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Abstract

The performance of an adsorption-based separation process is dictated by the

choices of the solid sorbent and the process configuration. Often screening of materials

and process configuration is performed using digital twins that mimic a real adsorption

process. In typical studies, either several materials are screened for a specific process

configuration to find the best candidate or the performance of several process con-

figurations is evaluated for a specific material. However, it has long been suggested
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that to truly maximize the potential of a given material, it should be “married” to

processes. In this work, we address the “marriage” of materials and processes through

three dedicated goals. First, to develop a modeling framework for an all-encompassing

pressure swing adsorption cycle composed of several process configurations. Second, to

develop an optimization framework, drawing inspiration from superstructures, to se-

lect the optimal process configuration from the all-encompassing cycle to reach a given

process target. Third, to highlight the importance and relevance of such an approach

that enables each material to truly maximize its potential, by varying both the process

configuration and the corresponding operating conditions. To address these goals, we

have developed a computational framework composed of a process model and a process

optimizer. Subsequently, using this computational framework, we have evaluated the

performance of several real and hypothetical materials. Our computational studies led

to two key outcomes, namely, (1) to employ an integrated material-process optimiza-

tion approach to maximize the true potential of any material when screening for a given

application and when evaluating the performance under different feed conditions; and

(2) not to generalize the observations regarding the best process configuration from

one material to every other material.

1 Introduction1

Gas separation and purification are widely used for many industrially important applications2

such as O2/N2, He/CH4, diene/olefin, and N2/CH4 separation, to name a few.1–4 To this3

aim, one of the well-established technologies used is adsorption-based separation processes,4

in which a solid sorbent is used to selectively adsorb a target gas while rejecting the others.5,65

Two key design factors dictate the performance of any adsorption-based separation process,6

namely, the solid material, i.e., the adsorbent, and the process configuration, a.k.a the cy-7

cle. From the materials point of view, a plethora of organic and inorganic materials have8

been developed over the years to perform gas separation and purification.7,8 In recent years,9
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computational material discovery, advances in material synthesis (in the form of reticular10

chemistry), and material characterization have led to an exponential growth of new materials11

being reported for different applications.9,10 From the process point of view, adsorption-based12

separation can be carried out in several different ways based on the technique used for the13

regeneration of the solid adsorbent. They can broadly be categorized into pressure swing14

adsorption, vacuum swing adsorption, temperature swing adsorption, concentration swing15

adsorption, electric swing adsorption processes, or a combination of these. Depending on16

the type, several process configurations can be envisioned that might tackle achieving high17

purity and high recovery for a target gas, or a low energy consumption for a given process.18

Given the substantial number of materials that are discovered and the potential growth in19

this field in the future, choosing the right material and the right process configuration for a20

given separation problem will gain more significance in the coming years.821

It is well-known that choosing the right material and the process is crucial to have an22

efficient separation process. There are several metrics, for instance, selectivity, working ca-23

pacity, and equilibrium loading, which have been used over the years to rank materials.11,1224

Alas, even though these metrics are easy to compute, due to their simple algebraic formu-25

lation, it is widely accepted that these simple metrics cannot capture the complexities of a26

process. Therefore, they are unable to accurately rank adsorbents based on their process per-27

formance.8,13–15 To overcome this, process-based screening of materials using mathematical28

models is essential. Two classes of process models exist in the literature, namely, simplified29

models16–20 and detailed models.13,21–25 The difference between these models typically arises30

from their ability to describe mass, heat, and momentum transfer along the spatial coordi-31

nate of an adsorption column (detailed models) or not (simplified models). Given the two32

design factors involved in the adsorption processes, one can perform such screening by either33

fixing a process configuration and evaluating the performance of several materials from a34

database or by selecting a material and assessing its performance in several process configu-35

rations. Most material screening studies use the former approach, thereby discarding cycles36
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that might offer great potential for previously unexplored materials. The latter approach has37

often been applied only to understand the behavior of a single or at best a few materials un-38

der different process settings and it has not been employed for large-scale material screening39

studies. When undertaking a process-based screening study using detailed models, one aims40

to explore a range of operating conditions to ensure that the adsorbent gets to maximize41

its potential within the bounds of the processes. Albeit, this comes with a disadvantage,42

i.e., they are time-consuming. This is attributed to the computational cost involved in solv-43

ing adsorption process models, composed of coupled nonlinear partial differential equations44

(PDEs) to describe mass, momentum, and heat transfer. An additional layer of complexity45

and computational cost is added when a process optimizer is wrapped around these models46

to explore different operating conditions.26 This makes the overall process of adsorbent and47

process screening tedious. Recently, some – if not all – of these challenges have been ad-48

dressed by developing machine learning models for specific separation problems and process49

configurations.27 A less explored, but a promising technique, to perform an integrated ma-50

terial and process configuration screening is to employ a superstructure-based optimization51

approach. Here, a superstructure corresponds to an all-encompassing process configuration52

that is a superset of all possible process configurations. In this approach, the superstructure53

is optimized as a whole, instead of optimizing individual process configurations, thereby54

leading to computational time benefits. This has been previously employed within the con-55

text of synthesizing optimal pressure swing adsorption (PSA) cycles for precombustion CO256

capture and finding optimal operating strategies for simulated moving bed chromatography57

schemes.28–3058

In our work, we aim to tap into the unexplored potential that a superstructure-based59

optimization approach offers for performing an integrated material-process configuration60

screening for adsorptive gas separation. To this aim, we provide the motivation and the61

problem statement for this work in Section 2. This is followed by the choice of separation62

problem, materials and process configurations in Section 3. In Section 4, we describe the63
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computational framework, i.e., process modeling and process optimization tools developed64

in this work to perform the integrated optimization. We provide the results obtained by65

performing several case studies to highlight the relevance of performing an integrated opti-66

mization using a superstructure in Section 5. Finally, we conclude by providing a summary67

of key outcomes, key limitations, and the way forward in Section 6.68

2 Problem Statement69

Despite the cumbersome methodology involved in process-based screening, it has long been70

suggested that to truly maximize the performance of any given adsorbent, they should be71

“married” to process(es).4,31,32 This approach has the potential to capture scenarios in which72

the best process configuration for a given material is not a single process configuration. In73

more detail, depending on the process requirements, a material might make use of different74

process configurations to reach its target, thereby truly maximizing its potential. Addition-75

ally, this approach can also capture scenarios in which the best process configuration varies76

among different materials. Despite the implication of such outcomes, studies that aim to77

systematically develop and validate methodologies to “marry” adsorbents and processes have78

not been undertaken due to technical challenges from modeling and optimizing the combined79

material-process system.80

The overarching goal of this study is threefold. First, to develop a robust modeling81

framework that enables the “marriage” of any given adsorbent with process(es). Second, to82

develop an optimization framework to simultaneously screen multiple process configurations83

using a single optimization run for a material with the aforementioned modeling framework.84

Finally, and most importantly, to highlight the importance of incorporating such a mod-85

eling and optimization framework to screen several materials that enables truly exploiting86

the best out of each material. We have developed our methodology drawing inspiration87

from previously reported studies employing a superstructure-based optimization of adsorp-88
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tion and chromatography processes.28–30 A conceptual schematic of the problem and the89

expected outcome is illustrated in Figure 1. The core of the computational framework is the90

process, referred to as the Superstructure, and it is composed of two process configurations91

in this figure, namely, Configuration A (red) and Configuration B (green). Traditionally,92

these two process configurations will be optimized independently, to maximize/minimize key93

performance indicators for the Material, leading to a cloud of data points corresponding to94

a given performance(s) obtained at a specified set of operating conditions, as shown on the95

performance panel (green markers for Configuration A and red markers for Configuration96

B). In the approach to be presented in the subsequent sections, instead of independently op-97

timizing the configurations, we will optimize the superstructure (blue markers) composed of98

a given number of configurations (in Figure 1, two configurations). We will incorporate the99

choice of the process configuration as an operating variable and the optimizer determines the100

best process configuration to reach a given performance(s). Ideally, the best performance(s)101

estimated by the superstructure should match the best performances estimated by the inde-102

pendent evaluation of the constituent process configurations (red and green markers in the103

performance panel of Figure 1). Note that we follow a slightly modified definition of the104

superstructure in this work. Traditionally, for our problem, a true superstructure translates105

to a superset of all possible process configurations.33 However, in our work, the superstruc-106

ture refers to a small subset of them. To address the aforementioned goals of the study, we107

have identified two sub-tasks, namely, (a) create a modeling framework to simulate a super-108

structure (see Section 4.1) and (b) identify and validate an optimization routine to optimize109

the superstructure (see Section 4.2). We have considered a specific separation problem as a110

toy example (see Section 3), to develop the aforementioned computational framework and111

to systematically highlight the relevance of this work.112

6



Material Process Performance

Superstructure

A

B

Configuration B

Configuration A

Better
PerformanceP

er
fo

rm
an

ce
 in

di
ca

to
r 

2

Performance indicator 1

Superstructure

Figure 1: A visual schematic of the proposed superstructure optimization framework. The
“Material”34 is optimized using a superstructure (dotted blue box in the “Process” panel)
composed of two process configurations, A and B. The columns highlighted in green and
red correspond to the process steps integral to configurations A and B, respectively, while
the columns highlighted in black corresponds to the process steps that exist in both the
process configurations. The material-superstructure combination is optimized to maximize
two performance indicators (1 and 2 in the “Performance” panel). The green and red mark-
ers correspond to the performances evaluated independently using configurations A and B,
respectively, and the blue markers correspond to the performances evaluated using the su-
perstructure. Note that ideally, the performances of the combined process configurations (A
and B) should match with the one of the superstructure.

3 Case Study113

3.1 Separation Problem114

In this work, we consider precombustion CO2 capture as the separation problem of interest.115

In this process, we aim to separate CO2 from H2 in a syngas stream produced in hydro-116

gen production units.35 We assume the feed stream to be a binary mixture of CO2 (40%)117

and H2 (60%) available at 34.5 bar and 240 °C. We perform this separation using a PSA118

process with solid adsorbents (see Section 3.2). Using the knowledge from a prior study,36119

we have considered three different process configurations (see Section 3.3) to perform the120

aforementioned separation.121
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3.2 Choice of Materials122

To highlight the importance of incorporating a superstructure-based modeling and opti-123

mization framework, we have tested the performance of several materials, both real and124

hypothetical. We assume a previously reported and experimentally tested material, TDA125

AMS-19 (an activated carbon)36,37 as the reference material (referred to as REF in the sub-126

sequent sections). The equilibrium adsorption capacity in this material is described using a127

Sips isotherm model. Subsequently, we generate isotherms for several hypothetical materials128

by varying the isotherm model parameters of the reference material for both CO2 and H2,
36

129

thereby varying the shape of the isotherm and the adsorption capacity at a given condition.130

We assume that the extended Sips isotherm model describes the competitive adsorption on131

the materials considered in this work. The equilibrium solid phase concentration q∗i (pi, T )132

[mol kg−1] of component i at a given partial pressure pi [Pa] and temperature T [K] is given133

by the Sips isotherm model as134

q∗i =
qi,sat(kipi)

si

1 +
n∑

i=1

(kipi)si
(1)

where n is the number of gases, qi,sat [mol kg−1] is the saturation capacity of the adsorbent,135

si [–] is the adsorption model parameter, and ki [Pa
−1] is the adsorption equilibrium constant136

of component i. The latter three parameters are temperature dependent and are described137

as138

qi,sat = ωie
− φi

RT

ki = θie
− ϕi

RT

si = s1,i arctan (s2,i(T − Tref)) + sref,i (2)

where ωi [mol kg−1], φi [Jmol−1], θi [Pa−1], ϕi [Jmol−1], s1,i [–], s2,i [–], Tref [K] and139

8



si,ref [–] are the Sips isotherm fitting parameters. To generate the isotherms of the different140

hypothetical materials, we vary four parameters, i.e., ωi, si,1, si,2, and si,ref . We vary these141

parameters to obtain materials that fall under three categories, namely, materials with the142

(i) same H2 isotherm as the reference material but with different nonlinearity and capac-143

ity of CO2 isotherms; (ii) same CO2 isotherm as the reference material but with different144

nonlinearity and capacity of H2 isotherms; and (iii) different nonlinearity and capacity for145

both CO2 and H2 isotherms when compared to the reference material. The isotherms of the146

reference material (REF, dark curve) and the other hypothetical materials (light curves) at147

240 °C for CO2 (panel(a)) and H2 (panel(b)) are illustrated in Figure 2. The corresponding148

isotherm parameters of both the reference and the hypothetical materials for both CO2 and149

H2 are provided in Section S1 in the Supporting Information.150
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Figure 2: Adsorption equilibrium loading obtained using the single component Sips isotherm,
given by eq 1, for (a) CO2 and (b) H2 at 240 °C for the reference material (REF, TDA
AMS-19) and the hypothetical materials. The darker shade of the curves corresponds to the
reference material and the lighter shade of the curves corresponds to all the hypothetical
materials used in this work.
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3.3 Choice of Process Configurations151

We construct a superstructure composed of three process configurations. These configura-152

tions are: (1) basic 4-step cycle; (2) 5-step cycle with pressure equalization (PE) and light153

product pressurization (LPP); and (3) 4-step cycle with LPP. The superstructure considered154

in this work along with its constituent process configurations is visualized in Figure 3 (see155

also Section S2 in the Supporting Information). The steps visualized in violet, red and green156

colors, correspond to the basic 4-step cycle, 4-step cycle with LPP, and 5-step cycle with157

PE and LPP, respectively. The steps visualized in black color are common for all the three158

process configurations. All the three cycles were studied in detail in a previously reported159

work and have their advantages and disadvantages in terms of reaching certain process per-160

formance targets.36161

The process configurations in the superstructure are composed of six basic steps. One162

can generate more than three process configurations with these six steps. However, for163

the sake of clarity and to conclusively highlight the relevance of the approach presented in164

this work, we have restricted ourselves to the aforementioned three process configurations.165

Further, for the discussions presented in Sections 5.1 through 5.3.1, we have used only two166

configurations, namely, the basic 4-step cycle and the 5-step cycle with PE and LPP. The six167

steps in the superstructure are adsorption (ADS), co-current blowdown (CoBLO), counter-168

current blowdown (CnBLO), feed pressurization (FP), pressure equalization (PE), and light169

product pressurization (LPP). We perform these steps in a packed bed column of length L170

filled with the solid sorbent. In the ADS step, we introduce the binary feed at z = 0 to the171

column at a high pressure PH = 34.5 bar, a feed temperature T = 240 °C, and a CO2 mole172

fraction yf,CO2
= 0.40. In this step, we saturate the adsorbent with the heavy component173

(CO2) and we obtain a stream rich in the light component (H2) at z = L. In the CoBLO174

step, we close the z = 0 end of the column to remove – primarily – the light product from175

z = L end of the column by reducing the pressure from PH to an intermediate pressure PINT.176

If we replace the CoBLO step with a PE step, we transfer the gas obtained from the z = L177
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end of the column (referred to as the donor column, PED) at a high pressure PH to another178

column (referred to as the receiver column, PER) at a low pressure PL. This step leads to the179

pressure in the donor and the receiver columns to be equalized at the intermediate pressure180

PINT. This step plays a favorable role in increasing the heavy product recovery and lowering181

the overall energy consumption of the process.38 Note that for a standard CoBLO step, we182

can vary PINT arbitrarily, but for the PE steps, because of the underlying physics, PINT183

cannot be varied. Using an approach presented in an earlier work, we compute the PINT as a184

function of PH and PL. We obtain a new functional form for each material considered in this185

work as it depends on the isotherm of the material studied.38 In the CnBLO step, we close186

the z = L end of the column to remove – primarily – the heavy product from z = 0 end of the187

column by reducing the pressure from PINT to PL. In the FP step, we introduce the binary188

feed at z = 0 (with the z = L end closed) to the column at a high pressure PH = 34.5 bar,189

a feed temperature T = 240 °C and a CO2 mole fraction yf,CO2
= 0.40. In this step, we190

increase the pressure from the lower pressure at the preceding step to PH to bring back the191

column to its initial state to take in fresh feed for the separation. Finally, in the LPP step,192

instead of using the feed gas (as in the case of FP), we use the light product obtained in the193

ADS step to pressurize the column back to its initial state. This step plays a favorable role194

in increasing the purity of the heavy product. Note that if there is an insufficient quantity of195

gas from the ADS step to pressurize the column, we supplement this step with the FP step.196

Depending on the process configuration, we execute these steps in a cyclic fashion until the197

process reaches a cyclic steady state (CSS). We assume this condition to be met in our model198

when the overall mass balance error over five consecutive cycles of the process is below 1%.199

All the three process configurations, shown in Figure 3, share two steps in common,200

namely, ADS and CnBLO. The basic 4-step cycle and the 4-step cycle with LPP share the201

CoBLO step. Finally, the 4-step cycle with LPP and the 5-step cycle with the PE and LPP202

share the LPP step. In the implementation of the superstructure, we have a single cycle that203

incorporates all the six steps. To switch between the different configurations, we turn off the204
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steps that are not part of the specific configuration being explored. In more detail, to use205

the basic 4-step cycle, we turn off the PED, PER, and LPP steps. To use the 4-step cycle206

with LPP, we turn off the PED, PER, and FP steps. Finally, to use the 5-step cycle with207

PE and LPP, we turn off the CoBLO and FP steps. To summarize, the constituent process208

configurations and the order of the steps are as follows:209

1. Basic 4-step cycle: ADS - CoBLO - CnBLO - FP210

2. 5-step cycle with PE and LPP : ADS - PED - CnBLO - PER - LPP - (FP)211

3. 4-step cycle with LPP : ADS - CoBLO - CnBLO - LPP - (FP)212

As mentioned previously, the FP in the last two configurations is used only if the LPP213

step is unable to bring back the column to its initial state.214

4 Process Modeling and Optimization215

4.1 Process Modeling216

In this work, we use a detailed one-dimensional axially dispersed plug flow model described217

elsewhere,39 to simulate the six steps described in Section 3.3. Based on the boundary con-218

ditions, we can group these steps into three categories, i.e., open-open (ADS), open-closed219

(CnBLO, PED, and FP), and closed-open (CoBLO and PER). For these three categories, us-220

ing the given initial and boundary conditions, we write the corresponding mass, momentum,221

and heat transfer balances to model the steps and in turn the entire process configuration.222

We build the model by making several assumptions. First, we assume an ideal gas phase223

and an instantaneous thermal equilibrium between the solid and the gas phase. Second, we224

assume the mass transfer between the solid and the gas phase to be defined by the linear225

driving force model and the mass transfer resistance to exist only in the macropores of the226

functionalized adsorbent. Third, we use Darcy’s law to describe the pressure drop in the227
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Figure 3: Schematic of the Superstructure considered in this study. The superstructure is
composed of three process configurations, namely, the basic 4-step cycle (violet), the 4-step
cycle with LPP (coral), and the 5-step cycle with PE and LPP (green). The steps in the
process are adsorption (ADS), co-current blowdown (CoBLO), counter-current blowdown
(CnBLO), feed pressurization (FP), pressure equation donor (PED) and receiver (PER),
and light product pressurization (LPP). The columns highlighted in black correspond to
the process steps that exist in all the three configurations. The columns highlighted in
two colors (violet/coral and coral/green) corresponds to the process steps that exist in the
corresponding two configurations. Depending on the process configuration, the feed to the
process is introduced either in the FP and the ADS step or in the ADS step. Depending
on the process configuration, the raffinate/light product (H2) is collected either in the ADS
step or in the ADS and CoBLO step. For all the process configurations, the extract/heavy
product (CO2) is collected in the CnBLO step. The individual process configurations and
the corresponding pressure profiles in each of the process step are provided in Section S2 in
the Supporting Information.
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column along its axial direction. Fourth, we assume that the adsorbent physical properties,228

bed porosity, density, and viscosity of the gas phase are uniform throughout the column.229

We solve the resulting system of coupled partial differential equations (PDEs) in two steps.230

First, we discretize them in space using a finite volume method with a van-Leer flux limiter.40231

Second, we integrate the resulting system of ordinary differential equations (ODE) over the232

time span of a given step using a stiff ODE solver ode23s available in MATLAB R2020a.233

The system of PDEs along with the corresponding initial and boundary conditions are pro-234

vided in Sections S3 and S4 in the Supporting Information. The simulation parameters used235

in the model are provided in Section S5 in the Supporting Information. We performed all236

the simulations in the Computational Shared Facility at the University of Manchester using237

a CPU node composed of 2 × 16-core Intel Xeon Gold 6130 CPU @ 2.10GHz with 192GB238

RAM. Note that this model has been extensively validated in experimental settings in both239

lab- and pilot-scale for different separation problems.41–45240

4.2 Process Optimization241

Over the years, adsorption separation processes have been optimized to maximize or mini-242

mize one or more process performance indicators. These indicators include purity, recovery,243

energy consumption, productivity, to name a few.38,46 Depending on the formulation of the244

optimization routine, they can be classified either as a single- or a multiobjective problem.245

For the former class of problems, within the context of adsorption processes, the goal would246

be to either maximize/minimize a single performance indicator or to maximize/minimize a247

collective quantity that condenses multiple performance indicators into one. For the lat-248

ter class of problems, within the context of adsorption processes, the goal would be to249

maximize/minimize multiple performance indicators simultaneously. Different values of per-250

formance indicators are accessed by the optimizer by varying the operating conditions of the251

process (referred to as the decision variables), namely, the pressures, the step times, the feed252

velocity, to name a few. Irrespective of the class of problem, optimizing adsorption processes253
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require employing derivative-free optimization methods due to the nonlinear and nonconvex254

nature of the objectives and the constraints, if any, imposed on the process.39,47255

In this work, we employ two different derivative-free optimization methods with single256

and multiple objectives to optimize the process configurations. We use a single objective opti-257

mization method to optimize the superstructure, presented in Section 3.3 (see Section 4.2.2).258

To validate the optimal performance obtained from the superstructure, we perform inde-259

pendent multiobjective optimization runs for the constituent process configurations (see260

Section 4.2.1). The reason for undertaking these two different approaches and the challenges261

associated with them is elaborated in the discussion provided in the following sections.262

For all the optimization results presented in this work, we target two performance indi-263

cators, namely, the purity PuCO2
[%] and recovery ReCO2

[%] of the heavy product (CO2),264

which is obtained in the extract stream. These two indicators are defined as265

PuCO2
=

nEXT
CO2

nEXT
CO2+H2

(3)

ReCO2
=

nEXT
CO2

nF
CO2

(4)

where ni [mol] is the number of moles of gas i either in the extract (EXT) or in the feed (F)266

stream, which is obtained by solving the complete process model described in Section 4.1.267

Note that for all the process configurations, the extract stream corresponds to the outlet from268

the CnBLO step and depending on whether the FP step is used or not, the feed corresponds269

to the inlet streams to the FP and the ADS or the ADS step, respectively.270

4.2.1 Single Cycle Optimization271

In most of the multiobjective optimization studies reported for PSA processes, specifically272

maximization of purity and recovery, the optimization problem is framed to minimize the273

following two objectives J1 [–] and J2 [–]274
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J1 =
1(

PuCO2
/100

)
J2 =

1(
ReCO2

/100
) (5)

where PuCO2
and ReCO2

can be obtained from eqs 3 and 4, respectively. This approach275

has been typically employed either to optimize a given process configuration for a given276

material or to evaluate the optimal performances of several process configurations – inde-277

pendently – for a given material. In this work, we have used this multiobjective approach278

to validate the outcome from the superstructure optimization, discussed in Section 4.2.2. To279

this end, we evaluate the performance of all the three process configurations, discussed in280

Section 3.3, independently for the reference material. We optimize these process configura-281

tions by exploring the corresponding operating conditions (decision variables). For the basic282

4-step cycle and the 4-step cycle with LPP, the decision variables (DVs) are the step times283

of ADS (tADS), CoBLO (tCoBLO) and CnBLO (tCnBLO), the intermediate pressure (PINT) and284

low pressure (PL), and the feed velocity (vf). For the 5-step cycle with PE and LPP, the285

DVs are all of the aforementioned variables except the intermediate pressure (PINT), due to286

reasons explained in Section 3.3. The bounds for these DVs are provided in Section S6 in the287

Supporting Information. Note that all the variables are continuous in nature, therefore, this288

is a nonlinear programming (NLP) problem, i.e., the objective of the problem is nonlinear289

with continuous variables. To perform the aforementioned process optimization, we have290

used a multiobjective derivative-free optimizer (paretosearch in MATLAB R2020a) based291

on a pattern search algorithm. In a typical pattern search iteration, the optimizer either ex-292

plores a new set of decision variables that aims to minimize the objective function or shrinks293

the size of the step for the next iteration to move toward a minimum if no set of decision294

variables is better than the current one. At the end of the optimization run, we obtain three295

independent Pareto fronts that describe the trade-off between purity and recovery for the cor-296
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responding three configurations. The Pareto fronts shown in the subsequent sections denotes297

the best possible performance that the material-process combination can achieve in terms298

of CO2 purity and recovery. The optimizer parameters for the paretosearch algorithm are299

provided in Section S7 in the Supporting Information.300

4.2.2 Superstructure Optimization301

Unlike the methodology presented in Section 4.2.1, we employ a different optimization302

methodology for the superstructure. The difference arises from the definition of the ob-303

jective function J and the type of DVs (i.e., continuous and discrete). In the single cycle304

optimization methodology, discussed in Section 4.2.1, all the decision variables were con-305

tinuous. However, for the superstructure optimization, in addition to the continuous vari-306

ables discussed above, we have an additional integer variable that enables switching between307

different process configurations. This makes the optimization a mixed integer nonlinear308

programming (MINLP) problem, i.e., the objective of the problem is nonlinear with both309

continuous and integer DVs. There are several techniques to solve such an MINLP problem,310

but for the sake of brevity, we do not provide a review of these methods here. We have311

used an off-the-shelf algorithm to optimize our superstructure. To this aim, we have used a312

single-objective derivative-free optimizer (ga in MATLAB R2020a) based on a methodology313

that mimics natural selection. Note that we could not use any off-the-shelf multiobjective314

optimizers, as they only take continuous DVs and not integer variables. To overcome this, we315

have converted the multiobjective optimization problem defined in eq 5 to a single objective316

problem, using a linear weighted sum method with an objective J [–] defined as follows317

J = w

[
1(

PuCO2
/100

)]+ (1− w)

[
1(

ReCO2
/100

)] 0 ≤ w ≤ 1 (6)

where w [–] is a weighting factor for the objective that corresponds to the purity maxi-318

mization. Note that this method has an inherent challenge, i.e., the quality of the optimal319

solution depends on the choice of weights. Depending on the choice, different trade-off points320

17



in the Pareto front can be accessed. For convex Pareto fronts, this method serves as a good321

proxy for multiobjective optimization. But for nonconvex Pareto fronts, the choice of the322

weights can potentially have an impact on the final Pareto front.48 To overcome this chal-323

lenge, we performed an initial screening of different weights to assess the accuracy of the324

Pareto fronts obtained from this method by comparing them with those obtained from the325

multiobjective optimization. Based on the outcome of this screening study, we decided to326

use three weighting factors, i.e., w = [0.0, 0.5, 1.0] for all the optimization runs performed in327

this work. This choice provides good accuracy at a reasonable computational cost. Finally,328

note that this method, due to its nature of the formulation, does not yield equally spaced329

points on the Pareto front. The bounds for the continuous decision variables are provided in330

Section S6 in the Supporting Information. The integer variable can take one of three values,331

the choice of which determines which one of the configurations from the three options are332

chosen. The optimizer parameters for the ga algorithm are provided in Section S7 in the333

Supporting Information.334

5 Results and Discussion335

As discussed in Section 3.1, we design a superstructure composed of the three process config-336

urations, based on the procedure detailed in Section 3.3. We test the performance of several337

adsorbents that exhibit a broad range of nonlinearity and capacity for both CO2 and H2338

isotherms. In this section, we discuss the results obtained from a number of computational339

studies using the modeling and optimization framework discussed in Section 4. First, in340

Section 5.1, we validate the Pareto fronts obtained from the superstructure optimization341

routine, using the methodology presented in Section 4.2.2, by comparing it with the Pareto342

fronts obtained from independent optimizations of the constituent process configurations,343

with the approach presented in Section 4.2.1. Second, in Section 5.2, we formulate a simple344

case study, using three materials, to highlight the importance of performing an integrated345
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material-process optimization, i.e., “marrying” the adsorbent with the process. Finally, in346

Section 5.3, we highlight the relevance of performing an integrated material and process opti-347

mization. To this aim, we present: (1) the impact of feed composition on the optimal process348

configuration (see Section 5.3.1); (2) the impact of material isotherms on the optimal pro-349

cess configuration at different performance targets (see Section 5.3.2); and (3) scalability of350

such an approach by the addition of another process configuration to the superstructure (see351

Section 5.3.3). Note that in all the case studies shown in the subsequent sections, the goal is352

not to reach a specific purity/recovery target, but to highlight the importance of employing353

the modeling framework developed in this work for future material screening studies.354

5.1 Validation of the Superstructure Optimization Routine355
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Figure 4: CO2 purity/recovery Pareto fronts from the (a) single cycle optimization, using
the methodology presented in Section 4.2.1, and (b) superstructure optimization, using the
methodology presented in Section 4.2.2, for the reference material (REF). The filled right-
pointing and the open left-pointing markers correspond to conditions that use the basic
4-step cycle and the 5-step cycle with PE and LPP, respectively. The transparent markers
in panel (a) and the gray markers in panel (b) represent all the operating conditions explored
by the optimizer and the opaque markers represent the corresponding Pareto fronts. The
violet, green and gold markers correspond to the basic 4-step cycle, the 5-step cycle with PE
and LPP, and the superstructure, respectively.
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To validate the proposed optimization routine, we perform three sets of optimization356

runs for the reference material, namely, single cycle optimization (see Section 4.2.1) for the357

basic 4-step cycle and the 5-step cycle with PE and LPP, and the superstructure optimiza-358

tion (see Section 4.2.2) with these two cycles as the constituent process configurations of359

the superstructure. We aim to investigate two specific points. First, whether the super-360

structure optimization can differentiate between the two configurations. Second, whether361

the Pareto fronts obtained from the single cycle optimizations are comparable to the one362

obtained from the superstructure. We use the bounds of the DVs reported in Section S6 in363

the Supporting Information for all the material-process optimization performed here. The364

objective for the single cycle optimization is given by eq 5 and the corresponding objective365

for the superstructure optimization is given by eq 6.366

The PuCO2
/ReCO2

Pareto fronts obtained by performing the optimization are shown in367

Figure 4. The transparent markers in panel (a) and the gray markers in panel (b) represent368

all the operating conditions explored by the optimizer and the opaque markers represent the369

corresponding Pareto fronts. The filled right-pointing and the open left-pointing markers370

correspond to conditions that use the basic 4-step cycle and the 5-step cycle with PE and371

LPP, respectively. We can make three observations from the Pareto fronts. First, we can372

see that the Pareto fronts obtained from the single cycle optimization, shown in Figure 4a,373

for the basic 4-step cycle (violet markers) and the 5-step cycle with PE and LPP (green374

markers) cross at ReCO2
≈ 60%. This can be attributed to the presence of the PE step in375

the 5-step cycle, which reduces CO2 loss in the raffinate product due to the absence of a376

CoBLO step, thereby leading to higher CO2 recovery. Second, we can see that the Pareto377

front obtained from the superstructure optimization (gold markers), shown in Figure 4b,378

agrees with the Pareto front obtained from the single cycle optimizations. We can observe379

minor deviations between the two cases at ReCO2
≈ 90%, which can be attributed to the380

stochastic nature of the optimization algorithms and the choice of optimizer parameters.381

Third, apart from accurately identifying the best achievable purity and recovery, the Pareto382
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front obtained from the superstructure optimization, shown in Figure 4b, also accurately383

identifies the choice of the process configuration to reach a given purity/recovery. In the384

Pareto front, at ReCO2
< 60%, the optimizer chooses the basic 4-step cycle and at ReCO2

>385

60%, the optimizer chooses the 5-step cycle with PE and LPP, in line with the observations386

from the single cycle optimizations (see panel (a)).387

Note that, here, to put our approach to a stringent test, we use two different formu-388

lations of the optimization problem (single objective vs. multiobjective) and two different389

optimization techniques (patternsearch vs. ga) to obtain the Pareto fronts in the two390

cases. Despite these differences, it is evident that the superstructure optimization routine391

used in this work is robust, in terms of predicting both the process performance and the392

optimal process configuration to reach the target performance. Therefore, we will use only393

the superstructure optimization routine to obtain the Pareto fronts for the different materials394

in the subsequent sections.395

5.2 Marrying Materials to Processes396

In this section, we apply the validated superstructure optimization routine described in397

Section 4.2.2, for three materials, namely, the reference material, material A, and material398

B. The latter two materials are hypothetical and are generated by changing the Sips isotherm399

model parameters of the reference material, as described in Section 3.2 (see Section S1 in400

the Supporting Information). The aim of the study presented here is to highlight that for401

different materials, depending on the performance targets, one can end up having different402

process configurations that can achieve the defined goals for the process.403

The adsorption equilibrium isotherms of CO2 and H2 at 240 °C for the three chosen404

materials are shown in Figure 5a. We can see that material A (green curve) shares the same405

CO2 isotherm with the reference material (REF, gold curve), but has a higher capacity for406

H2 and material B (red curve) shares the same H2 isotherm with the reference material407

(REF), but has a more nonlinear isotherm for CO2. We introduce all these materials to the408
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Figure 5: (a) Adsorption equilibrium loading obtained using the single component Sips
isotherm, given by eq 1, for CO2 and H2 at 240 °C for the reference material (gold, REF)
and the two hypothetical materials, A (green) and B (red). (b) The corresponding CO2

purity/recovery Pareto fronts from the superstructure optimization, using the methodology
presented in Section 4.2.2. The filled right-pointing and the open left-pointing markers
correspond to conditions that use the basic 4-step cycle and the 5-step cycle with PE and
LPP, respectively.

superstructure routine, described in Section 4.2.2, and allow it find the optimal operating409

conditions and the optimal process configuration to reach the best possible purity/recovery410

for each material. The PuCO2
/ReCO2

Pareto fronts obtained from these three materials411

are shown in Figure 5b. Note that here the superstructure is composed of two process412

configurations, the basic 4-step cycle (right-pointing filled triangles) and the 5-step cycle413

with PE and LPP (left-pointing open triangles). We use the same bounds and process414

operating conditions as in the previous section for all the optimization runs. From Figure 5b,415

we can make three observations. First, as expected, the reference material (REF), with a416

linear CO2 isotherm and lower H2 capacity performs the best and material A with the same417

CO2 capacity and higher H2 capacity as that of the reference material performs the worst.24418

Material B with a nonlinear CO2 isotherm exhibits a lower CO2 recovery due to its lower419

working capacity between the intermediate pressure PINT and the low pressure PL. Second,420

all the three materials exhibit a switch in the optimal process configuration, which enables421
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them to truly maximize their potential. The switching PuCO2
/ReCO2

for the three materials422

are different, as they are dictated by the material isotherm. Third, for these three materials,423

the optimal process configuration to reach a given purity or recovery target is different. In424

more detail, for example at ReCO2
= 55% (horizontal dotted line in panel (b)), one should425

use the basic 4-step cycle for the reference material and the 5-step cycle with PE and LPP426

for materials A and B to achieve the highest possible purity at this given recovery. Using the427

other process configuration, in either case, will lead to suboptimal performance for the given428

material. We can use the same argument to describe the choice of process configuration at429

PuCO2
= 85% (vertical dotted line in panel (b)). Note that using the basic 4-step cycle430

for the reference material at this purity target translates to a loss of around 30% in the431

achievable recovery.432

Based on the aforementioned observations, we can make a critical comment on the large433

scale material screening studies reported in the literature. Often, as described in Section 1,434

in most studies, the material screening is performed on a single chosen process configuration.435

This choice stems from prior experience studying a single reference material, for example,436

Zeolite 13X for postcombustion CO2 capture studies. Even with the case of two process437

configurations, one can see from the aforementioned case study that there might be different438

optimal process configurations for different materials that maximize their true potential.439

This would mean materials that were previously considered to be “poor”, in terms of their440

process performance, can potentially turn into promising materials simply because they441

have more room to explore in terms of process configurations. To summarize, based on442

the observations made here, we can conclude that there is a need to perform an integrated443

material-process optimization through a superstructure, especially for material screening444

purposes, that enables marrying the “right” material with the “right” process.445
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5.3 Relevance of Performing an Integrated Material and Process446

Optimization447

5.3.1 Impact of Feed Composition448
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Figure 6: CO2 purity/recovery Pareto fronts from the superstructure optimization, using the
methodology presented in Section 4.2.2, at a CO2 feed composition yf,CO2

= 0.35 (yellow),
yf,CO2

= 0.40 (gold) and yf,CO2
= 0.45 (brown) for the reference material (REF). The filled

right-pointing and the open left-pointing markers correspond to conditions that use the basic
4-step cycle and the 5-step cycle with PE and LPP, respectively.

In this section, we apply the validated superstructure optimization routine, described449

in Section 4.2.2, for the reference material at different feed compositions. The aim of the450

study presented here is to highlight that for different feed compositions, depending on the451

performance targets, one can end up having different process configurations that achieve the452

defined goals for the process. Such an analysis is critical because in a real-world scenario453

one can expect fluctuations in feed compositions. Even if there are no fluctuations, one can454

expect differences in feed compositions depending on the source of the feed gas. For example,455

in the case of carbon capture applications, one can expect CO2 content in the feed to be456

between 5% to 40%, depending on the source, e.g. coal, natural gas, cement, or steel.20,49,50457

However, most often studies employ a specific process configuration, optimal at a given feed458
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composition, for different feed composition conditions.459

We perform the superstructure optimization for the reference material at three different460

CO2 feed compositions, i.e., 35%, 40%, and 45%. The PuCO2
/ReCO2

Pareto fronts obtained461

from these three feed compositions are shown in Figure 6. Note that here the superstruc-462

ture is composed of two process configurations, the basic 4-step cycle (right-pointing filled463

triangles) and the 5-step cycle with PE and LPP (left-pointing open triangles). We use the464

same bounds and process operating conditions, except for the feed composition, as in the465

previous section for all the optimization runs. We can make two key observations. First, as466

expected, increasing the CO2 feed compositions moves the Pareto front to higher values of467

purity and recovery due to ease of separation. Second, similar to the discussion presented468

in Section 5.2, all the three feed compositions exhibit a switch in the optimal process con-469

figuration. For instance, at PuCO2
= 87% (vertical dotted line), one should use the basic470

4-step cycle for the two lowest feed compositions and the 5-step cycle with PE and LPP for471

the highest feed composition. The implication of such a result is amplified by observations472

made in other studies that highlight relaxing recovery constraints for CO2 capture processes473

to make PSA-based separation less energy-intensive.51 In this case, especially for the highest474

feed composition, allowing the process to explore different process configurations, will not475

just lead to a 30% increase in the CO2 recovery, but might also lead to an optimal process476

that has a significantly lower energy consumption due to the presence of the PE step. Even477

though we only present a discussion on the impact of feed composition, it is fair to assume478

that one can expect a similar behavior when evaluating differences in other feed conditions479

such as the feed pressure and temperature.480

5.3.2 Impact of Material Isotherms481

In this section, we apply the validated superstructure optimization routine for three more482

hypothetical materials, namely, materials C, D, and E. The goal of the study is to further elu-483

cidate the impact of material isotherm on the optimal process configuration. We performed484
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the study presented in this section to understand the influence of CO2 and H2 isotherms on485

the optimal process configuration. As has been shown in Sections 5.2 and 5.3.1, one can al-486

ways encounter scenarios when the optimal process configuration to maximize the potential487

of a material can be different for different materials or different operating conditions.488

In the first study, we introduce material C and we compare its performance with mate-489

rials REF and B using the superstructure optimization routine. The adsorption equilibrium490

isotherms of CO2 and H2 at 240 °C for the three materials are shown in Figure 7a. We can491

see that material C (blue curve) shares the same H2 with the other two but has a more492

nonlinear CO2 isotherm. The PuCO2
/ReCO2

Pareto fronts obtained from these materials are493

shown in Figure 7b. The corresponding intermediate pressure PINT and low pressure PL as a494

function of the CO2 recovery from the Pareto front for the three materials are illustrated in495

Figure 7c and Figure 7d, respectively. Note that here the superstructure is composed of two496

process configurations, the basic 4-step cycle (right-pointing filled triangles) and the 5-step497

cycle with PE and LPP (left-pointing open triangles). We use the same bounds and process498

operating conditions as in Section 5.2 for all the optimization runs. We can make four obser-499

vations from these figures. First, the three materials exhibit different process performances500

that correlate well with the nonlinearity of the CO2 isotherm. As seen in other studies,13,24,49501

a material with a higher nonlinearity of the CO2 isotherm with the same H2 isotherm as that502

of a material with a lower nonlinearity of the CO2 isotherm, leads to poorer performance503

in terms of purity and recovery. Second, we can see that all the three materials exhibit a504

switch in the optimal process configuration. This switch happens at a much lower value of505

CO2 purity and recovery for material C when compared to the other materials. This can506

be attributed to the high nonlinearity of the CO2 isotherm for material C, which leads to507

a much lower working capacity and thereby a lower recovery. To achieve high recovery, the508

process has to choose a higher intermediate pressure compared to the other two materials,509

thereby leading to higher amount of H2 in the extract product which in turn results in lower510

CO2 purity (see Figure 7c). Third, as shown in Figure 7d, we can see that the optimizer511
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chooses PL = 5bar as the optimal low pressure, irrespective of the material to maximize CO2512

recovery in the extract product. Fourth, in contrast to materials REF and B, which exhibit513

a single switch in the optimal process configuration, we can see that material C exhibits two514

switches. In more detail, for material C, the basic 4-step cycle is favored at both low and515

high CO2 purity, whereas the 5-step cycle with PE and LPP is preferred for a limited range516

of intermediate CO2 purity. We can attribute this behavior to two factors, namely, the high517

nonlinearity of the CO2 isotherm for material C and the bounds for the operating pressures of518

the process. For this material, due to the nonlinear nature of the isotherm, to maximize the519

CO2 recovery, the optimizer uses the basic 4-step cycle and pushes the intermediate pressure520

PINT close to the high pressure PH of the process (see Figure 7c), thereby maximizing its521

working capacity. However, for the other two materials, the 5-step cycle with PE and LPP is522

sufficient to achieve maximum possible recovery for CO2 despite the constant intermediate523

pressure (dictated by the PE step) due to a favorable shape of the CO2 isotherm. If we relax524

the constraints on the low pressure of the process, the double switch observed for material C525

might disappear. Alas, in most practical applications the bounds for the process are dictated526

by process constraints and cannot be arbitrarily relaxed.527

For the sake of clarity of the last observation, we also illustrate all the operating conditions528

explored by the optimizer for material C in Figure 8. Note that the right-pointing filled529

triangles (light gray) and the left-pointing open triangles (dark gray) correspond to the basic530

4-step cycle and 5-step cycle with PE and LPP, respectively. The corresponding Pareto front531

is also visualized in light blue markers alongside all the operating conditions explored by the532

optimizer.533

In the second study, we introduce two hypothetical materials, D and E and we evaluate534

their performance using the superstructure optimization routine. The adsorption equilibrium535

isotherms of CO2 and H2 at 240 °C for the two materials are shown in Figure 9a. We can536

see that material D (maroon curve) has a higher adsorption capacity compared to material537

E (green curve) for both components. The PuCO2
/ReCO2

Pareto fronts from these materials538
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Figure 7: (a) Adsorption equilibrium loading obtained using the single component Sips
isotherm, given by eq 1, for CO2 and H2 at 240 °C for the reference material (gold, REF)
and the two hypothetical materials, B (red) and C (blue). The corresponding (b) CO2

purity/recovery Pareto fronts from the superstructure optimization, using the methodology
presented in Section 4.2.2, and the variation of (c) intermediate pressure PINT and (d) low
pressure PL as a function of CO2 recovery for the Pareto points. In panels (b) through (d),
the filled right-pointing and the open left-pointing markers correspond to conditions that
use the basic 4-step cycle and the 5-step cycle with PE and LPP, respectively.

are shown in Figure 9b. Note that here the superstructure is composed of two process539

configurations, the basic 4-step cycle (right-pointing filled triangles) and the 5-step cycle540

with PE and LPP (left-pointing open triangles). We use the same bounds and process541
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Figure 8: CO2 purity/recovery Pareto front from the superstructure optimization, using the
methodology presented in Section 4.2.2, for the hypothetical material C. The filled right-
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step cycle and the 5-step cycle with PE and LPP, respectively. The gray markers represent
all the operating conditions explored by the optimizer and the opaque markers represent the
Pareto front. Note that the axis limits here are different from the one in Figure 7.

operating conditions as in Section 5.2 for all the optimization runs. From Figure 9b, we can542

make two observations. First, we can see that material E exhibits a better performance than543

material D, due to its lower affinity toward the light component, i.e., H2. Second, we can544

see that the two Pareto fronts overlap at PuCO2
= 88% to 97%. An interesting condition545

corresponds to PuCO2
= 88% and ReCO2

= 60%, highlighted by the vertical and horizontal546

dotted lines. In this particular scenario, material D can meet the given purity and recovery547

by using the basic 4-step cycle, while for material E, both the process configurations can548

be used. When one takes a step further and performs an energy-productivity optimization,549

with constraints on the purity and the recovery, it can be anticipated that for material E550

the 5-step cycle with PE and LPP will be possibly preferred due to the lower overall energy551

consumption associated with it. Therefore, applying the basic 4-step cycle to material E552

solely based on the findings of the optimization done for material D can potentially lead to553

a suboptimal and energy-intensive process. Note that performing constrained optimization,554
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i.e., energy-productivity optimization with constraints on purity and recovery, though not555

performed in this work, is a common practice in adsorption process studies.38,46556

To conclude, the case study at different feed compositions (see Section 5.3.1) and the case557

study in this section with materials exhibiting differences in CO2 and H2 isotherm, further558

reinforces the relevance of performing an integrated material-process optimization using the559

approach presented in this work.560
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Figure 9: (a) Adsorption equilibrium loading obtained using the single component Sips
isotherm, given by eq 1, for CO2 and H2 at 240 °C for two hypothetical materials, D (ma-
roon) and E (green). (b) The corresponding CO2 purity/recovery Pareto fronts from the
superstructure optimization, using the methodology presented in Section 4.2.2. The filled
right-pointing and the open left-pointing markers correspond to conditions that use the basic
4-step cycle and the 5-step cycle with PE and LPP, respectively. The gray markers in panel
(b) represent all the operating conditions explored by the optimizer for material D and the
opaque markers represent the Pareto fronts for both the materials.

5.3.3 Scalability of the Superstructure561

We have restricted ourselves to two process configurations in the preceding sections and562

we have shown the relevance of incorporating a superstructure-based optimization approach.563

However, for the method to evolve toward a real superstructure that incorporates all possible564

process configurations, one should show that the modeling approach can be scaled without565
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losing out on the accuracy of predicting process performance. Therefore, we have introduced566

a third process configuration, i.e., a 4-step cycle with LPP shown in Figure 3, into the567

superstructure in addition to the other two process configurations. Similar to the discussion568

presented in Section 5.1, we compare the PuCO2
/ReCO2

Pareto front for the reference material569

obtained from the single cycle optimization, using the methodology described in Section 4.2.1,570

for the three process configurations with the Pareto front obtained from the superstructure,571

using the methodology described in Section 4.2.2.572

The PuCO2
/ReCO2

Pareto fronts obtained by performing the optimization are shown in573

Figure 10. The transparent markers in panel (a) and the gray markers in panel (b) represent574

all the operating conditions explored by the optimizer and the opaque markers represent575

the corresponding Pareto fronts. The filled right-pointing, the open left-pointing, and the576

filled upward-pointing markers correspond to conditions that use the basic 4-step cycle, the577

5-step cycle with PE and LPP, and the 4-step cycle with LPP, respectively. We use the578

same bounds and process operating conditions as in Section 5.1 for all the optimization579

runs. We can make three observations from the Pareto fronts. First, based on the Pareto580

fronts obtained from the single cycle optimization, shown in Figure 10a, we can see that the581

performance of the 4-step cycle with LPP (coral markers) is better than the other two process582

configurations. This can be attributed to the introduction of the LPP step in addition to583

a CoBLO step. The latter enables the optimizer to freely explore different PINT, which is584

not possible with the PE step. Second, the Pareto front obtained from the superstructure585

optimization (gold markers), shown in Figure 10b, agrees with the Pareto fronts obtained586

from the single cycle optimization. Finally, unlike the cases discussed in the previous sections,587

there is no switch between different process configurations. In essence, the optimizer, after588

thoroughly exploring all the three process configurations (shown using markers in shades of589

gray), identifies the 4-step cycle with LPP to be the optimal configuration irrespective of590

the target purity/recovery values. Depending on the material being tested, this observation591

on the optimal process configuration may or may not hold. Note that we have used the592
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framework as is without any modification to the optimization framework.593
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Figure 10: CO2 purity/recovery Pareto fronts from the (a) single cycle optimization, using
the methodology presented in Section 4.2.1, and (b) superstructure optimization, using
the methodology presented in Section 4.2.2, for the reference material (REF). The filled
right-pointing, the open left-pointing and the filled upward-pointing markers correspond to
conditions that use the basic 4-step cycle, the 5-step cycle with PE and LPP, and the 4-step
cycle with LPP, respectively. The transparent markers in panel (a) and the gray markers in
panel (b) represent all the operating conditions explored by the optimizer and the opaque
markers represent the corresponding Pareto fronts. The violet, green, coral, and gold markers
correspond to the basic 4-step cycle, the 5-step cycle with PE and LPP, the 4-step cycle with
LPP, and the superstructure, respectively.

To summarize, based on these results, we can conclude that the computational framework594

developed in this work shows great promise in scaling up the superstructure to incorporate595

more process configurations without losing out on the accuracy. However, an additional596

advantage of performing a superstructure optimization, that has not been discussed till now,597

is the time benefit obtained by optimizing multiple process configurations in one go. To598

highlight this additional benefit, we compare the computational time of the single cycle599

optimizations for the three process configurations with the computational time of the su-600

perstructure with both two and three process configurations. To facilitate a fair comparison601

between the single cycle optimization and the superstructure optimization, we reevaluate602

the optimal process performance of the constituent configurations using the approach used603
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to optimize the superstructure, i.e., with the single objective optimizer (see Section 4.2.2)604

instead of the multiobjective optimizer (see Section 4.2.1), but without the integer variable605

to choose the process configuration. In all the optimization runs, the computational budget,606

i.e., the total number of operating conditions explored by the optimizer, is fixed (≈ 11 000607

operating conditions).608

The single-core computational time taken to obtain the PuCO2
/ReCO2

Pareto fronts from609

the single cycle optimization and the superstructure optimization is shown in Figure 11. Note610

that the Pareto fronts obtained from the single objective and multiobjective optimization611

runs for all the three process configurations are similar and these are visualized in Section S8612

in the Supporting Information. We can make three key observations. First, for the single613

cycle optimization, depending on the process configuration, the time taken to obtain the614

Pareto front is different. This can be attributed to the increased computational time re-615

quired to solve more complex process configurations (with more steps and complex column616

dynamics), for example, the 5-step cycle with PE and LPP (green bar). Second, due to617

the fixed computational budget for the optimization, the time for optimizing more than one618

process configuration using the single cycle optimization scales proportionally to the number619

of evaluated process configurations. This effect is shown in Figure 11 using the stacked bars620

for the cases of two and three cycles. Note that this would be the traditional optimiza-621

tion approach through which the performance of a material is evaluated independently in622

different process configurations. Finally, for the superstructure, the overall time taken for623

the optimization (gold bars) is the same irrespective of the number of constituent process624

configurations. Note that the overall time taken for the two superstructure optimization625

runs (gold bars) is similar and it is comparable to the time taken to optimize one process626

configuration with a single cycle optimization approach. This is expected as for a given627

computational budget, in the cases discussed here, the superstructure manages to explore628

either two or three process configurations in a single optimization run.629

To conclude, based on the outcome presented here, it should be evident that the su-630
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perstructure approach has two main advantages. First, it guarantees to find the optimal631

process configuration that leads to the optimal performance for a given material. Second,632

and most importantly, it also shows promise in evaluating bigger superstructures with more633

constituent process configurations at a fraction of computational cost when compared to634

traditional material and process configuration screening approaches.635
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Figure 11: Single-core computational time taken to obtain the CO2 purity/recovery Pareto
fronts from the (a) single cycle optimization (the first five bars), using the methodology
presented in Section 4.2.1, and (b) superstructure optimization (the last two bars), using
the methodology presented in Section 4.2.2, for the reference material (REF). Note that for
the two cycle and three cycle cases with the single cycle optimization, the computational time
is the sum of the time taken to perform the individual cycle optimizations. The numbers
in parenthesis within the bars indicate the process configurations used in the respective
optimization run.
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6 Concluding Remarks636

6.1 Key outcomes637

The work presented here builds on process-based screening of materials for adsorptive gas638

separation applications. We present the first superstructure inspired approach to identify the639

“best” material-process configuration combination for a pressure swing adsorption process.640

To this aim, we have developed a computational framework composed of two tools: first,641

we have developed a process model that can simulate a superstructure composed of three642

process configurations, and second, a process optimization routine that can optimize the643

entire superstructure to obtain both the optimal process configuration and the corresponding644

operating conditions. We validated and employed the computational framework on several645

materials to highlight the importance and relevance of the proposed approach. We can646

summarize the key outcomes from this work as follows:647

• one should employ an integrated material-process optimization approach to truly max-648

imize the potential of any given adsorbent used in a given gas separation application.649

• one should employ an integrated material-process optimization approach to evaluate650

the performance of a material at different feed conditions, like the composition, pres-651

sure, and temperature.652

• one should employ an integrated material-process optimization approach to conduct653

both purity/recovery and energy/productivity optimization to obtain a more conclusive654

performance of a material.655

• one should not generalize observations regarding the best process configuration by656

evaluating the performance of a single material and subsequently extrapolating the657

observations to every other material. As has been long proposed, each material should658

be “married” to a process(es).659
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To conclude, we have shown through several case studies the robustness, relevance, scal-660

ability, and computational cost advantages of performing a superstructure optimization to661

optimize the performance of materials and process configurations in an integrated fashion.662

The key outcomes from this work and the ease with which the methodology proposed here663

can be extended to other systems will certainly pave the way for many new avenues in664

material and process screening.665

6.2 Key Limitations and Way Forward666

We acknowledge that there are a few key limitations of the work presented here. These667

limitations form the basis for our future work. First, the superstructure presented in this work668

is certainly not an all-encompassing cycle. However, due to reasons mentioned throughout669

this article, we have resorted only to three process configurations to highlight the benefits670

of using the approach proposed in this work. To tackle this, in our future work, we aim to671

redesign our superstructure with the process steps as the building block, rather than process672

configurations. Second, we have not put the approach to the test for other optimization673

problems, e.g. minimization of energy consumption and maximization of productivity of the674

process. An extension of this study to look into the energy consumption and productivity of675

the process with a true superstructure might have implications on previously reported studies676

that address the costing aspects of PSA-based CO2 capture processes.20,50,52 Finally, the677

computational time for the superstructure optimization despite being lower than the single678

cycle optimization is still significantly high, which will make screening of a large database679

of materials a time-consuming task. To tackle this, in our future work, we aim to exploit680

some of the recent advances in machine learning techniques for process optimization26,27 to681

optimize the superstructure.682
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in the Supporting Information. We visualize the individual process configurations and their689

pressure profiles in Section S2 in the Supporting Information. We provide the equations690
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Information. We provide the simulation and optimization parameters in Sections S5 and S7692
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ison of the Pareto fronts for the three process configurations obtained from a single objective695
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provide the data associated with the simulations and the Pareto fronts for all the materials697
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(2) Hosseinzadeh Hejazi, S. A.; Estupiñan Perez, L.; Maruyama, R. T.; Rajendran, A.;702

Kuznicki, S. M. Breakthrough dynamics of nitrogen, oxygen, and argon on silver ex-703

changed titanosilicates (Ag-ETS-10). Adsorption 2021, 27, 191–203.704

37



(3) Zhao, R.; Zhao, L.; Deng, S.; Song, C.; He, J.; Shao, Y.; Li, S. A comparative705

study on CO2 capture performance of vacuum-pressure swing adsorption and pressure-706

temperature swing adsorption based on carbon pump cycle. Energy 2017, 137, 495–509.707

(4) Pullumbi, P.; Brandani, F.; Brandani, S. Gas separation by adsorption: technological708

drivers and opportunities for improvement. Curr. Opin. Chem. Eng. 2019, 24, 131–142.709

(5) Ruthven, D. M. Principles of adsorption and adsorption processes ; John Wiley & Sons,710

1984.711

(6) Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature 2016,712

532, 435.713

(7) Das, S.; Heasman, P.; Ben, T.; Qiu, S. Porous organic materials: strategic design and714

structure–function correlation. Chem. Rev. 2017, 117, 1515–1563.715

(8) Farmahini, A. H.; Krishnamurthy, S.; Friedrich, D.; Brandani, S.; Sarkisov, L.716

Performance-based screening of porous materials for carbon capture. Chem. Rev. 2021,717

121, 10666–10741.718

(9) Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Introduction to Metal–Organic Frameworks.719

Chem. Rev. 2012, 112, 673–674.720

(10) Bennett, T. D.; Coudert, F.-X.; James, S. L.; Cooper, A. I. The changing state of721

porous materials. Nat. Mater. 2021, 20, 1179–1187.722

(11) Notaro, F.; Mullhaupt, J. T.; Leavitt, F. W.; Ackley, M. W. Adsorption process and723

system using multilayer adsorbent beds. 1997; US Patent 5,674,311.724

(12) Ackley, M. W.; Stewart, A. B.; Henzler, G. W.; Leavitt, F. W.; Notaro, F.; Kane, M. S.725

PSA apparatus and process using adsorbent mixtures. 2000; US Patent 6,027,548.726

38



(13) Rajagopalan, A. K.; Avila, A. M.; Rajendran, A. Do adsorbent screening metrics predict727

process performance? A process optimisation based study for post-combustion capture728

of CO2. Int. J. Greenh. Gas Control 2016, 46, 76–85.729

(14) Farmahini, A. H.; Krishnamurthy, S.; Friedrich, D.; Brandani, S.; Sarkisov, L. From730

crystal to adsorption column: challenges in multiscale computational screening of mate-731

rials for adsorption separation processes. Ind. Eng. Chem. Res. 2018, 57, 15491–15511.732

(15) Taddei, M.; Petit, C. Engineering metal–organic frameworks for adsorption-based gas733

separations: from process to atomic scale. Mol. Syst. Des. Eng. 2021, 6, 841–875.734

(16) Maring, B. J.; Webley, P. A. A new simplified pressure/vacuum swing adsorption model735

for rapid adsorbent screening for CO2 capture applications. Int. J. Greenh. Gas Control736

2013, 15, 16–31.737

(17) Joss, L.; Gazzani, M.; Hefti, M.; Marx, D.; Mazzotti, M. Temperature swing adsorption738

for the recovery of the heavy component: An equilibrium-based shortcut model. Ind.739

Eng. Chem. Res. 2015, 54, 3027–3038.740

(18) Subramanian Balashankar, V.; Rajagopalan, A. K.; De Pauw, R.; Avila, A. M.; Ra-741

jendran, A. Analysis of a batch adsorber analogue for rapid screening of adsorbents for742

postcombustion CO2 capture. Ind. Eng. Chem. Res. 2019, 58, 3314–3328.743

(19) Ajenifuja, A.; Joss, L.; Jobson, M. A New Equilibrium Shortcut Temperature Swing744

Adsorption Model for Fast Adsorbent Screening. Ind. Eng. Chem. Res. 2020, 59, 3485–745

3497.746

(20) Danaci, D.; Bui, M.; Mac Dowell, N.; Petit, C. Exploring the limits of adsorption-based747

CO2 capture using MOFs with PVSA–from molecular design to process economics.Mol.748

Syst. Des. Eng. 2020, 5, 212–231.749

39



(21) Casas, N.; Schell, J.; Pini, R.; Mazzotti, M. Fixed bed adsorption of CO2/H2 mixtures750

on activated carbon: experiments and modeling. Adsorption 2012, 18, 143–161.751

(22) Khurana, M.; Farooq, S. Integrated adsorbent-process optimization for carbon capture752

and concentration using vacuum swing adsorption cycles. AIChE J. 2017, 63, 2987–753

2995.754

(23) Nikolaidis, G. N.; Kikkinides, E. S.; Georgiadis, M. C. An integrated two-stage P/VSA755

process for postcombustion CO2 capture using combinations of adsorbents Zeolite 13X756

and Mg-MOF-74. Ind. Eng. Chem. Res. 2017, 56, 974–988.757

(24) Rajagopalan, A. K.; Rajendran, A. The effect of nitrogen adsorption on vacuum swing758

adsorption based post-combustion CO2 capture. Int. J. Greenh. Gas Control 2018, 78,759

437–447.760

(25) Leperi, K. T.; Chung, Y. G.; You, F.; Snurr, R. Q. Development of a general evaluation761

metric for rapid screening of adsorbent materials for postcombustion CO2 capture. ACS762

Sustain. Chem. Eng. 2019, 7, 11529–11539.763

(26) Subraveti, S. G.; Li, Z.; Prasad, V.; Rajendran, A. Machine learning-based multiob-764

jective optimization of pressure swing adsorption. Ind. Eng. Chem. Res. 2019, 58,765

20412–20422.766

(27) Yan, Y. et al. Harnessing the power of machine learning for carbon capture, utilisation,767

and storage (CCUS) – a state-of-the-art review. Energy Environ. Sci. 2021, 14, 6122–768

6157.769

(28) Kawajiri, Y.; Biegler, L. T. Nonlinear programming superstructure for optimal dynamic770

operations of simulated moving bed processes. Ind. Eng. Chem. Res. 2006, 45, 8503–771

8513.772

40



(29) Agarwal, A.; Biegler, L. T.; Zitney, S. E. Superstructure-based optimal synthesis of773

pressure swing adsorption cycles for precombustion CO2 capture. Ind. Eng. Chem.774

Res. 2010, 49, 5066–5079.775

(30) Sreedhar, B.; Kawajiri, Y. Multi-column chromatographic process development using776

simulated moving bed superstructure and simultaneous optimization–Model correction777

framework. Chem. Eng. Sci. 2014, 116, 428–441.778

(31) Sircar, S. Pressure swing adsorption. Ind. Eng. Chem. Res. 2002, 41, 1389–1392.779

(32) Rodrigues, A. E. Chemical engineering and environmental challenges. Cyclic adsorp-780

tion/reaction technologies: Materials and process together! J. Environ. Chem. Eng.781

2020, 8, 103926.782

(33) Adjiman, C. S.; Schweiger, C. A.; Floudas, C. A. Handbook of Combinatorial Optimiza-783

tion; 1998; pp 1–76.784

(34) Dubbeldam, D.; Calero, S.; Vlugt, T. J. iRASPA: GPU-accelerated visualization soft-785

ware for materials scientists. Mol. Simul. 2018, 44, 653–676.786

(35) Haines, M.; Kemper, J.; Davison, J.; Gale, J.; Singh, P.; Santos, S. Assessment of787

emerging CO2 capture technologies and their potential to reduce costs ; TR 4, 2014.788

(36) Subraveti, S. G.; Pai, K. N.; Rajagopalan, A. K.; Wilkins, N. S.; Rajendran, A.; Ja-789

yaraman, A.; Alptekin, G. Cycle design and optimization of pressure swing adsorption790

cycles for pre-combustion CO2 capture. Appl. Energy 2019, 254, 113624.791

(37) Dietz, S. D.; Alptekin, G.; Jayaraman, A. High capacity carbon dioxide sorbent. 2015;792

US Patent 9,120,079.793

(38) Haghpanah, R.; Nilam, R.; Rajendran, A.; Farooq, S.; Karimi, I. A. Cycle synthesis794

and optimization of a VSA process for postcombustion CO2 capture. AIChE J. 2013,795

59, 4735–4748.796

41



(39) Haghpanah, R.; Majumder, A.; Nilam, R.; Rajendran, A.; Farooq, S.; Karimi, I. A.;797

Amanullah, M. Multiobjective Optimization of a Four-Step Adsorption Process for798

Postcombustion CO2 Capture Via Finite Volume Simulation. Ind. Eng. Chem. Res.799

2013, 52, 4249–4265.800

(40) LeVeque, R. J. Finite Volume Methods for Hyperbolic Problems ; Cambridge Texts in801

Applied Mathematics; Cambridge University Press: Cambridge, UK, 2002; Vol. 31.802

(41) Krishnamurthy, S.; Rao, V. R.; Guntuka, S.; Sharratt, P.; Haghpanah, R.; Rajen-803

dran, A.; Amanullah, M.; Karimi, I. A.; Farooq, S. CO2 capture from dry flue gas by804

vacuum swing adsorption: A pilot plant study. AIChE J. 2014, 60, 1830–1842.805

(42) Hosseinzadeh Hejazi, S. A.; Rajendran, A.; Sawada, J. A.; Kuznicki, S. M. Dynamic806

column breakthrough and process studies of high-purity oxygen production using silver-807

exchanged titanosilicates. Ind. Eng. Chem. Res. 2016, 55, 5993–6005.808
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