
A Sweet Introduction to the Mathematical Analysis of Time-Resolved Spectra and
Complex Kinetic Mechanisms: The Chameleon Reaction Revisited
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Abstract: We present a detailed yet easy-to-follow discussion of the mathematical treatment of
time-resolved spectroscopic data in a model-based approach. This is accompanied and complemented
by an example of a colourful and pedagogically rich chemical reaction: the permanganate oxidation
of sugars in basic aqueous media (often known as the chameleon reaction). Our sweet approach
allows both students and lecturers to tackle the problem of a model-based analysis of time-resolved
data in a simple manner and one step at the time, while also exercising programming and data
analysis skills—fundamental for present and future chemists of all levels.

I. INTRODUCTION

Understanding the rates and mechanisms of chemical
reactions is a matter of central importance in chemistry,
biochemistry and other fields. Chemists can monitor the
twists and turns of the reactant on its way to the prod-
uct, and the kinetic or rate constants of each step using
time-resolved spectroscopy. Careful analysis of a series
of spectra collected at different reaction times ultimately
provides the spectroscopic signatures and rate constants
of the proposed intermediates, confirming the mechanis-
tic picture. Armed with this knowledge, for instance, the
reaction conditions can be optimised to avoid side reac-
tions and optimise product yield—as is commonly done
in industry or in the lab.

The treatment of time-resolved spectra in the context
of ultrafast spectroscopy has been described in vast detail
by van Stokkum et al., who popularised the method of
global and target analysis.1 Other authors have published
alternative data analysis implementations, including life-
time density analysis,2 and multivariate curve resolution
by alternating least squares (MCR-ALS).3–6 A recent re-
view by Vauthey et al. in the context of ultrafast tran-
sient UV-Vis and fluorescence upconversion spectroscopy
summarises these methods in detail.7

Apart from specific details intrinsic to the treatment
of ultrafast transient spectra, these analysis methods are
general and independent of the timescale of the stud-
ied processes, motivating us to introduce it to chemistry
students at any stage of their education. In the typical
undergraduate chemistry curriculum, most emphasis is
typically given to first- and second-order kinetics.8 More
complex cases are often neglected or treated at an ap-
proximate level (e.g. by using the steady-state approxi-
mation), and approximate kinetic equations are often de-
rived for certain limiting cases. A more advanced treat-
ment involves numerical integration of the complex sys-

tems of ordinary differential equations (ODEs) that arise
in chemical kinetics.9–11 These systems, however, are of-
ten stiff,12 which can lead to numerically inaccurate so-
lutions. An exhaustive description of numerical methods
to solve systems of ODEs can be found elsewhere.13,14

In our previous work,15,16 we established an analogy
between viral spread during a pandemic and chemical
kinetics, using it to introduce more complex reaction
mechanisms and abstract concepts—such as the collision
cross section. Other authors also developed analogies
with chemical kinetics concepts,17–20 and illustrated their
power in helping the students master the fundamentals.
Some of us have also applied complex kinetic schemes to
model, for example, electron transfer processes in surface-
anchored molecular catalysts and photosensitisers for wa-
ter splitting;21,22 proton-coupled electron transfer pro-
cesses in tungsten carbonyls, where a dimerisation takes
place after the initial event;23 and compared different
strategies for the analysis of time-resolved data of pro-
tein non-equilibrium dynamics.24

Herein, we present a combined theoretical and prac-
tical treatment of more complex reaction mechanisms,
exemplified by the oxidation of a carbohydrate in pres-
ence of KMnO4—often called the chemical chameleon re-
action. This colourful reaction can be readily monitored
by UV-Vis absorption spectroscopy, and performed using
inexpensive and readily available chemicals (Figure 1).

Mn(VII) Mn(VI) Mn(IV)

Figure 1. Sequence of colour changes and oxidation states of
Mn observed during the chemical chameleon reaction.
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We have chosen the chemical chameleon reaction be-
cause of its simplicity, the availability of the required
reagents, and the captivating colour changes that take
place—a fact that we will use to our advantage when
discussing the UV-Vis spectra. The chemical chameleon
reaction is a widely performed demonstrative experiment
in introductory chemistry labs, and can be used to teach
fundamental concepts of redox chemistry.25–30 In this re-
action, a carbohydrate is oxidised by the permanganate
ion in an alkaline aqueous medium. The rapid colour
changes are evidence of the different oxidation states of
manganese—going from pink-violet Mn(VII), to green
Mn(VI), and finally to yellow Mn(IV), as seen in Fig-
ure 1.

The chameleon reaction can be easily monitored with
the naked eye, and a series of UV-Vis absorption spec-
tra can be recorded for more quantitative spectrokinetic
analysis. The time-dependent absorption spectra ob-
tained from such experiments can be interpreted and
fitted to a mechanistic model to further the students’
understanding of key concepts in chemical kinetics and
inorganic chemistry. The students will learn to carefully
analyse and interpret time-dependent spectroscopic data,
allowing them to extract rate constants and the spec-
troscopic signatures of the proposed intermediates in a
complex reaction mechanism. The methods presented
herein are general and can be adapted to specific mech-
anisms and to the study of other chemical reactions (by
changing the kinetic/mechanistic model). Moreover, and
as mentioned above, this approach can be adapted to all
timescales—ranging from slow to ultrafast—and to other
spectroscopic techniques—such as IR or NMR. Thanks
to this, the students can even connect with the latest de-
velopments in ultrafast spectroscopy, obtaining tools to
analyse the fastest chemical events by making analogies
with slower reactions that can be monitored even with
the naked eye.

II. THEORETICAL BACKGROUND

In this section we present a detailed mathematical
treatment of chemical kinetics and spectrokinetic mod-
elling, including advanced concepts of linear algebra and
differential equations. This is provided herein in a tuto-
rial manner to allow the interested reader to gain a deep
understanding of the methods and the equations behind
the analysis of time-resolved spectra.

A. Initial Considerations

We start from a simple chemical reaction, in which
species A and B are converted into X and Y, with their
stoichiometric coefficients (denoted with the correspond-
ing lowercase letters), as shown in eq. 1:

aA + bB −→ xX + yY (1)

The rate law of this reaction (r) is given by:

r = k[A]a[B]b , (2)

where the brackets denote concentrations of the species,
and the powers represent the stoichiometric coefficients
of the reaction and are called order of the reaction (in
terms of a given reactant). The total order of the reaction
is thus the sum the reaction orders of all reactants.

The same rate law can be interpreted as the total rate
of change of a reactant or product over time (eq. 3):

r = −1

a

d[A]

dt
= −1

b

d[B]

dt
=

1

x

d[X]

dt
=

1

y

d[Y]

dt
(3)

Combining eq. 2 and eq. 3, we arrive to a differential
equation of the form:

d[A]

dt
= a× k[A]a[B]b , (4)

which can be integrated to yield the analytical time
dependence of the concentration of each participating
species. For simple elementary reaction steps this is a
trivial matter, and is often done in introductory chemi-
cal kinetics courses.8

A more complex case, for example, arises whenever
there are several coupled reaction steps. For example, let
us now consider an equilibrium followed by an irreversible
reaction (e.g. a decomposition reaction, eq. 5):

A
k1

k−1
B

k2
X (5)

In this case, the time dependence of the concentrations
can no longer be derived based on a single differential
equation (as in eq. 4). Instead, we must solve a system of
three coupled ordinary differential equations (eq. 6) with
three unknowns ([A]t, [B]t, and [C]t, where the subscript
t refers to the concentration at any time):

d[A]t
dt

= −k1[A]t + k−1[B]t

d[B]t
dt

= +k1[A]t − k−1[B]t − k2[B]t

d[X]t
dt

= +k2[B]t

(6a)

(6b)

(6c)

We will focus on reactions in which all stoichiometric
coefficients are equal to 1, for which an analytical solu-
tion exists and is discussed next. More complex kinetic
models have been discussed elsewhere.15,31,32

B. Generalised Matrix Kinetics for First Order
Reaction Systems

The problem of solving systems of coupled first-
order reactions with matrix methods has been previously
treated in detail in this Journal by Berberan-Santos and
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Martinho,31 and by others.11,33 We shall restate some of
the concepts and methods in this paper so the reader can
have a complete picture.

We start by designating a species concentration vec-

tor, C(t) =
[
A(t) B(t) X(t)

]T
. This way, eq. 6 can be

expressed in matrix form as:

d

dt

[A]t
[B]t
[X]t

 =

−k1 k−1 0
k1 −k−1 − k2 0
0 k2 0

[A]t
[B]t
[X]t

 (7)

More generally, for any first-order system:

d

dt
C(t) = K ·C(t) , (8)

where K is an N×N matrix (for a system with N
species), often called the transition or rate matrix, and
contains all the kinetic information about the model.

Since in eq. 8 we have written C(t) as a column vector,
the off-diagonal elements of K, {K}ij (i6=j), represent
the net interconversion rates of species j in the kinetic
equation of species i. For a system of N species obeying
mass conservation, the sum of the elements of each col-
umn in K must be equal to zero. In this manner, the
diagonal elements can be simply defined as the negative
of the sum of all other elements in the column (eq. 9):

{K}ii = −
N∑

i=1,i6=j

{K}ij (9)

The definition in eq. 9 follows from the intuitive con-
cept that every chemical species is changing only because
of interconversion to/from other species.34 An analytical
solution to eq. 7 is given by:31

C(t) = expm (−Kt) ·C(0) , (10)

where C(0) is a vector containing the initial (known)
concentrations of each species, and the term expm (−Kt)
corresponds to a matrix exponential, explained briefly in
the following section. Note the similarity between eq. 10
and the more familiar scalar case.

C. Matrix Exponentials

Exponentiation of scalars [exp(x)] is a familiar opera-
tion for many students, as it is introduced in elementary
mathematics courses. The exponential of a matrix, in
contrast, is very rarely discussed in introductory linear
algebra courses.

For matrices, it is important to distinguish a matrix
exponential [P = expm(K)] from an element-wise expo-
nentiation [{Q}ij = exp({A}ij)]. The former is a matrix
function on square matrices, while the latter can be ap-
plied to any matrix. It follows that, in general, P 6= Q.
Since in eq. 10 we involve the matrix exponential, it is
worthwhile mentioning two ways to calculate it.

First, since the exponential function can be expressed
as a power series, we can write it as a Taylor series con-
sidering a matrix argument:

expm(K) =

∞∑
n=0

1

n!
Kn, with K0 ≡ IN×N , (11)

where IN×N is the identity matrix. For numerical calcu-
lations, the series in eq. 11 can be truncated after a given
number of terms depending on the desired accuracy.35

In a second method, if K is diagonalisable, there exists
a matrix U and a diagonal matrix Λ such that:

K = UΛU−1 , (12)

which leads to:36

expm(K) = U expm(Λ)U−1 (13)

For a diagonal matrix, the matrix exponential is equal
to the (conventional) exponential of the elements of the
diagonal.36 The interested reader can consult refs. 36–38
for further details.

D. From Kinetics to Spectral Changes

Until now, we have focused in the kinetic (concentra-
tion) profiles of the different species involved in a reac-
tion. We often monitor the spectral changes associated
with the kinetic evolution of the system under study,
leading us to the present description of time-resolved
spectra. Under the assumption that the spectral prop-
erties of the involved species are time-independent, and
that the kinetic profiles are independent of the detec-
tion channel—an assumption called bilinearity between
the concentration and spectra—we can write an array
of time-dependent spectra, D(t, λ), as the product of a
species concentration matrix, C(t), and a spectral ma-
trix, S(λ), as follows:7

D(t, λ) = C(t) · S(λ) (14)

From the definitions given above, C(t) is a k×N ma-
trix where every row corresponds to one sampled time
point and every column to a different species. Simi-
larly, S(λ) is an N×m matrix where every row corre-
sponds to a species and every column represents a spec-
tral channel (i.e. wavelength or frequency). This leads to
D(t, λ), which is a matrix of time-resolved spectra con-
taining k time points (rows) and m spectroscopic chan-
nels (columns).

As nicely explained by Vauthey and co-workers,7 the
assumed bilinearity of the time-dependent spectra can
break down if either the assumption of classical kinet-
ics (i.e. well-defined species and intermediates) or the
assumption of time-invariant spectra of these species do
not hold.

For example, in ultrafast transient experiments, sol-
vent relaxation and fast population kinetics can compete
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Figure 2. Visual representation of eq. 14: Under the assumption of bilinearity, the product of a matrix containing the concen-
tration profiles [C(t)] and a matrix with the spectra of each species [S(λ)], yields the time-resolved absorption spectra, D(t, λ).

with each other. In this scenario, no clear intermedi-
ates can be defined and thus no time-invariant species-
associated spectral features can be described. Some ex-
amples of these scenarios are nicely discussed in ref. 7,
and are especially evident when studying solvation in
ionic liquids.39,40

E. The Inverse Problem: From Spectral Changes
to Kinetic Profiles and Mechanisms

If we know the concentration profiles and species-
associated spectra of a system, then calculation of the
time-resolved spectra that would be observed is a trivial
matter, and can be done merely by using eq. 14.

In practice, however, we wish to solve the inverse prob-
lem: we want to obtain the concentration profiles and
species-associated spectra for the system under study,
given a reasonable kinetic or spectral model.

To begin our discussion on the inverse problem, we
start by characterising a real experimental dataset with
noise (De) in a manner analogous to eq. 14. We calcu-
late a parameter-dependent concentration matrix using a
given kinetic model, C(t;β) (where β are the kinetic pa-
rameters), and obtain the best possible guess for a spec-

tral matrix, Ŝ(λ)—where the circumflex indicates this is
not an exact solution but an estimate one.7 In this man-
ner, we can define Dfit as:

Dfit(t, λ;β) = C(t;β) · Ŝ(λ) (15)

To calculate Ŝ(λ), we can take advantage of a math-
ematical tool called the Moore–Penrose pseudoinverse,
explained in more detail in the next section.

F. The Moore–Penrose Pseudoinverse:
Least-Squares Fit

The problem in eq. 15 could be analytically solved if,
for example, C(t;β) was a square invertible matrix.

As is shown in elementary linear algebra courses, the
matrix equation AX = B can be solved for X if A is
invertible, the solution being X = A−1B.

If A is square but not invertible, or if it is a rectangular
matrix—as is normally the case for C(t)—then we can
define a unique matrix A+ which satisfies the Moore–
Penrose conditions:41

AA+A = A (16a)

A+AA+ = A+ (16b)

(AA+)∗ = AA+ (16c)

(A+A)∗ = A+A (16d)

where (· · · )∗ denotes the conjugate transpose of a ma-
trix. If A is invertible, then A+ = A−1. If it is non-
invertible but has linearly independent rows (eq. 17a) or
columns (eq. 17b), then A+ can be computed as:41

A+ = (A∗A)−1A∗ , thus A+A = I (17a)

A+ = A∗(AA∗)−1 , thus AA+ = I (17b)

We can use the Moore–Penrose pseudoinverse of
C(t;β) to calculate Ŝ(λ), thus solving the problem from
eq. 15. It can be shown that A+ leads to the least-squares
fit of a linear system whenever an exact solution does not
exist (i.e. A is singular or rectangular).41

Combining eq. 17a and eq. 14, we have:42

C+De = C+C · Ŝ and hence Ŝ = C+De , (18)



5

where the variables have been omitted for clarity, and De

represents the experimental dataset.
Combining eq. 15, eq. 17a, and eq. 18, the calculated

dataset for the chosen set of parameters (β) is:43

Dfit(t, λ;β) = C(t;β) ·
[
C+(t;β) ·De(t, λ)

]
(19)

Note that in this equation CC+ 6= I, since we have
used the definition of C+ from eq. 17a.

Variation of β would allow—using a least-squares
minimisation routine—to obtain the best-fitting recon-
struction of the experimental time-resolved spectra,
Dopt(t, λ;βopt), which minimises the square of norm of
the residuals, ‖Dfit(t, λ;β)−De(t, λ)‖2.

Note that this procedure is general and independent
of the functional form of C(t), which allows for the im-
plementation of kinetic schemes of arbitrary complexity
towards the analysis of time-resolved spectra. Also im-
portant is to note that the dependence on β is non-linear,
and hence βopt must be found iteratively.44

We have included in the Supporting Information a set
of fully functional MATLAB code, with a detailed de-
scription of both the code and the above procedure. We
consider a generalised network of coupled first-order re-
actions as well as an arbitrary kinetic model defined by
a system of ODEs. Simulation and fitting routines are
also provided and discussed in detail.

III. EXPERIMENTAL

A. Chemicals and Solvents

All chemicals and reagents were used as received from
their suppliers. The solutions were prepared in doubly-
distilled water. Stock solutions of KMnO4 in water were
freshly prepared to avoid degradation upon storage.

B. UV-Visible Spectrokinetic Measurements

To acquire UV-Vis absorption spectra of the reaction
mixtures, a 1×1 cm pathlength quartz cuvette, equipped
with a small magnetic stir bar was coupled to a fibre op-
tics spectrometer (Ocean Optics USB4000, with a DH-
2000-BAL fibre-coupled tungsten/deuterium lamp). Op-
tical filters before the sample cuvette were used to adapt
the light intensity to the dynamic range of the detector.

Absorption spectra were recorded before and after ad-
dition of 10 µL of a 700 mm (7 µmol) aqueous stock solu-
tion of the corresponding sugar (D-glucose, D-fructose or
sucrose) to a freshly prepared reaction mixture contain-
ing 1.4 mL dd-H2O, 500 µL of 400 mm NaOH (200 µmol),
and 1 mL of 0.5 mM KMnO4 (0.5 µmol). The cuvette was
stirred at all times to minimise the mixing time. The ini-
tial concentrations of the sugar, NaOH and KMnO4 were
equal to 2.4, 68.7 and 0.2 mm, respectively. Doubly-
distilled water was used to record the intensity back-
ground (blank spectrum). All measurements were run
using the OceanView 2.0 software (Ocean Insight).

The reaction was monitored until formation of the
yellow/brown MnO2 species was complete and no fur-
ther colour changes were evident to the naked eye. All
reactions were complete within 10–30 min, depending
strongly on the identity of the sugar and the starting
concentrations of the reagents. The initial concentra-
tions chosen above lead to a pseudo-first order behaviour
of the bimolecular steps involving the sugar and the Mn
species. This allows us to treat the data—to a very good
approximation—with the first order kinetic models dis-
cussed herein, for a simplified pedagogical approach.

A video file which illustrates in real time the colour and
spectral changes observed during a typical experimental
run is included in the SI.

C. Data Analysis

All calculations were performed in MATLAB R2021b
using home-made scripts, which build upon our previ-
ous examples of modelling arbitrary chemical kinetics.15

We have adopted a data analysis strategy based in the
concepts discussed in the Theoretical Background sec-
tion (section II) of this paper. Further details on the
implementation of the code are given in the Supporting
Information, with a detailed explanation and potential
changes to the code to adapt it to a general kinetic model.

IV. RESULTS AND DISCUSSION

A. Interpreting the Spectral Changes During the
Chameleon Reaction

Contour maps of the time-dependent UV-Vis absorp-
tion spectra recorded after adding the corresponding
sugar to the basic KMnO4 solution are shown in Fig-
ure 3. As is evident from the timescale of these plots,
the overall reaction rates decrease in the order: fructose
� glucose > sucrose. In the following we will examine
the data in more detail.

We begin our dissection of the time-resolved spectra
by discussing the main features evident in the contour
maps (Figure 3). As indicated by Roman numerals I–III
in the corresponding subplots of this figure, at least three
main spectrokinetic features can be observed in all three
sugars—a fourth feature clearly appearing in the fructose
dataset, the sugar with the fastest overall reaction rate.

While these spectrokinetic features suggest the pres-
ence of at least three or four intermediates, a more quan-
titative criterion is needed before considering a mech-
anism. The number of (spectrally) observable species
will ultimately determine the number of components (N)
needed to build our concentration and species matrices.
An over- or underestimation in the number of compo-
nents can result in spurious or physically meaningless
analysis, despite a potentially good fit.

The singular value decomposition (SVD) of the array of
time-resolved spectra provides a preliminary estimation
on the number of spectrally observable components.



6

Figure 3. Spectral changes observed during kinetic runs of the oxidation of fructose (A), glucose (B) and sucrose (C ) with
basic KMnO4. All datasets are plotted from 1 to 2000 s in a logarithmic time axis for easier comparison. Roman numerals
identify the main spectrokinetic features evident from the contour plots, see text for discussion.

This mathematical decomposition expresses a real ma-
trix (D) as the product of a diagonal matrix (Σ) and two
real orthogonal matrices, U and V as follows:

D = UΣV T , (20)

where the columns of U and V are known, respectively,
as the left- and right-singular vectors, and are related to
the time (U) and spectral (V ) components. The diag-
onal elements of Σ are known as the singular values of
D (denoted as σi). Choosing the decomposition as to
sort the singular values in descending order, this factor-
ization is unique up to a unitary transformation. SVD
constitutes a generalisation of the eigenvalue decompo-
sition (diagonalisation), the former being also applicable
to rectangular matrices. In addition, the Moore–Penrose
pseudoinverse is related to the SVD by:37

D+ = V Σ+UT , (21)

where {Σ+}ij = 1/{Σ}ij for every non-zero diagonal
element. Whenever eq. 14 holds, the magnitude of the
singular values gives an estimate on the number of com-
ponents. For a noise-free dataset, the number of non-
zero σi is equal to N . In the presence of noise, there
exists a cut-off point between significant σi and the noise
level. This is illustrated in Figure 4 for our three datasets.
We observe that the first three/four σi’s are significantly
higher than the rest (the vertical axis in Figure 4 is log-
arithmic), and that the magnitude of the following σi’s
decays roughly in an exponential manner with the index
i (evidenced by a straight line in Figure 4).1

Having estimated the number of components, we then
move on to a discussion of plausible reaction mechanisms,
to ultimately fit our data to a kinetic model and to elu-
cidate the spectra of the individual species.

B. Proposing a Reaction Mechanism

Permanganate is an important oxidant in many or-
ganic and inorganic redox transformations.45 Amongst

Singular Value #
1 2010

(a) Fructose

1 2010

(b) Glucose

1 2010

(c) Sucrose

lo
g

(
i
)

(a
.u

.)

Figure 4. Relative magnitudes of the first 25 singular values
of the fructose (A), glucose (B) and sucrose (C) datasets.
Lines to guide the eye show the noise level (solid lines) and
significant/non-noise singular values (dashed lines), the latter
highlighted by coloured boxes.

the organic substrates that can be oxidised by perman-
ganate, we will focus our attention on carbohydrates
(sugars). Several mechanisms have been proposed for
both acidic,46 and basic aqueous media,47,48 which are
complex and depend on the concentration of both reac-
tants, and the pH of the medium.45,47,49–53 An in-depth
examination of such mechanisms is outside the scope of
this work. The interested reader can find more details in
ref. 45.

The first mechanism we will discuss is shown in
eq. 22:54

MnO –
4 + e– k′1

MnO 2–
4 (22a)

MnO 2–
4 + e– k′2

MnO 3–
4 (22b)

2 MnO 3–
4

k′3
MnO 2–

4 + Mn (IV)
(aq) (22c)

Mn (IV)
(aq)

k′4
MnO2↓ (22d)

The first step (eq. 22a) represents the initial reduc-
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tion of permanganate [Mn(VII)] to manganate [MnO 2–
4 ,

Mn(VI)], followed by the generation of the hypoman-
ganate (MnO 3–

4 ) anion [eq. 22b, Mn(V)], which dispro-

portionates to give MnO 2–
4 [Mn(VI)] and Mn (IV)

(aq) as prod-
ucts (eq. 22c). The last step (eq. 22d) represents the
precipitation of a soluble Mn(IV) species to form a col-
loidal suspension of MnO2, as reported in literature.55

This mechanism would lead to the following ODEs:

d[MnO –
4 ]t

dt
= −k′1[MnO –

4 ]t

d[MnO 2–
4 ]t

dt
= +k′1[MnO –

4 ]t − k′2[MnO 2–
4 ]t

d[MnO 3–
4 ]t

dt
= +k′2[MnO 2–

4 ]t − k′3[MnO 3–
4 ]2t

d[Mn (IV)
(aq) ]t

dt
= +k′3[MnO 3–

4 ]2t − k′4[Mn (IV)
(aq) ]t

d[MnO2]t
dt

= +k′4[Mn (IV)
(aq) ]t

(23a)

(23b)

(23c)

(23d)

(23e)

The MnO 3–
4 species is highly unstable in basic

media.47,56–58 Hence, we can consider an alternative
mechanism where the MnO 2–

4 species undergoes a two-
electron reduction instead, leading directly to the sol-
uble Mn(IV) species, which then precipitates as before
(eq. 24):

MnO –
4 + e– k1

MnO 2–
4 (24a)

MnO 2–
4 + 2 e– k2

Mn (IV)
(aq) (24b)

Mn (IV)
(aq)

k3
MnO2↓ (24c)

This mechanism leads to following ODE system:

d[MnO –
4 ]t

dt
= −k1[MnO –

4 ]t

d[MnO 2–
4 ]t

dt
= +k1[MnO –

4 ]t − k2[MnO 2–
4 ]t

d[Mn (IV)
(aq) ]t

dt
= +k2[MnO 2–

4 ]t − k3[Mn (IV)
(aq) ]t

d[MnO2]t
dt

= +k3[Mn (IV)
(aq) ]t

(25a)

(25b)

(25c)

(25d)

The main difference between eq. 23 and eq. 25 is
the absence of second-order concentration terms (e.g.
[MnO 3–

4 ]2t in eq. 23c–d). Considering the pedagogical
aim of our present paper, and the aforementioned insta-
bility of the MnO 3–

4 species, we shall focus our attention
on the second mechanism (eq. 24–25). Further details
about this mechanism are discussed in the SI.

Defining the concentration vector as

C(t) =
(

[MnO –
4 ]t, [MnO 2–

4 ]t, [Mn (IV)
(aq) ]t, [MnO2]t

)T

,

the rate matrix becomes:

KM2 =

−k1 0 0 0
+k1 −k2 0 0

0 +k2 −k3 0
0 0 +k3 0

 (26)

In the following section, we discuss the results of
analysing our data with this kinetic model.

C. Species Associated Spectra and Kinetic Profiles

The ultimate goal of the analysis of time-resolved
spectra is the obtention of rate constants and species-
associated spectra (SAS) that describe the system in a
physically meaningful way. In agreement with our discus-
sion in the context of SVD (Figure 4), we have fitted the
glucose dataset with three components, since we believe
that our detection window did not allow us to observe the
last step of the mechanism (eq. 24c). The sucrose dataset
was also fit with three components, as this gave the best
results. The fructose dataset was fit to a model with
four components. This shows that the number of signif-
icant σk’s is not an absolute criterion as to the number
of observable components.

In Figure 6 and Table I, we show the results of fit-
ting all three datasets (fructose, glucose and sucrose)
with the model described in eq. 24 and eq. 26. More de-
tailed plots can be found in Figures S5-S7 in the SI. The
SAS obtained for all datasets can be compared with the
reported spectra of the different manganese-oxy species
with oxidation states of manganese ranging from VII to
IV (Figure 5), adapted from ref. 57:
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Figure 5. UV-Vis spectra of the manganese species in oxida-
tion states VII–IV. Spectra from a 0.2 mm solution in a 1 cm
cuvette at 20 ◦C. Digitalised and adapted with permission
from ref. 57. Copyright 1985 American Chemical Society.

A very important modification to the model was in-
troduced to make the concentration of the initial species
(Species 1, corresponding to MnO –

4 ) non-zero at negative
reaction times. We set it to 1 as this would then lead
to relative concentrations for all species. This is done to
take into account that MnO –

4 is already in the reaction
mixture, and its concentration is expected to decrease
only after addition of the reducing sugar—hence start-
ing the reaction. Furthermore, to correctly fit the fruc-
tose dataset, a non-negativity penalty of the SAS was
introduced (further details are given in the SI).
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Figure 6. Concentration profiles (top row) and species-associated spectra (SAS, bottom row) obtained from the fits of the
experimental datasets.

When treating time-resolved difference spectra, this
needs to be considered more carefully, since species-
associated difference spectra (SADS) can also have
negative contributions (see the SI for an extended
discussion).7

The fructose dataset required the inclusion of the non-
negative SAS penalty function and very careful selec-
tion of the initial parameters to converge to a physically
meaningful solution, yet the quality of the fit (especially
at early times) is not optimal. We believe that improper
mixing and fast dynamics contribute to a non-Gaussian
instrument response function (IRF), evidenced by the
larger residuals appearing at early times (Figure S6 in the
SI). This serves to exemplify that a reasonable fit does
not necessarily imply that a given model/mechanism ac-
curately describes the physical phenomenon under study,
and careful examination of the residuals (which should be
structureless) can reveal any inconsistencies.

The SAS of the fourth component (Figure 6A; which
corresponds to precipitated MnO2 nanoparticles) shows a
very broad, weak and featureless band. We believe that,
since the formation of MnO2 nanoparticles is an uncon-
trolled process under our experimental conditions, the
size of these nanoparticles (and hence their absorption
spectra) will change over time.59–61 This last observation
would then help explain why the model does not fit the
data to the same degree as with the other sugars.

The sucrose dataset, on the other hand, was truncated
at t < 600 s for the fit, since precipitation of MnO2 and
degradation of MnO –

4 by other side reactions not consid-
ered here can play a significant role and alter the kinetics
at longer times.

As shown in Table I, the extracted rate constants obey,

TABLE I. Kinetic parameters of the permanganate oxidation
of sugars in basic aqueous medium at room temperature

Parameter (Units) Fructose Glucose Sucrose

t0 (s) 5.72 2.21 3.57
∆a (s) 4.96 1.02 2.17
k1 (s−1)b 2.33× 10−1 3.11× 10−1 3.46× 10−2

k2 (s−1)b 9.86× 10−2 1.54× 10−2 1.33× 10−3

k3 (s−1)b 1.29× 10−2 — —

a Full-width at half-maximum of the Gaussian IRF used to con-
volve the kinetic response.
b The kinetics of the system are being approximated by a
pseudo-first-order mechanism, and as such, the rates shown
herein are observed rates and will depend on concentration.
See discussion of the kinetic model in the SI.

in general, the relationship k1 > k2 > k3, indicating that
the successive electron transfer steps are slower in nature,
as is expected when the manganate ions lose their oxidis-
ing power (driving force). Furthermore, k2 decreases in
the order fructose > glucose > sucrose, becoming roughly
an order of magnitude slower every time.

These results are all in agreement with the qualita-
tive observations about the overall speed of the reac-
tion. The initial electron transfer rates are similar for
glucose and fructose, but significantly slower for sucrose.
This observation can be explained by considering that su-
crose is a dimer of glucose and fructose, linked through
the anomeric carbon. Hence, sucrose is the only non-
reducing sugar, since it has no open chain form. This
makes the latter significantly more difficult to oxidise,
and thus slows down the reaction. Further mechanistic
details can be found elsewhere.45
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The SAS obtained from the fits to all three datasets
using the kinetic model from eq. 23 almost quantitatively
match the reported spectra of the Mn-oxy species (Fig-
ure 5), confirming their identities in the kinetic model
and validating the proposed reaction mechanism.

As shown in Figure 3 and Figure 6–5, and in agree-
ment with our previous discussion about the mechanism,
the MnO 3–

4 species was not detected in our experiments.
This is evidenced both by the lack of additional kinetic
features at ca. 660 nm, and by the absence of any signif-
icant absorption bands beyond 700 nm in all datasets.

The shapes of the SAS and the reported spectra (Fig-
ure 5) can be discussed during elementary inorganic and
general chemistry courses in the context of the analysis
of electronic (UV-Vis) absorption spectra. In this man-
ner, students and lecturers can correlate the observed
spectra and the position of the bands with the oxidation
states and electronic configurations of the metal centre
in each species (i.e. in the context of ligand field theory,
see chapter 8 of ref. 62).

D. Pedagogical Approach to this Paper: A Flow
Chart to Analyse Time-Resolved Spectroscopic Data

To summarise the data analysis strategies presented
in this paper, we introduce the flow chart shown in
Scheme 1. This scheme illustrates step-by-step the pro-
cesses and subprocesses involved in each stage of data
analysis of a time-resolved spectral dataset following a
model-based strategy. We believe that the use of a flow
chart can ease the explanation of every step in a lecture,
and also serve as reference for students and lecturers, to
be used in both teaching and research laboratories.

The flow chart can be explained as follows: The data
is first loaded and examined into a suitable data pro-
cessing software (e.g. MATLAB). The kinetic and spec-
tral traces, as well as the contour (2D) and SVD plots
are done in order to determine the N components and
the approximate timescales of the spectral changes. Af-
ter a literature research, a kinetic model/mechanism can
be proposed and fitted to the data until convergence is
achieved (typically meaning that the norm of the residu-
als is below a certain threshold value).

A careful analysis of the extracted SAS/EAS63 and
rate constants will then lead to the question of whether
these results are physically meaningful—for instance, by
checking the magnitude of the rate constants, the shape
of the SAS/EAS, and their relationship with the ex-
pected intermediates according to the proposed kinetic
model and/or literature information). If the results are
not satisfactory, new starting conditions or a new mecha-
nism/kinetic model must be tested, repeating the process
over again.

The information presented in this manuscript can be
used by lecturers to explain the theory behind gener-
alised matrix kinetics for first-order reaction systems
(complementary to the approach discussed by Berberan-

Start

Examine the 

Dataset

Determine No. of 

Components, N

Plot Kinetic and 

Spectral Traces

Load Time-

Resolved 

Spectra

Make 2D Plots

Plot and

Examine SVD

Propose a Reaction 

Mechanism

Literature Search

Fit Data to 

Mechanism

Estimate Initial 

Parameters

Do the Fit

Fit Converged?
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Are the Results

Physically 

Meaningful?

Set Constraints

Interpret Results

YesEnd

Extract 

SAS/EAS 

and Rate 

Constants Yes
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Scheme 1. Flow chart summarising a model-based data anal-
ysis strategy for time-resolved spectra.

Santos and Martinho),31 the correlation between kinet-
ics and spectral changes, and how to propose and test
reaction mechanisms (e.g. estimation of the number of
components from SVD, simulation of time-resolved data,
amongst others).

Our approach is versatile, and the topics discussed in
this paper can be presented in several ways. For example,
the lecturer can use this article in a traditional lecture
as a part of a kinetics course, and then ask the students
to analyse the provided datasets using our flow chart,
paving the way for discussion about the possible mecha-
nisms. As an alternative, the chemical chameleon reac-
tion can also be implemented as a hands-on experiment,
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allowing the students to analyse and process their own
data, collected by using inexpensive chemicals and equip-
ment that is readily available in most chemistry labora-
tories. With a larger class, the effects of other variables
such as pH, temperature and concentration can be used
to test and discuss the results and their impact in the ki-
netics and involved chemical mechanisms. The lecturer
can then ask the students to provide enough evidence to
support their own proposed mechanisms and discuss the
outcome, the goodness of the fit, and the limitations of
the used kinetic models.

The vast amount of information available in literature
regarding time-resolved analysis can be overwhelming for
an upper-division undergraduate or for graduate students
beginning their research. Our manuscript can be used for
a first, solid approach to the treatment of time-resolved
data and kinetic analysis. These students can perform
the chemical chameleon reaction on their own and then
analyse the data themselves by following the step-by-step
flow chart; while getting deeper knowledge about the the-
ory behind such analysis in a facile way. The present
work can also be used by senior researchers as a first ac-
tivity assigned to new students, allowing them to gain ex-
perience in the collection of time-resolved data and their
analysis.

V. CONCLUSIONS

In conclusion, herein we present a sweet introduction
to the treatment of time-resolved data, exemplified by
the permanganate oxidation of sugars in aqueous basic
media. The mathematical aspects of a model-based data
analysis strategy under the assumptions of classical ki-
netics and bilinearity between concentrations and spec-
tra are discussed in detail, presented in a pedagogical
manner, and summarised in a flow chart. Example code
files provide a fully functional implementation of the de-
scribed methods, while giving the readers the option to
simulate and model their own data in a simple manner.
We believe that a basic knowledge programming and data
processing strategies is essential for chemists, as they can
significantly facilitate the analysis of data collected on a
day-to-day basis—especially true in the physical and an-
alytical chemistry subdisciplines.

Our mechanistic discussion of this reaction bridges im-
portant concepts amongst the organic, inorganic, phys-
ical and analytical branches of chemistry—illustrating
how a complex reaction can be analysed from several
perspectives to gain a deeper insight. At the same time,
our work provides an easy to follow treatment of the
complex aspects at the interface between spectroscopy
and kinetics, essential for mechanistic understanding and
modelling of complex chemical systems in all timescales.
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TOC Graphic, Synopsis and Keywords
Synopsis: Herein, we present a sweet introduction

to the analysis of time-resolved spectra. The so-called
chameleon reaction (involving the oxidation of a sugar
by MnO –

4 in basic media) is discussed as an example
system, allowing us to introduce advanced mathemati-
cal concepts required to model and fit complex kinetic
mechanisms to time-resolved spectra—leading to a phys-
ically meaningful model consisting of (time-dependent)
concentration profiles, and species-associated spectra.

Keywords: Upper-Division Undergraduate, Gradu-
ate Education/Research, Physical Chemistry, Computer-
Based Learning, Problem Solving/Decision Making,
Kinetics, Mathematics/Symbolic Mathematics, Mecha-
nisms of Reactions, Oxidation/Reduction, Spectroscopy.
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