replicated three times and all the figures show the 

mean values ± standard deviations. The limit of detection (LOD) and limit of quantification 

(LOQ) were determined according to Eurachem guidelines. 
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3. RESULTS AND DISCUSSION 

3.1. Immobilization of SARS-CoV-2 DNA aptamer. Several aptamers have been 

recently artificially evolved that can specifically bind to the S1 protein of SARS-CoV-2 and 

can potentially support new therapeutic strategies for COVID-19.28-31 DNA aptamers can 

be used in lieu of antibodies as specific recognition elements in the development of 

SARS-CoV-2 biosensors, enabling a range of sensing platforms with optical or 

electrochemical readout.27,29,32-35 Besides their use as “static” synthetic receptors, 

aptamers are useful as “dynamic” probes in folding-based E-DNAs. In this work, we 

propose a novel E-DNA format for the single-step, reagent-free detection of the S1 protein 

that leverages cheap, commercial SWCNT-SPEs as the sensing substrate. SWNCT-

SPEs are a promising electrochemical platform because they are cheaper than standard 

gold electrodes, they show intrinsic electrocatalytic properties and a high conductivity that 

both improve electron transfer processes at the interface and provide enhanced 

amplification of current signal, and they offer a larger surface area for immobilization of 

an increased number of probes and receptors.36-38 The sensing mechanism of our sensor 

is based on a rearrangement in the redox-tagged aptamer structure induced by binding 

of the target S1 protein, which translates in a measurable electrochemical output. A fast 

electron transfer is observed in the absence of the target protein because of the π-π 

interactions between the redox-tagged DNA aptamer and the electrode surface. In the 

presence of the target, the aptamer undergoes a binding-induced structural folding that 

reduces the electron transfer efficiency, causing a decrease in the registered 

amperometric current (Fig. 1).  
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Figure 1. a) Schematic illustration of the working principle of the aptasensor based on the 

conformational change in a redox-tagged SARS-CoV-2 aptamer upon interaction with the target 

S1 protein. A suppression of the output current is observed in the presence of S1 protein because 

of the structural rearrangement in the aptamer folding that moves the redox reporter away from 

the electrode surface. b) Secondary structure of the Atto-MB2-modified SARS-CoV-2 aptamer 

used in this work, based on a recently discovered aptamer sequence.28  

 

To fabricate our aptasensor, we used a modified version of a recently published SARS-

CoV-2 DNA aptamer that specifically binds to receptor binding domain (RBD) of the 

SARS-CoV-2 spike protein S1 subunit.28 We conjugated the aptamer with a redox tag 

(AttoMB2) at the 3’ terminus and introduced a free amine group at the 5’ terminus.  This 

latter was used to covalently anchor the aptamers (500 nM) to the electrode surface 

through the formation of amide bonds with the carboxylic groups present on the SWCNTs, 

which can be achieved through coupling with EDC/NHS. The coupling process was 

optimized by diluting the aptamer in carbonate buffer (pH=9) with 0.1% SDS to increase 

the wettability of the CNT hydrophobic surface. The surface density of the aptamer was 

estimated by means of fluorescence spectroscopy by following the emission of AttoMB2 
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at λ = 680 nm before and after the immobilization of the aptamer onto the surface. A value 

of (1.7 ± 0.4) · 1013 aptamer molecules per mm2 was obtained, which is higher than the 

average values generally found in the literature for E-DNAs based on gold electrode 

substrates.39,40 The electrode surface was eventually treated with a solution of pyrene in 

DMSO as a backfilling agent to minimize non-specific adsorption of the biomolecules 

contained in the analyzed samples.38  

3.2. S1 protein-aptamer interaction analysis. The sensor was then exposed to 

increasing concentrations of S1 protein from 0.3 to 500 nM in PBS buffer, and DPV 

voltammograms were acquired. We observed a signal-off behavior, i.e., a decrease in the 

amperometric signal given by the AttoMB2 redox reporter, after interaction of the aptamer 

with the different concentrations of the S1 protein, which likely depends on that AttoMB2 

is moved away from the electrode surface upon target-induced folding of the DNA 

aptamer (Fig. 2a). The decrease in the registered amperometric current can be expressed 

as signal suppression % with respect to the current signal measured in the absence of 

S1 protein. The obtained data were analyzed by means of a Langmuir-type binding curve 

model and the dissociation constant value between the aptamer attached to the electrode 

surface and its target S1 protein was KD = 43 ± 4 nM (Fig. 2b). This is in good agreement 

with the affinity measured in solution by means of fluorescence spectroscopy reported for 

the original aptamer (KD = 45 ± 10 nM).28 It was possible to obtain a limit of detection 

(LOD) of 7 nM and a limit of quantification (LOQ) of 21 nM (Fig. 2c).  
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Figure 2. a) DPV voltammograms obtained in the presence of S1 SARS-CoV-2 protein in the 

concentration range 0.3 - 300 nM. b) Binding curve based on a Langmuir-type equation describing 

the response current as a function of the S1 protein concentration. Highlighted is the 

concentration range in which response is linear. c) Calibration curve obtained by linear fit of the 

response current values in the 20 -100 nM S1 protein concentration range. (In all the figures data 

are reported as mean value ± SD, n = 3). 

 
3.3. Specificity in the S1 protein-aptamer interaction. Further evidence of the 

interaction between the DNA aptamer and the target S1 protein, which supports the 

switching mechanism proposed for our aptasensor, was achieved by means of a 

competitive experiment in which the S1 protein (100 nM) was pre-incubated in solution 

with a non-redox-tagged version of the same SARS-CoV-2 aptamer sequence, utilized 

as a competitor. Binding of this aptamer to the RBD of the target S1 protein would result 

in impeding subsequent binding to the redox-tagged aptamer on the electrode surface 

(Fig. 3a).  When the S1 protein was pre-treated with the aptamer competitor, only a slight 

change in the current signal was observed compared with that in the absence of the 

protein (Fig 3b), and the signal suppression was only a fraction (~17%) of that obtained 

in the absence of the competitor at the same concentration of S1 protein (Fig. 3c). This 

suggests that the RBD of the S1 protein was already occupied by the competitor inhibiting 
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further binding, and the aptamer immobilized on the surface retained its conformational 

structure maintaining the redox reporter AttoMB2 close to the electrode surface.  

 

Figure 3. a) Schematic illustration of the aptasensor behavior when pre-treating the target S1 

protein with the same SARS-CoV-2 aptamer, lacking the redox reporter, as a competitor in 

solution. b) DPV voltammograms in the absence of the target protein (only aptamer, dark blue 
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line), in the presence of 100 nM S1 protein pre-incubated with an excess of competitor aptamer 

(+ S1 protein + competitor, green line) and in the presence of the S1 protein at 100 nM 

concentration (+ S1 protein, light blue line). c) Relative signal suppression obtained when 

measuring the amperometric current in the presence of S1 protein 100 nM (light blue bar) and in 

the presence of the same protein incubated with the aptamer competitor (white bar). d) Specificity 

of the sensor evaluated  by using different aptamer sequences immobilised onto the electrode 

surface (SARS-CoV-2, PDGF and thrombin aptamer) in the presence of S1 protein at 100 nM 

concentration in PBS (left panel), and by using different proteins at 100 nM concentration in PBS 

(S1 SARS-CoV-2, S1 MERS and H1N1) when the SARS-CoV-2 aptamer is immobilised onto the 

electrode surface (right panel). (In all the figures data are reported as mean value ± SD, n = 3). 

 
We then tested the ability of our aptasensor to recognize its target S1 protein in a specific 

manner. To do so, we first exposed it to two different viral proteins from Middle East 

respiratory syndrome coronavirus (MERS-CoV) and Influenza A H1N1, respectively, as 

model potential interfering pathogens. At saturating concentrations (100 nM), signal 

suppression of only ~15 % when using the MERS-CoV protein and of ~19% when using 

the Influenza A H1N1 protein, respectively, were registered with respect to the signal 

suppression % obtained with the target S1 protein (Fig. 3d right). To have further 

confirmation that the changes in the current signal were specific to binding of the S1 

protein to its cognate aptamer ligand, we immobilized two different aptamer sequences, 

a thrombin DNA aptamer and a prostate-derived growth factor (PDGF) DNA aptamer, on 

the electrode surface, and exposed them to the S1 protein. We selected these aptamers 

because they had been previously used in the development of folding-based 

electrochemical sensors.41,42 In the presence of 100 nM of S1 protein, a 15% signal 

suppression with the thrombin aptamer and a 21% signal suppression with the PDGF 
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aptamer, with respect to the signal suppression obtained using the correct S1 protein – 

aptamer couple, were observed, showing that cross-reactivity was minimal (Fig. 3d left). 

 

3.4. S1 protein detection in VTM. To test the aptasensor ability to function in a more 

challenging matrix mimicking a real-world scenario, we investigated its performance when 

using S1 protein samples in viral transport medium (VTM), an artificial complex matrix 

used in the clinic for rapid antigen detection tests. Its composition includes physiologically 

balanced isotonic buffered solution at neutral pH, a stabilizing protein component, and 

antibacterial and antifungal agents. 

 

Figure 4. a) DPV voltammogram obtained in the presence of target S1 protein in VTM at 50 and 

100 nM. b) Histograms showing the sensor performance, expressed as signal suppression %, 

when the S1 protein is dissolved in PBS (blue bars) or VTM (red bars) (mean value ± SD, n = 3). 

 

When the aptasensor was exposed to VTM-based solutions of S1 protein at 

concentrations of 50 and of 100 nM, a decrease in the measured current signal was 

observed (Fig. 2a). Values of signal suppression % of 15% and 36% were obtained, 

respectively (Fig. 2b). These values indicate that the aptasensor is still capable of 
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recognizing and detecting the target S1 protein in a concentration-dependent manner, 

although the use of a complex matrix such as VTM has an impact on its analytical 

performances and leads to signal suppression values that are lower than those obtained 

using S1 protein samples in PBS (Fig. 4b), which is an effect described also for other 

COVID-19 biosensors.43  

 

4. CONCLUSIONS 

Folding-based E-DNAs that use target-induced changes in an aptamer structure have 

been previously designed that enabled protein detection on gold electrodes.27,44,45 Our 

work builds on this sensor format and proposes the use of cheap, highly conductive 

SWCNT-SPEs as a new substrate for aptamer-based E-DNAs. We have reported here 

the development of a rapid and reagent-free electrochemical sensing platform for the 

single-step detection of the SARS-CoV-2 S1 protein. We took advantage of the chemical-

physical properties of SWCNT-SPEs and engineered a folding-based mechanism that 

results in significant changes in the measurable amperometric current upon specific 

binding of the S1 protein to a DNA aptamer ligand. The obtained LOD and LOQ in the 

low nanomolar range, together with the high specificity for the target protein and the low 

cross-reactivity in the presence of interfering viral proteins, all suggest the potential 

employment of this aptasensor as a compact, easy-to-use sensing device for the 

detection of the S1 protein in a buffer solution or in a complex biological matrix, with 

different levels of sensitivity.  The versatility and the simplicity of our design, in which a 

DNA aptamer as a specific, dynamic recognition element is combined with a CNT-based 

electrode substrate, could inspire the development of many more electrochemical 
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platforms of this kind. As new aptamers designed to bind to desired target biomolecules 

can be produced by SELEX methods, a variety of new sensors can be envisioned with 

applications in a wide range of fields.  
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