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ABSTRACT   

            The COVID-19 pandemic has resulted in millions of deaths around the world. Although 
multiple safe and effective vaccines and some pharmaceuticals have been approved for use, the 
problem is still unsolved for individuals with underlying medical conditions and those living in 
underserved areas that lack vaccines and/or an adequate medical infrastructure. This is especially 
challenging as new variants of SARS-CoV-2 emerge. One possible approach to solving this 
problem lies in using naturally abundant phytochemicals generally regarded as safe that bind to 
and disrupt SARS-CoV-2. When used in conjunction with a polypharmacological approach, 
targeting multiple essential viral proteins can lead to stronger functional inhibition and provides 
a safeguard against escape mutations. Although finding the proper phytochemicals to accomplish 
a specific therapeutic task is challenging and costly, in-silico screening methods have made this a 
more tractable problem by expediting the initial lead compound discovery phase. Recent studies 
have gained mechanistic insights of drug interactions through computational docking against 
select SARS-CoV-2 proteins, yet several viral proteins remain unexplored as druggable targets. 
Here we investigate a wide range of drug products against a comprehensive array of SARS CoV-
2 proteins using a high-resolution docking workflow. Our initial lead compound discovery phase 
consisted of a structure-based virtual screening (SBVS) wherein 10 types of structural and non-
structural SARS-CoV-2 proteins were computationally docked against a panel of anti-viral 
phytochemicals from the USDA Phytochemical and Ethnobotanical Databases. In the second 
phase of the study, we employed ligand-based virtual screening (LBVS) by extracting chemical 



features of 34 lead compounds from the SBVS using unsupervised clustering based on common 
motifs. Features among dominant ligand clusters were then used to prioritize subsets of 
additional phytochemical databases for drug discovery. Among the 53 newly identified 
phytochemicals generated via LBVS, high-resolution docking predicted that 28 elicit strong 
binding interactions with SARS-CoV-2 proteins. Thus, the inclusion of LBVS resulted in a 4-
fold increase in the rate of lead discovery. Finally, drug-likeness of all lead compounds and 
phytochemical sourcing was evaluated. As a result, this three-phase workflow gave rise to 18 
flavone, alkaloid, and anthraquinone phytochemicals with the greatest potential for therapeutic 
utility. Among these phytochemicals, multiple lead compounds with favorable drug-likeness can 
be derived from individual plants (e.g. Camptotheca acuminata and Mahonia japonica). 
Collectively, this study demonstrates the exciting potential of plant-based drug development for 
COVID-19 prevention and treatment using a polypharmacological approach. These findings 
further support the advantage of incorporating machine learning elements into a virtual screening 
workflow. 

 

INTRODUCTION  

            Since its start in December 2019, the COVID-19 pandemic has caused more than five 
million deaths worldwide,1 long term health effects in many who have recovered from acute 
infection,2 and severe global economic damage. Moreover, zoonotic disease-driven pandemics 
are likely to become more prevalent over time.3 Thanks to the extraordinarily rapid development 
of vaccines, transmission of COVID-19 has been prevented and its symptoms have been greatly 
reduced in a large fraction of global societies, albeit large inequities remain. As the virus 
mutates, however, and modifies its structural and functional components, existing vaccines may 
become less effective.4 Vaccines developed against the early variants of SARS-CoV-2 are 
already less effective against the more infectious delta and omicron variants, hindering progress 
toward herd immunity.5, 6 Identifying chemicals with therapeutic potential against SARS-CoV-2 
and related viruses would (1) provide additional protection, for even the vaccinated members of 
the global community, (2) offer supplementary treatment options for individuals with medical 
conditions or personal beliefs that preclude vaccine use, and (3) provide treatment for less 
developed regions of the world. Some antiviral drugs, namely the polymerase inhibitors 
Remdesivir (GS-5734, Veklury) and β-D-N4-hydroxycytidine (NHC, Molnupiravir, Merck), as 
well as the protease inhibitor PF-07321332 (Nirmatrelvir, Pfizer), have received at least an EUA 
(emergency use authorization) from the FDA7. However, mono-drug therapy, as the HIV/AIDS 
epidemic taught us, carries in the risk of rapid development of drug resistance.8 Hence, 
combinational drug therapy that simultaneously targets several viral proteins and possibly also 
benefits host anti-viral and anti-inflammatory mechanisms is desirable as it would reduce viral 
replication and could delay, if not abrogate, the development of resistant variants.9 



           Thus, therapeutic drug regimens will ideally be (i) effective against multiple arising 
variants of SARS-CoV-2 as well as (ii) quickly accessible for disparate communities across the 
globe. Identifying such therapeutics is a critical, yet challenging endeavor due to the resource-
intensive process of drug development and the rate at which many infectious disease agents 
mutate to evade these same treatments. A potential solution for the first challenge of developing 
a broadly effective therapeutic is through polypharmacology (i.e., using a cocktail of drugs that 
target multiple distinct protein functions of the virus).10 Polypharmacology has shown 
remarkable results for other devastating diseases such as HIV.11 A key advantage of this 
combinatorial drug approach is that the virus would need to undergo multiple simultaneous 
mutations in order to become resistant to each individual drug in the combination.  

            Plant-derived phytochemicals that are generally regarded as safe (USDA GRAS), are an 
attractive resource for drug development. We focus our efforts on them because, provided they 
are used in physiological doses, they would not require pre-clinical animal testing nor phase I 
and II safety trials in humans and are widely accessible to many global communities. Phase II 
efficacy trials could be implemented rapidly upon development of a reproducible protocol. 
Among the many tens of thousands of diverse compounds produced by plants, hundreds of these 
phytochemicals have already been identified as having antiviral, antibacterial, and anti-
inflammatory properties.12 Thus, antiviral phytochemicals offer a promising starting point for the 
screening and discovering of specific drugs that are effective against SARS-CoV-2. 

            Computational 3D docking has produced a surge of advances, in part, due to the 
continued rise in processing power, refinement of score functions, and increased availability of 
high-resolution molecular structure data. Thanks to the fast and fierce response by the scientific 
community, more than 1500 structures of the structural and non-structural protein components of 
SARS-CoV-2 have been generated and made publicly available.13 Using a combination of 
crystallographic and modeled structures, recent studies have explored the use of computational 
simulations to identify small molecules that bind to SARS-CoV-2 proteins. Much of this work 
has focused on inhibition of the main protease (Mpro)14 15 16 17 as well as the RNA-dependent 
RNA polymerase18, spike protein19, and replicase20. Further work describes the potential for 
phytochemicals to make a positive impact on treating COVID-19 and provide evidence for 
benefits elicited from flavonoids21, polyphenols22, and alkaloid drugs23.  

The advent of machine learning (ML) in drug discovery and development has also 
facilitated and accelerated predictive processes through the use of Bayesian models24, structure-
based algebraic topology25, convolutional neural networks26, and transfer learning27. The 
application of ML has prevailed in various stages including target identification and validation, 
compound screening and lead discovery, preclinical development, and clinical development.28 

          In this study, we use the extensive structural datasets in combination with a refined and 
annotated collection of anti-viral phytochemicals to evaluate which naturally derived medicines 
have the highest potential for evoking strong binding interactions to SARS-CoV-2 proteins to 



preclude or disrupt the viral infection process. Previous docking studies have typically examined 
one or a few protein targets. Here, we screened several non-structural proteins (NSP1, NSP3, 
NSP5, NSP7, NSP8, NSP9, NSP10, NSP13, and NSP15) and two forms of the structural spike 
protein (the receptor binding domain and the full-length spike) because of their essential 
contributions to viral replication and infection. For instance, the main protease (NSP5) is 
responsible for cleaving individual SARS-CoV-2 protein chains from a translated polyprotein 
chain.29 The helicase (NSP13) has an essential role in viral replication due to its function in 
unwinding RNA and DNA.30 We used the modeling software Rosetta to conduct ligand docking 
simulations (structure-based virtual screenings or SBVS), to obtain the estimated docking free 
energies between anti-viral phytochemicals and proteins. Analyzing the distributions of the 
docking energy scores for each protein, we identified lead compounds with high affinity toward 
individual protein structures.  

            Because of the time-consuming nature of high-resolution docking simulations, it was 
infeasible to run SBVS for all phytochemicals of interest. Therefore, we implemented machine 
learning algorithms to predict potential leads from a second large phytochemical library. We 
used unsupervised learning to cluster already screened anti-viral phytochemicals, aiming to 
extract chemical features of identified leads. Then, we employed supervised learning to classify 
the un-screened phytochemicals from the large library into already-formed clusters. With 
computationally identified leads from the docking simulations, we recognized lead clusters by 
ranking the total or relative abundance of lead phytochemicals within each cluster. We then 
applied our clustering algorithm to the large unscreened library. Among the library compounds, 
only those classified into our lead clusters were subjected to docking simulations to evaluate 
their ability to bind SARS-CoV-2 protein targets (Figure 1). Overall, our study has identified 62 
lead compounds that may inhibit one or more SARS-CoV-2 proteins. Eighteen of those leads 
show promising results in a SwissADME drug screening. This investigation also demonstrated 
that the use of machine learning significantly speeds up the ligand screening process, giving rise 
to a 4-fold increase in lead compound yield.  

 

 



Figure 1. Overview of the structure and ligand-based virtual screening workflow. Numerous SARS-CoV-
2 protein structures and 272 anti-viral phytochemicals were prepared for the Rosetta protein-ligand 
docking (SBVS). Lead phytochemicals were chosen based on the highest performing (lowest docking 
energy) simulations. The entire phytochemical library was clustered according to chemical similarity. 
Lead clusters were identified as clusters having the highest proportion of lead phytochemicals. The 
ligand-based virtual screening (LBVS, red lines within workflow) clustered phytochemicals from a 
second distinct database. New phytochemicals classified as belonging to lead clusters were identified and 
subjected to high-resolution structural docking. The ligand based virtual screening began only once the 
structural based virtual screening of the 272 initial phytochemicals was completed and the molecule 
clusters were established. 

 

METHODS 

Ligand Preparation for In Silico Docking 

            The Rosetta protein-ligand docking protocol requires two inputs: a PDB file containing 
the protein and ligand structures, and a params file. A list of 343 antiviral phytochemicals was 
obtained from the USDA Phytochemical and Ethnobotanical Databases.12 Three-dimensional 
structures of 272 of these phytochemicals were downloadable from the ZINC and PubChem in 
SDF format for the initial SBVS. OpenBabel,31 a chemical file conversion and manipulation tool, 
was used to protonate ligand structures for their configuration at a physiological pH of 7.4. 
Ligand conformational space sampling was performed using the BCL::Conf  application.32 This 
application generates 100 conformers for each ligand by segmenting the ligand into fragments 



and recombining them based on information contained in a small molecule fragments database.33 
Afterwards, a Python script in the Rosetta package named “molfile_to_params.py” was used to 
generate a params file and a ligand PDB file.34 

Protein Preparation for In Silico Docking  

            All SARS-CoV-2 protein structures (Figure 6B) were obtained from the Protein Data 
Bank.13 When multiple structures existed for a single protein, priority was given to those with 
higher resolution. Structural files were cleaned by removing unnecessary components such as 
water molecules, solvated ions, and non-targeted oligomers. Lastly, the cleaned protein 
structures were concatenated with the ligand PDB files prior to docking. 

Protein-Ligand Binding Site Prediction 

            To locate potential binding sites on our proteins prior to the docking runs, we utilized the 
CASTp (Computed Atlas of Surface Topography of Proteins) webserver to obtain pocket 
structural information and the center coordinates of each unit sphere that comprised the 
pockets.35 CASTp applies geometric techniques to identify surface pockets and internal cavities 
within a protein structure (Figure 3A). Two metrics (pocket volume and surface area) were 
employed to sample CASTp-identified pockets, since sampling each of the numerous pockets 
during docking would have been computationally unfeasible. Once potential pockets were 
determined, the center coordinates of the spheres that made up the pockets were used as initial 
coordinates for high-resolution docking. 

           Binding pocket sampling criteria were established based on the statistics of binding 
pockets of protein-ligand complexes obtained from the CASF-2016 dataset containing 285 
unique crystal structures (Figure S1, Table S1, and Table S2).36 These criteria first rank all 
pockets for a particular protein structure by volume from largest to smallest, and then compare 
each pocket to the first, largest volume pocket. If any of the smaller binding pocket volumes 
were less than 10% of the largest pocket volume, then their surface areas were compared to the 
surface area of the previously ranked pocket. Such small binding pockets were only considered 
potential binding pockets if their surface areas were larger than that of the previously ranked 
pocket. All other pockets with volumes smaller than 10 % of the largest pocket’s volume were 
not considered and not sampled during docking.  

Two separate methods for binding site coordinate extraction were developed: one 
optimized for smaller pockets (Figure 3A in green), and another for large pockets (Figure 3A in 
red). For small pockets, defined by volumes less than 1000 Å3, the center of the largest sphere 
within that pocket was extracted as a starting coordinate for the docking simulation. For large 
pockets, multiple starting coordinates were extracted (Figure 3B in red). These coordinates were 
the centers of spheres within the pocket whose volumes were larger than 5% of the total pocket 
volume. The distance between pairs of coordinates also had to be at least 30 Å to avoid sampling 
space overlap during docking simulations. All chosen coordinates within the potential binding 
pockets were embedded in the “start_from” mover in the Rosetta docking script.37 



Docking Data Analysis 

          One thousand models were generated for every binding pocket in each protein-ligand 
docking event, with each model supplying data that describes its docked structure. Among the 
data from the simulations, the index “Interface_delta_X” (energy score) was used to indicate the 
free energy of the binding event. Because binding likelihood is inversely related to the energy 
score, the lowest energy score from all model scores generated for a given protein-ligand pair 
was used to represent the binding favorability of that docking. We performed exploratory data 
analysis on all lowest scores for each protein structure, and we fit these scores to a normal 
distribution per protein structure. Phytochemicals with scores at least two standard deviations 
below the average of all the compounds’ scores for a specific protein were designated as lead 
candidates against that specific protein.  

           If a crystal structure was available to use for model error calculations, the index 
“ligand_rms_no_super_X” (the root mean square deviation or RMSD of atomic positions 
without superimposition) was used to measure the difference between the model structure and 
the crystal structure. This was applicable to our evaluation of different Rosetta score functions. 

Rosetta Score Function Testing on SARS-CoV-2 Structures 

           Score functions are used to calculate the energies of proposed biomolecules during each 
step of the docking simulation. A score function is the sum of weighted energy terms that include 
both physical forces and statistical parameters. In order to determine which score function was 
best suited for this study, we tested multiple Rosetta score functions (RosettaLigand, 
Talaris2014, Ref2015, and Betanov16) on 10 SARS-CoV-2 main protease and NSP3 ligand-
bound crystal structures from the Protein Data Bank (Table S3). Since Rosetta docking excludes 
water influence, an additional protocol, Rosetta-ECO (efficient consideration of coordinated 
waters) was also included.38 The weights for each term in score functions were obtained from 
Smith et al.39 Our docking script example is provided in Supporting Materials (Figure S3).  

Based on the fact that model energy scores tend to correlate positively with RMSDs, we 
used two methods to evaluate the performance of different score functions. The first evaluation 
strategy involved comparing the Spearman correlation coefficients between energy scores and 
RMSDs. The second approach involved comparing the case percentages where the energy score 
of the lowest RMSD model was within the 10th and 20th percentiles of the entire energy score 
range for a specific protein-ligand pair docking. 

Phytochemical Structure Embedding 

           To quantitatively cluster and classify molecules, phytochemicals were converted into 
numerical form. We used a circular molecular fingerprint method, extended-connectivity 
fingerprints (ECFPs),40 to generate molecular descriptors that store the structural information of a 
given molecule. These descriptors are then mapped on a 1024-bit vector, each bit indicating the 
appearance of a specific feature within a molecule.  



           ECFPs treat each atom in a molecule as a center and iteratively examine immediate 
neighbors with increasing scope. A hash function is used to produce an identifier (hash value) 
that describes structural features. Identifiers from the previous iteration serve as the input for the 
subsequent generation of a new identifier that encompasses more of the molecular structure. For 
example, a single atom is examined during iteration zero and the input (i.e., the initial identifiers) 
are six properties of that atom, which are the daylight atomic invariants: the number of heavy 
atom connections, the number of hydrogen bonds, the atomic number, the atomic mass, the 
atomic charge, and the number of attached hydrogens.40 These invariants are hashed into an 
identifier which stores information from the chosen atom. In the next iteration (iteration one), the 
identifiers of connecting atoms are hashed into a new identifier which describes the structural 
information of the whole expanded neighborhood. The list of identifiers is updated each time 
when progressively larger circular substructural neighborhoods are included. The iteration 
proceeds until it reaches a user-specified number of iterations, or until no new identifier is 
generated. Duplicated identifiers in the list were removed or counted.  

           Once all identifiers were obtained, the remainders from the division of each identifier by 
1024 were the vector indexes where the bit is 1. By these means, we obtained a fixed-length 
vector (1024-bits) where 0 and 1 indicate the absence and presence, respectively, of identifiers.  

Unsupervised Phytochemical Clustering   

           Unsupervised learning is a type of machine learning that identifies data patterns in 
unlabeled data. We used the algorithm from Sci-Kit library41 to cluster our structure-screened 
anti-viral phytochemicals by structural similarities given only their feature representations (0s 
and 1s). Four clustering methods were compared for our clustering analysis.   

         1.  Agglomerative Hierarchical Clustering with the Ward linkage criterion. We utilized a 
bottom-up approach where each molecule starts in its own cluster and newly formed clusters are 
successively merged together until one root cluster is formed. Cluster centroids were computed 
to represent formed clusters and were used to calculate the Euclidean distance between clusters. 
The merging of the clusters is determined by the Ward linkage criterion, which minimizes the 
error sum of squares (ESS) for all clusters.41,42  

         2.  Spectral Clustering. This method first builds a graph G (V, E) connecting vertices (data 
points) if the edge (similarity) is positive or above a certain threshold. Subsequently, the graph 
Laplacian matrix is computed by subtracting the adjacency matrix from the adjacency matrix. 
Using the eigenvectors and eigenvalues of the graph Laplacian, the graph is embedded into a low 
dimensional space, where the clustering algorithm is applied to partition the embedding by 
clustering the components of eigenvectors.41,43  

         3.  Affinity Propagation (AP). This clustering method is determined by messages (values) 
sent between data points. The first message is responsibility, 𝑅	(𝑖, 𝑘), which is the evidence that 
data point 𝑘 should be the cluster center (exemplar) for data point 𝑖. The second is availability, 



𝐴	(𝑖, 𝑘), which is the evidence that 𝑖 chooses 𝑘	to be the exemplar. These messages are updated 
iteratively between pairs of points until convergence. Until then, the final exemplars are chosen, 
and clusters are formed.41,44  

         4.  Ordering Points to Identify Cluster Structure (OPTICS). This method shares many 
commonalities with Density-based Spatial Clustering of Applications with Noise (DBSCAN). 
However, unlike DBSCAN which assumes the constant density of clusters, OPTICS allows 
varying densities of clusters. The idea of density-based clustering is that an area with center 𝑝 
and radius e has to contain a minimal number of objects (MinPts). The cluster order is 
represented by the core distance and the reachability distance. The core distance of an object 𝑝 is 
the smallest radius 𝜀′ of the circular area that contains MinPts. The reachability distance is the 
higher value between the core distance and the direct distance between points, written as: 
𝑚𝑎𝑥(𝑐𝑜𝑟𝑒	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑜), 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑜, 𝑝)).45 OPTICS produces the ordering of the data points 
using the reachability distance to delineate cluster structures. The Tanimoto index was used in 
our OPTICS analysis for distance computation.46 

          After molecule clustering, we used the Shannon entropy (Eq 1) to measure the distribution 
of phytochemicals among all clusters. A high Shannon entropy suggests that the sizes of clusters 
are relatively similar, and it can avoid false accuracy of imbalanced classification.  

																																												𝐻(𝑋) = 	−∑ 𝑃(𝑥𝑖)		𝑙𝑜𝑔!!
"#$ 𝑃(𝑥")                                 (Eq.1)  

In the above equation, n is the number of clusters and P (𝑥") is the fraction of molecules in 
cluster i over all clustered molecules.  

 

 
Figure 2. Phytochemical Clustering and Classification Scheme. The ECFP algorithm was used to encode 
molecule structural information to fixed-length vector representations. The molecule clustering is based 
on the distance calculation of vector representations of molecules. The un-clustered molecules (green) 
were classified into already-formed clusters by supervised learning. 

 

 

 

 



Supervised Classification for Potential Lead Prediction 

           The fraction of identified lead phytochemicals in each cluster was determined and clusters 
with the highest fractions were labeled as lead clusters. Through supervised learning, a classifier 
was built to classify new phytochemicals that had not undergone high-resolution docking into 
already-formed clusters. We predicted that phytochemicals classified as belonging to lead 
clusters would be potential lead phytochemicals. 

           Supervised learning uses labeled datasets to learn the mapping function from inputs 
(features) to outputs (labels). In our case, the features were the 0s and 1s contained in each 
molecule-describing vector and the labels were their cluster IDs. The 272 structure-screened 
phytochemicals were split into 80% training and 20% testing sets. The classification accuracy 
rate was obtained from the testing sets only. In order to get a high accuracy rate, we compared 
four classification methods: K-nearest Neighbors (KNN), Support Vector Machine (SVM), 
Random Forest (RF), and Linear Discriminant Analysis (LDA). KNN uses distance metrics to 
compute the distance between data points and classify them based on the majority votes of their 
surrounding k neighbors.47 In our model, k was chosen to be three, and the distance metric used 
was Tanimoto.46 The weights in the weight function for points closer to neighbors are higher 
than the weights for points further away. SVM classifies data points by moving data to a high 
dimensional space, where the soft margin between classes is maximized. Hyperplanes were 
created to separate classes.48 Radial Basis Function (RBF) was used to transform features to a 
high dimensional space. RF is an ensemble learning method that generates many classifiers 
(decision trees) and takes the majority votes of generated classifiers to predict the final 
outcome.49 LDA is a Gaussian maximum likelihood classification method that assumes each 
class is under a Gaussian distribution. The estimate means and covariances were obtained 
directly from the data. LDA classifies new observations by creating a dimension where the 
means of projected classes are maximally separated and the variance within each class is 
minimized.50 

 

RESULTS AND DISCUSSION 

Global docking is accurately guided by CASTp pocket identification. Prior to performing 
high-resolution docking between our phytochemical libraries and the individual SARS-CoV-2 
protein structures, CASTp software was employed to identify concave regions of the protein 
surface that may facilitate ligand binding.35 We hypothesized that limiting the docking search 
space to highly solvent exposed concave crevices (pockets) would sufficiently capture the true 
location of most small molecule binding interactions while significantly reducing the necessary 
computational time required for iterative high-resolution docking. To test this hypothesis, we 
used the CASF-2016 dataset36 – composed of 285 crystal structures of reliably characterized 
protein-ligand complexes – to quantify how often the largest protein surface cavities are involved 
in ligand binding interactions. The numerous surface cavities of each CASF-2016 structure were 



calculated and ranked by volume using the CASTp webserver. We calculated the frequency of 
ligands binding to the ranked surface cavities (Figures 3C, S1). This resulted in 87% (247 /285) 
of the ligand binding events occurring in the either the largest or second largest pocket by 
volume, whereas only 2% (7 /285) of the true binding pockets were not identified via CASTp. 
Following this validation, we analyzed each of our 15 SARS-CoV-2 protein structures (Figure 
6B) using CASTp to obtain the configuration of each available pocket, described by an 
aggregation of small spheres (Figure 3A). We extracted the central coordinates from only the 
pockets that met our selection criteria mentioned in Methods, and used these coordinates for the 
initial ligand locations during high-resolution docking (Figure 3B).  

 

Figure 3. Binding pocket identification and ranking. (A) Concave crevices (pockets) along the protein 
surface are calculated using CASTp. Distinct pockets are individually colored throughout the SARS-
CoV-2 helicase (PDB: 7NIO), shown here. Pockets are numbered according to pocket volume rank. (B) 
Central coordinates of the largest pockets determine the initial placement of phytochemical ligands during 
high-resolution docking. The shaded colored regions indicate the approximate space sampled by the 
ligand during docking. Multiple docking regions were explored for pockets having volumes greater than 
1000 Å3. In the example shown, pocket 1 (red) is subdivided into two spheres. (C) Method validation was 
conducted using 285 solved protein-ligand complex crystal structures from the CASF-2016 dataset 
(further details are given in the Supporting Information). The histogram shows the number of true binding 
events (y-axis) occurring at each CASTp ranked pocket (x-axis). As mentioned, 87% of the binding 
events occurred in the first largest (red) and second largest (blue) pockets by volume. 
 
Rosetta Score Function Validation for SARS-CoV-2 Protein Docking.  

During protein-ligand docking, score functions are responsible for accurately capturing 
the physicochemical contributions of macromolecular complexes. RosettaLigand (pre-talaris 
2013) was chosen to be the score function for our SBVS after testing multiple score functions on 
two different SARS-CoV-2 protein structures. We first measured the fitness of the score 
functions using the Spearman correlation coefficients between the Rosetta energy scores and 
RMSDs. A high positive correlation indicates that the score function successfully captured the 
direct relationship between RMSD models and corresponding energy scores. The distribution of 
correlation coefficients for 20 tested SARS-CoV-2 structures showed that the holistic 



distributions of RosettaLigand, Talaris2014, and Ref2015 are higher than the distributions of 
Betanov16 and Rosetta-ECO (Figure 4A). Next, we checked the energy score percentile of the 
lowest RMSD model for each docking event, assuming that good score functions generate 
models with both energy scores and RMSDs occurring in a low percentile. Figure 4B displays 
the case percentage of the lowest RMSD model whose energy score was within the lowest 10% 
and 20% of the entire energy score range. The RosettaLigand score function outperformed the 
others with 50% of cases where the lowest RMSD structures are within the lowest 20% of the 
entire energy score range, and 30% of cases where structures are within the lowest 10%. Smith et 
al. have performed a similar, but more comprehensive score function comparison on a large set 
of well-studied protein-ligand complexes.39 Their results also indicate that RosettaLigand 
performs the best overall. (Detailed testing data available at: 
https://ziruiw.shinyapps.io/score_functions_on_sarscov2/).  

 

Figure 4. Score function testing results. (A) Distributions of Spearman correlation coefficients between 
energy score and RMSD produced by five different Rosetta score functions. (B) Percentage of cases for 
each analyzed score function where the energy scores of the lowest RMSD model structures are within 
the lowest 10% (dark green) and the lowest 20% (light green) of the energy score range. 

Clustering and Classification of Phytochemical Ligands. The Ward Hierarchical Clustering 
method and Random Forest method were selected to cluster and classify phytochemicals. 
Because the prediction is largely determined by classifying molecules, the classification accuracy 
rate is a key indicator to measure the performance of different models. High Shannon entropy is 
another key attribute of a good model because it demonstrates evenly distributed classes that can 
avoid imbalanced classification. Model hyperparameters were tuned with different classification 
methods in order to obtain the best results (Figure 5A). Principal component analysis (PCA) was 
applied to reduce the 1024-dimensional molecule representation to a 2-dimentional 
representation for a visualization of clustering results (Figure 5B). The color of each data point in 
Figure 5B indicates its cluster. The molecule points colored in black were treated as noise, 
meaning they were in a group that did not belong to any of the clusters formed by the similarity 
search.  



         The hyperparameter tuned for Ward hierarchical and spectral clustering was the number of 
clusters. The best performing classification methods for hierarchical and spectral clustering are 
RF and KNN respectively. The accuracy rate decreased, while the Shannon entropy increased 
with an increasing number of formed clusters for both clustering methods. The accuracy rate 
dropped from 95% to 83% and from 96% to 71% for Ward hierarchical and spectral clustering, 
respectively. When increasing the number of clusters from 10 to 60, the Shannon entropy 
increased from 0.87 to 0.93 and from 0.1 to 0.57 for Ward hierarchical and spectral clustering, 
respectively. This trend supports the inference that a higher misclassification rate occurs when 
more clusters are formed. Because more clusters formed with a certain number of molecules, 
they were more evenly distributed among all clusters. However, the overall Shannon entropy for 
spectral clustering was low due to a large portion of molecules classified as noise.  

          We next tuned the damping factor for affinity propagation clustering. The damping factor 
is the degree to which the current value is maintained relative to incoming values and is used to 
avoid numerical oscillations when updating values.41 The overall accuracy of this model is not as 
good as the accuracy of Ward hierarchical method. Damping factors in the range [0.59, 1) had no 
effect on the clustering outcome, as was indicated by the constant Shannon entropy. When the 
damping factor was beyond 0.79, only one cluster formed; therefore, the multiclass classification 
could not be performed. Since the affinity propagation clustering depends on the values 
(availability and responsibility) sent between pairs of data points, the total cluster number is 
determined by the provided data rather than the users. Thus, we were not able to tune the number 
of clusters for this method.  

          For the last clustering method, OPTICS, the minimal samples parameter (MinPts) was 
tuned. MinPts is the minimal number of points in a neighborhood used to consider a point as a 
core point.45 The KNN and RF classification methods generated a higher accuracy than SVM 
and LDA. With the increasing MinPts from two to nine, the accuracy rate increased from 0.62 to 
0.8 and 0.62 to 0.75 for RF and KNN, respectively. However, the Shannon entropy decreased 
from 1 to below 0.3. This suggests that when more points are needed to decide a core point 
(cluster centroid), fewer clusters are formed which makes classification easier. However, using 
this density-based clustering method, many molecules are categorized as noise.  

          Comparing different methods, we concluded that Ward hierarchical clustering with 
random forest classification produced the best result with 52 clusters formed, an 88% accuracy, 
and 0.943 Shannon entropy. Spectral clustering and OPTICS treated many molecules as noise 
indicated by the black data points, and Affinity Propagation generated skewed cluster size 
indicated by its color distribution (Figure 5B). The details of the molecule clustering results are 
in the Supporting Information Table S9. 



 
Figure 5. Comparison of phytochemical clustering and classification models. (A) Model hyperparameter 
tuning combined with classification methods. The left side of the y-axis indicates accuracy (colored solid 
lines) and the right side of the y-axis indicates Shannon entropy (dashed line --) (B) 2-Dimensional 
representations of clustered molecules using PCA. The color shows the distribution of molecules into 
different clusters. Black data points represent molecules that were treated as noise because the clustering 
algorithm is unable to group them based on similarities.  

Identification of Lead Phytochemicals and Lead Clusters.  

We identified 34 lead phytochemicals and 8 lead clusters by combining clustering and 
SBVS results. Because different SARS-CoV-2 protein structures generated different energy 
score distributions, all energy scores were standardized by using z-scores to compare the binding 
ability of phytochemicals across different structures. The z-scores indicate the number of 
standard deviations from the sample means, which, in this study, are the averages of all lowest 
energy scores for the dockings of the initial 272 anti-viral phytochemicals (in SBVS) with 
specific protein structures. In the heatmap of z-scores (Figure 6A left), each column represents a 
different protein structure and, therefore, has a different mean and standard deviation. The dark 
blue and purple cells indicate significantly greater-than-average binding affinities of 
phytochemicals to particular protein targets (two or more standard deviations below the mean 
energy score). The yellow and green cells indicate binding affinities that are only slightly greater 
than the average, and the white cells indicate binding affinities that are weaker than the average. 
Using a z-score of -2 as the threshold to identify lead candidates, we identified 34 lead 
compounds from the 272 anti-viral phytochemicals. (Table S4) Among them, there were several 
with strong specificity toward a single protein structure. For example, (-)-Epicatechin-3-o-gallate 
shows a strong binding ability to NSP13 (6ZSL), Gambiriin-b3 and Procyanidin-a-2 show strong 
binding ability to NSP10 (6ZCT), and Procyanidin B2 shows a strong binding ability to NSP5 
(6Y2E). There were also certain phytochemicals that demonstrated a high binding affinity to 
multiple SARS-CoV-2 viral proteins, i.e., a polypharmacological/multi-target behavior. For 
example, Agathisflavone demonstrates a high binding affinity to NSP13 (7NIO) and NSP15 



(6VWW) and Hypericin demonstrates strong binding to NSP5 (6Y2E), NSP9 (6WXD), and the 
Spike protein (6VXX). There is a risk, however, that this multi-target behavior may indicate 
molecular promiscuity. We used the PAINS detector in SwissADME on all of our leads to check 
for molecular promiscuity 51; however, in vivo and in vitro work is needed for better analysis on 
this front. 

           The dendrogram graph shows the hierarchical orders of formed clusters (Figure 6A right). 
Closely related clusters 5 and 50 have a large dark area in the heatmap. Other noticeable patches 
of dark areas were observed for clusters such as 36 and 51, which indicate that many of their 
constituent phytochemicals bind strongly to more than one SARS-CoV-2 protein structure. The 
number of lead phytochemicals within each cluster was counted for each protein structure 
(Figure 7) in order to link cluster specificity to different SARS-CoV-2 structures. We identified 
the following clusters as lead clusters for our viral proteins: 

1. Cluster 5 – NSP1, NSP3, NSP5, NSP7&8, NSP9, NSP13, NSP15, Spike receptor binding 
domain (RBD), and the Spike protein 

2. Cluster 7 – NSP10 
3. Cluster 30 – NSP1 
4. Cluster 36 – NSP3, NSP7&8, NSP13, and the Spike RBD 
5. Cluster 42 – NSP5 and the Spike RBD 
6. Cluster 49 – NSP7&8 
7. Cluster 50 – NSP1, NSP7&8, NSP13, NSP15, and the Spike RBD 
8. Cluster 51 – NSP3, NSP5, NSP9, NSP13, NSP15, and the Spike Protein  

            The simulated energy z-scores of 16 experimentally validated SARS-CoV-2 main 
protease inhibitors were used as benchmarks.51 Sixty-nine percent of these inhibitors were below 
the mean when docked against the main protease structure 6Y2E, and 63% were below the mean 
when docked against the main protease structure 7AR5 (Figure S2). We therefore hypothesized 
that our lead identification threshold (two or more standard deviations below the mean energy 
score) was fairly rigorous at identifying good binders. 

 



 



Figure 6. (A) Heatmap of docking energy z-scores of 272 anti-viral phytochemicals initially used in 
SBVS (left) and the cluster dendrogram with cluster ID labels (right). The phytochemicals are grouped 
into their clusters, and their names and numerical IDs are given in Table S9 of the Supplemental 
Information. Phytochemicals are also grouped into approximate chemical categories on the left side of the 
heatmap. (B) Docked structures for lead candidates (PDBs are available in Supporting Materials).  

 

Figure 7. Frequency (black bars) and normalized frequency (gray bars) of identified leads within each 
molecule cluster. Molecule cluster IDs are given on the x axis, and the approximate chemical classes 
which most phytochemicals within a cluster belong to are also specified on the x axis.  

Evaluation of LBVS Model. The inclusion of our ligand based virtual screen (LBVS) increased 
the rate of lead identification from 2.18% (SBVS only) to 16.44% (SBVS + LBVS). The 1000 
new phytochemicals were classified into 52 formed clusters, and 53 of them were classified into 
lead clusters. Based on the specificity of clusters, we ran a total 298 docking simulations 
between these 53 predicted lead phytochemicals and their corresponding protein structures. 
Among z-scores of 298 dockings, 49 cases (16.5%) were below -2, 214 cases (72.05%) were 
between -2 and 0, and 34 cases (11.45%) were above 0 (Table S6). Compared to the sample z-
scores of the initial dockings of 272 anti-viral phytochemicals, we introduced a negative 
distributional shift of z-scores (Figure 8A). To further validate the improved predictive power 
afforded by the ligand based approach, we docked 298 randomly selected phytochemicals that 
had been classified into non-lead clusters (Figure 8B). A z-test analysis was performed on 
sample z-scores of the two populations (phytochemicals in lead clusters and those in non-lead 
clusters). The p-value of 9.41*10-24 indicated that the mean difference of these two samples is 
statistically significant, suggesting molecule clustering and classification methods improved lead 



and non-lead class separation by using the extracted chemical features of strong binders to 
identify others. The additional phytochemicals that we predicted as lead compounds and 
confirmed by their docking energy scores are available in Table S5.  
             A random under-sampling confusion matrix was constructed to measure the performance 
of our classification (prediction) model (Table S7). The matrix was based on protein-ligand pair 
counting. The recall (true positive rate) of 0.73 and 0.68 were obtained when the energy z-score 
of -2 and -1 were used to determine actual positive and negative, respectively. This suggested 
that our model retrieved relevant lead phytochemicals. However, the F1 score of 0.27 and 0.41 
suggested that our model could be further improved. 

 
  

Figure 8. (A) Distribution of docking energy z-scores generated via SBVS alone (dark gray) and SBVS 
with the inclusion of LBVS (light gray). (B) Distribution of docking energy z-scores of phytochemicals 
classified to lead clusters (light gray) and those classified to non-lead clusters (dark gray) via LBVS. The 
red, yellow, and green dashed lines label z scores of 0, -1, and -2 respectively. 

 



Drug-likeness Screening for the 62 Identified Lead Phytochemicals. We used SwissADME to 
obtain certain drug property parameters for lead phytochemicals identified through both the 
initial SBVS and those identified through LBVS and SBVS combined (Figure 9A).52 Eighteen 
compounds (Table 1, Table S10) showed promising results with a maximum of 1 violation in all 
screened categories (drug-likeness, PAINS, Brenk, and lead-likeness). This threshold was based 
on the fact that Doravirine, a drug approved by the FDA in 2018 for the treatment of HIV, had 1 
total violation (Table S8).53 The drug-likeness violations category is based on the following 5 
rules: Lipinski, Ghose, Veber, Egan, and Muegge. PAINS alerts detect potentially promiscuous 
binders and Brenk alerts identify potentially toxic and metabolically unstable molecular moieties. 
Lead-likeness refers to similarities a given compound has to a “lead”, or a starting point for 
further drug development.

 

Figure 9. (A) The cumulative violations of each lead molecule in the drug-likeness, PAINS, lead-
likeness, and Brenk categories. (B) Plant sources for 17 promising phytochemicals identified through the 
drug-likeness screening (No plant sources could be found for 7-ethylcamptothecin). Plant names are on 
the two sides and phytochemicals are in the middle. Mahonia japonica and Camptotheca acuminata are 
bolded and contain at least 3 of the promising phytochemicals. 

              



 

Some promising phytochemicals like dihydrochelerythrine (alkaloid with antimicrobial and 
anticancer properties54 55)  were poorly soluble compared to the others despite having either 0 or 
1 total violations in all categories. Many leads were identified as potential inhibitors of some or 
all of the five main cytochrome P450 isoforms: CYP1A2, CYP2C19, CYP2C9, CYP2D6, and 
CYP3A4. Inhibition of these cytochromes can potentially lead to undesirable drug-drug 
interactions.52 Rhein, however, was not identified as an inhibitor of any of those isoforms. In 
addition, rhein and camptothecin were compared with 3 COVID-19 anti-viral medicines 
(Remdesivir, Molnupiravir, and Paxlovid) that are either FDA-authorized or awaiting approval, 
and they were also compared with Doravirine (Table S8). The comparison indicates that rhein is 
more soluble, has a higher bioavailability score, has better GI absorption, and has fewer drug 
likeness violations than Remdesivir (which has 11 drug-likeness violations). Rhein also has 
greater solubilities than Paxlovid. However, rhein has 1 PAINS alert, which may indicate an 
undesirable promiscuity. Overall, rhein and camptothecin have few violations and are classified 
as either soluble or moderately soluble in all categories (like Paxlovid and Doravirine) (Table 
S8). Our assessment is in agreement with recent reports of the therapeutic potential of rhein56 57 

and camptothecin.58 59 

Table 1: Lead phytochemical compounds from LBVS and SBVS with favorable drug-likeness 
properties targeting structural and non-structural SARS-CoV-2 proteins. Bolded compounds 
were identified using LBVS rather than SBVS alone. The cytochrome interaction field identifies 
the number of main P450 cytochrome isoforms (out of 5) that a compound interacts with. 



             Lastly, we built a phytochemical-plant network for 17 leads, in order to discover plants 
that contain more than one lead (Figure 9B) using data from Dr. Duke’s USDA Phytochemical 
and Ethnobotanical Databases.12 The network shows that the plant Camptotheca acuminata 
contains 4 leads, the plant Mahonia japonica contains 3 leads, and the rest of the plants have one 
or two connections to lead phytochemicals.  

 
Figure 10. (A) The two plants that contain 3 (Mahonia japonica) and 4 (Camptotheca acuminata) of the 
17 phytochemicals identified first as leads through SBVS or SBVS and LBVS combined, and then shown 
to have promising pharmacokinetic profiles in the SwissADME screening. The part of the plant most 
abundant in a specific phytochemical (leaf, sprout sapling, bark, stem, whole plant) are shown in the icons 
to the left of the compound names.60 61 62 63 (B) A SARS-CoV-2 virion and the four labeled viral proteins 
targeted by the compounds in panel A. Color coded circles in A correspond to the protein targeted by 
each compound.  
 
 
 
 
 
 
 
 
 
 
 



CONCLUSIONS 

           In this project, we produce new evidence in support of a polypharmacological approach 
for treating SARS-CoV-2 using naturally abundant phytochemicals. We implemented a Rosetta 
high-resolution protein-ligand docking protocol (SBVS) in combination with ligand clustering 
via machine learning strategies (LBVS) to identify combinations of promising phytochemical 
binders against several SARS-CoV-2 proteins (structural and non-structural). The initial 
structure-based virtual screen identified 34 leads from a library of 272 anti-viral phytochemicals 
using molecular docking. Ward hierarchical clustering of ligands from the initial screen revealed 
flavone and alkaloid chemical features to be most predictive of lead compounds. These results 
informed our ligand-based virtual screen, giving rise to 28 newly identified lead compounds and 
a 4-fold increase in rate of lead discovery. Applying physicochemical filters on our panel of 62 
phytochemical leads, we refined the number of therapeutically promising compounds to 18. Of 
those, rhein and camptothecin with strong potential binding affinities to NSP13 (7NIO) and 
NSP7&8 (6YHU), respectively, stood out by showing drug-likeness properties superior to those 
of Remdesivir, and comparable in many aspects to those of Paxlovid, Doravirine and 
Molnupiravir.  

          The purpose of this project is to shine light on potential phytochemicals that could be used 
in a polypharmacological manner for COVID-19 prevention and treatment. Our analyses are 
based on high-quality simulation data, statistical inferences, and machine learning predictions. 
While recent experimental64 65 and computational66 67 findings corroborate the therapeutic 
potential of the lead compounds identified here in our work, future in vivo and in vitro studies 
are needed to validate ligand function and efficacy. We hope our results and workflow will help 
to improve the scope of drug discovery efforts and reduce the high failure rate prior to costly lab 
testing. 

ASSOCIATED CONTENT 

Supporting Information 

The Supporting Information is available for free on the ACS Publications website at (link). The 
supplemental files contain the following figures, explanations, and tables in the written order: 
Histogram showing the number of instances when a protein-ligand complex from CASF-2016 
had its ligand bound in a certain CASTp-identified pocket. (Figure S1 top); CASTp-identified 
binding pockets that were sampled in the docking of each of our protein structures (Figure S1 
bottom); explanation of how the CASF-2016 data was used to establish our pocket sampling 
criteria; data table used to establish pocket volume cutoff criteria (Table S1); data table used to 
establish pocket surface area cutoff criteria (Table S2); crystal structures used in the score 
function testing (Table S3); protein targets, energy scores, and clusters of lead candidates 
identified with SBVS (Table S4); protein targets, energy scores, and clusters of lead candidates 
identified with LBVS (Table S5); Docking results of 16 known main-protease inhibitors (Figure 
S2); percentage of docking energy scores within certain ranges relative to the mean after LBVS 



was applied (Table S6); random under-sampling confusion matrix (Table S7); drug-likeness data 
comparison between promising leads and the antivirals Doravirine, Paxlovid, Molnupiravir, and 
Remdesivir (Table S8); docking script used in Rosetta (Figure S3); phytochemicals used in 
SBVS named, labeled numerically, and organized into their clusters (Table S9); SwissADME 
results of the 18 compounds identified as promising in the drug-likeness screening (Table S10).  
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NOTES 

Data and Software Availability 
For the molecular docking, Rosetta 3.12 was used which can be obtained for free with an 
academic license (https://www.rosettacommons.org/software/license-and-download). Rosetta 
3.12 was installed onto a cluster maintained by the Michigan State University Institute for Cyber 
Enabled Research. Docking jobs on this cluster were submitted using the Slurm workload 
manager. The CIDs, names, and SMILES of the 272 phytochemicals initially used in SBVS are 
available in the supporting files in a spreadsheet titled “Ligand_Library_Key_SBVS”. In that 
spreadsheet, the numerical IDs present on the left side of Figure 6A are connected to the 
phytochemicals that they represent. The SMILES and names of all the additional compounds 
screened through LBVS are available in a spreadsheet titled “AdditionalLibraryForLBVS.” The 
complete SwissADME data for the 62 lead compounds is available in the spreadsheet titled 
“SwissADMEfinalresults.” The BCL:Conf ligand conformer generator was installed alongside 
Rosetta 3.12 on the cluster, and it was obtained for free with an academic license from 
http://www.meilerlab.org/index.php/bclcommons/show/b_apps_id/1. OpenBabel was obtained 
for free from http://openbabel.org/wiki/Category:Installation. Various python scripts were used 
to generate plots, process docking input files and generate docking jobs on the cluster, and they 
are all available at (https://github.com/ziruiwang1996/ligand_protein_docking). Other files 
containing raw docking data, components for the LBVS algorithm, and PDB files of all the lead 
compounds docked against specific proteins are accessible via a link present in a README.md 
document located at the GitHub site linked previously. These other folders and files are all inside 



a Google Drive folder titled “data,” which is accessed by clicking the link in the README file. 
Additional score function testing data is available at 
https://ziruiw.shinyapps.io/score_functions_on_sarscov2/. 
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Figure S1. Global Docking Binding Pocket Validation. (top left) Using CASTp, a list of protein pockets 
were generated and ranked by volume for each structure in the CASF-2016 dataset, which consists of 285 
different ligand bound crystal structures (57 different proteins and 285 different main ligands) (Example 
PDB shown: 4AGQ). (top right) The number of instances where the main ligands from the CASF-2016 
dataset bind to a specific volumetrically ordered pocket are tabulated in a histogram. The CASTp-
identified binding pockets for the CASF-2016 structures are color-coded according to the following 
volumetric ordering: red (largest), blue, green, purple, orange, yellow, brown, pink, white (9th largest). 
Five protein structures had their main ligand located in the 15th largest CASTp-identified binding pockets 
ranked volumetrically (colored in turquoise). Seven of the structures (2% of the dataset) didn’t have their 
main ligand located in any CASTp-identified pocket (colored in gray). Overall, CASTp is quite successful 
at predicting the possible ligand binding pockets for the CASF-2016 dataset, since only 7 out of the 285 
complexes didn’t have their binding pockets identified by it. As shown, the majority of CASF-2016 



complexes had their ligand located either in their first or second largest pocket by volume. (Bottom) The 
pockets identified by CASTp that were used for docking in this study are indicated for all 15 structures 
and their respective PDB IDs. 
 
Establishment of Binding Pocket Selection Criteria: 
In order to sample a reasonable number of binding pockets on our SARS-CoV-2 protein 
receptors, we analyzed every protein-ligand complex within the CASF-2016 dataset to find what 
CASTp-identified binding pocket the main ligand was located in. For the CASTp analysis, we 
prepared protein structures so that they were split into monomers if they were oligomers (in 
order to be consistent with our docking protocol) and removed any associated waters, ions, and 
ligands used in the preparation of the crystal structure. Using the pockets’ geometric data from 
CASTp, we checked which volumetrically ordered pocket the main ligand in the crystal structure 
was bound to. Using surface area and volume data from the bound pockets, we established the 
cutoff criteria used in selecting the potential binding pockets for the SARS-CoV-2 protein 
structures we screened in our workflow.  
 
In the CASF-2016 complexes, we observed that most main ligands were bound to the largest 
pocket by volume in their respective protein structure (Figure S1, top left). However, we also 
observed that a significant number of ligands were bound to the second largest pocket by volume 
(Figure S1, top left). We therefore decided to compare the volumes of the second largest pocket 
to the first largest for the instances when the main ligand was in the second largest. We observed 
that in such cases the volumes of the second largest pocket was always larger than 10% of the 
volumes of the largest pockets for their respective structure (Table S1). Therefore, for our SARS-
CoV-2 structures, we sampled all pockets with volumes greater than 10% of the largest pocket 
volume. We also observed that the surface areas of the second largest pockets were frequently 
larger than the surface areas of the largest pockets by volume (in half of the instances when the 
main ligand was inside the second largest pocket by volume) (Table S2). Therefore, we decided 
to also sample pockets whose volumes are less than 10% of the largest pocket volume if they 
have greater surface areas than a volumetrically larger pocket.  

 
Table S1. Comparison of the volumes of the second largest and the largest pocket in the cases where the 
second largest pocket contains the ligands (volumes are in CASTp volume units). *represents a group of 5 
complexes where only ligands differ 
 

Protein 
ID* 

Volume of the largest 
Pocket  

Volume of the second 
largest Pocket 

V2nd largest/Vlargest 

1GPK 846.85 245.44 29% 
1MQ6 85.41 42.68 50% 
1O3F 25.08 

 
13.94 56% 

1O5B 61.37 
 

47.39 77% 
3B27 424.33 

 
387.34 91% 

3NQ9 60.19 
 

52.15 87% 
3WTJ 78.31 

 
53.96 69% 

4AGQ 51.37 
 

48.64 95% 
4TY7 119.38 

 
39.74 33% 

3EBP 
 
 

346.37 
 

288.50 
 

83% 

 



Table S2. Comparison of the surface areas of the second largest and the largest pocket in the cases where 
the second largest pocket contains the ligands (in CASTp area units). *represents a group of 5 complexes 
where only ligands differ. 

 
Protein 

ID* 
Surface Area of the 

largest Pocket 
Surface Area of the 

second largest Pocket 
SA2nd largest-SAlargest 

1GPK 518.80 425.84  -92.96 
1MQ6              113.05             90.12           -22.93 
1O3F 89.49 43.01   -46.48 
1O5B               74.86            104.17 29.31 
3B27 202.27 

 
477.13   274.86 

3NQ9               76.24            116.85 40.61 
3WTJ 141.43 85.46    -55.97 
4AGQ                71.43            131.11 59.68 
4TY7 151.06 76.50   -74.56 
3EBP              583.80            698.79           114.99 

 
 
Table S3. PDB IDs and ligands of crystal structures used in score function testing. 

 
SARS-CoV-2 NSP5 Structures  SARS-CoV-2 NSP3 Structures 

PDB ID Ligand  PDB ID Ligand 
7AXM Pelitinib  5RSE ZINC336438345 
7JRN Inhibitor GRL0617  5RTE ZINC13283576 
7JYC Narlaprevir  5S2A Z1263529624 
7D1M Inhibitor GC376  5RSB ZINC1601 
6XR3 GRL-024-20  5S2K Z445856640 
6WNP Boceprevir  5RTM ZINC2005 
6XMK Inhibitor 7J  5RTF ZINC2047514 
6W79 Inhibitor X77  5S2N Z1787627869 
5RF3 Z1741970824  5RVB ZINC14419577 
5RG1 NCL-00024905  5S2T Z26781964 

 
Table S4. Structure-based VS identified lead candidates for different targets with their corresponding 
docking free energy score and cluster ID. 
 

Protein PDB Energy Score Phytochemical Cluster 
 
 

NSP1 

 
 

7K3N 

-14.03 Agathisflavone 50 
-14.43 Amentoflavone 5 
-13.94 Bilobetin 5 
-13.95 Fustin 30 
-15.29 Hinokiflavone 5 

 
 
 
 

NSP3 

 
6WEN 

-20.50 Amentoflavone 5 
-20.06 Chelerythrine 36 
-20.81 Fagaronine 36 
-22.08 Ginkgetin 5 

 
 

6WEY 

-18.44 Amentoflavone 5 
-18.78 Bilobetin 5 
-18.88 Chelerythrine 36 
-18.55 Ginkgetin 5 
-19.05 Hypericin 51 
-17.72 Tannin pyragallol 11 

 
 

 
 

-17.39 Bilobetin 5 
-17.17 Desmethoxyreserpine 3 



 
 
 
 
 

NSP5 

6Y2E -17.48 Hinokiflavone 5 
-19.45 Hypericin 51 
-18.09 Pseudohypericin 51 
-17.53 Procyanidin_B2 7 

 
 
 
 

7AR5 

-17.11 Agathisflavone 50 
-16.35 Amentoflavone 5 
-16.24 Atalaphillinine 42 
-18.42 Desmethoxyreserpine 3 
-16.31 Ginkgetin 5 
-17.43 Glycycoumarin 1 
-17.79 Hinokiflavone 5 
-16.54 Hypericin 51 

 
 
 
 
 
 

NSP7&8 

 
 
 

6XIP 

-16.64 5,4'-dihydroxy-3,7,3'-
trimethoxyflavone 

9 

-16.92 Agathisflavone 50 
-16.47 Berberine 36 
-17.08 Bilobetin 5 
-16.68 Chelerythrine 36 
-17.92 Fagaronine 36 
-16.94 Ginkgetin 5 
-16.98 Papaverine 11 

 
 

6YHU 

-14.02 10-methoxycamptothecin 49 
-13.67 Berberine 36 
-13.52 Camptothecin 49 
-13.45 Ginkgetin 5 
-14.06 Hinokiflavone 5 

 
 
 
 

NSP9 

 
 

6WXD 

-17.11 Berbamine 4 
-18.19 Ginkgetin 5 
-19.83 Hypericin 51 
-18.37 Pseudohypericin 51 

 
 

6W9Q 

-18.65 3,3'-dimethylquercetin 9 
-19.10 Apogossypol 17 
-18.75 Bilobetin 5 
-19.02 Hinokiflavone 5 

 
 
 
 

NSP10 

 
 
 
 

6ZCT 

-15.59 13',ii8-biapigenin 50 
-15.99 Cyanidol 6 
-15.86 Emetine 14 
-16.32 Emodin-bianthrone 0 
-15.42 Gambiriin-b3 7 
-15.75 Hinokiflavone 5 
-16.14 Procyanidin 7 
-16.05 Procyanidin-a-2 7 

 
 
 
 
 
 

NSP13 

 
 
 

7NIO 

-18.72 13',ii8-biapigenin 50 
-19.06 Agathisflavone 50 
-17.51 Amentoflavone 5 
-17.49 Hypericin 51 
-18.61 Pseudohypericin 51 
-18.18 Rhein 0 

 
 
 

6ZSL 

-19.06 (-)-Epicatechin-3-o-gallate 48 
-18.90 Agathisflavone 50 
-18.56 Amentoflavone 5 
-19.63 Berberine 36 
-18.72 Fagaronine 36 
-18.86 Hypericin 51 
-18.21 Isolicoflavonol 20 
-19.05 Pseudohypericin 

 
51 

 
 

 
 

-20.01 Agathisflavone 50 
-20.40 Amentoflavone 5 



NSP15 6VWW -18.67 Hinokiflavone 5 
-18.28 Hypericin 51 
-19.87 Pseudohypericin 51 

 
  Spike RBD  

 
6XM4 

-15.99 Agathisflavone 50 
-16.08 Atalaphillinine 42 
-16.90 Chelerythrine 36 
-16.92 Ginkgetin 5 

 
 
 

Full Spike 
Closed State 

 
 
 

6VXX 

-15.53 Amentoflavone 5 
-14.85 Apogossypol 17 
-14.64 Bilobetin 5 
-14.35 Gambiriin-b3 7 
-15.55 Ginkgetin 5 
-15.10 Gossypol 17 
-17.31 Hypericin 51 
-17.09 Pseudohypericin 51 

 
 
 
 
Table S5. Ligand-based VS identified lead candidates for different targets with their corresponding 
docking free energy score and cluster ID. 
 

Protein PDB Energy Score Phytochemical Classified 
Cluster 

NSP3 6WEN -19.64 Palmatine chloride 36 
 

6WEY 
-18.62 Nitidine chloride 36 
-17.97 Sanguinarine chloride 36 
-19.75 Sciadopitysin 5 

NSP5 6Y2E -16.95 Morusin 42 
-18.33 Sciadopitysin 5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NSP7&8 

 
 
 
 

6XIP 

-17.00 7-Ethylcamptothecin 49 
-16.80 Dihydrochelerythrine 36 
-17.31 Epiberberine 36 
-16.64 HydroxyCamptothecine 49 
-16.64 Irinotecan 49 
-16.51 Irinotecan hydrochloride trihydrate 49 
-16.41 Palmatine chloride 36 
-16.98 Palmatrubine 36 
-17.69 Sciadopitysin 5 

 
 
 
 
 
 
 
 
 
 
 
 

6YHU 

-13.41 7-Ethylcamptothecin 49 
-14.33 Acacetin 5 
-18.50 Berberrubine 36 
-14.39 Columbamine 36 
-15.63 Dehydrocorydalin 36 
-14.01 Demethyleneberberine 36 
-16.57 Dihydrochelerythrine 36 
-14.60 Epiberberine 36 
-14.58 Eupatilin 50 
-13.66 HydroxyCamptothecine 49 
-15.30 Irinotecan 49 
-15.00 Isoorientin 50 
-14.59 Isovitexin 50 
-13.69 Jatrorrhizine 36 
-15.49 Lycobetaine 36 
-18.94 Nitidine chloride 36 
-15.42 Oroxylin A 50 
-13.90 Palmatine chloride 36 
-15.43 Palmatrubine 36 



-14.17 Pectolinarigenin 50 
-13.77 Salvigenin 50 
-16.40 Sanguinarine chloride 36 
-14.77 Sciadopitysin 5 
-14.64 Topotecan hydrochloride 49 
-13.43 Wogonoside 50 

NSP9 6WXD -17.79 Sciadopitysin 5 
 

NSP13 
6ZSL -18.64 Columbamine 36 

-18.49 Coptisine 36 
-18.24 Dihydrochelerythrine 36 

 
 

Spike RBD 

 
 

6XM4 

-16.23 Columbamine 36 
-15.77 Nitidine chloride 36 
-17.30 Palmatine chloride 36 
-16.46 Sanguinarine chloride 36 
-16.49 Sciadopitysin 5 

 
 
 

 
Figure S2. (A) Benchmarking thresholds using docking data of 16 known main protease inhibitors for 
main protease structures 6Y2E and 7AR5. The compounds were docked through our main docking 
protocol, and their energy scores were compared to those the mean energy score of the 272 initially 
docked phytochemicals. 69% of them were below the mean in the case of 6Y2E, and 63% were below the 
mean in the case of 7AR5.  
 
Table S6. The percentage of docking energy scores in each specified range for predicted lead 
phytochemicals after LBVS.  
 

Protein PDB < μ-2σ μ ~ μ-2σ > μ 
NSP1 7K3N 0% 82.14% 17.86% 
NSP3 6WEN 5.88% 94.12% 0% 

6WEY 17.65% 82.35% 0% 
NSP5 6Y2E 28.57% 71.43% 0% 

7AR5 0% 71.43% 28.57% 
NSP7&8 6XIP 25.71% 71.43% 2.86% 



6YHU 62.5% 37.5% 0% 
NSP9 6WXD 16.67% 83.33% 0% 

6W9Q 0% 100% 0% 
NSP10 6ZCT 0% 100% 0% 
NSP13 7NIO 0% 82.35% 17.65% 

6ZSL 9.38% 84.37% 6.25% 
NSP15 6VWW 0% 50% 50% 
RBD 6XM4 13.89% 66.67% 19.44% 
Spike 6VXX 0% 100% 0% 

          Total 16.50% 72.05% 11.45% 

 
 
 
 
Table S7. Random Under-sampling Confusion Matrix. When the energy score of at least 2 
standard deviations below the average (or energy z-score less than -2) was used to determine the 
actual positive and negative, a precision of 0.16, recall of 0.73, fall-out of 0.47, and F-score of 
0.27 were obtained. When an energy z-score less than -1 was used to determine the actual 
positive and negative, a precision of 0.45, recall of 0.68, fall-out of 0.4, and F-score of 0.41 were 
obtained.  
 

 Threshold z-score = -2  Threshold z-score = -1 
 Predicted Positive Predicted Negative  Predicted Positive Predicted Negative 

Actual Positive TP=49 (8.22%) FN=18 (3.02%)  TP=133 (22.32%) FN=62 (10.40%) 
Actual Negative FP=249 (41.78%) TN=280 (46.98%)  FP=165 (27.68%) TN=236 (39.60%) 

 
 
Table S8. SwissADME data for the comparison of camptothecin and rhein to 3 COVID-19 drugs and 1 
HIV drug (Doravirine). 

Molecule Camptothecin Rhein Remdesivir (Gilead) Molnupiravir (Merck) Paxlovid (Pfizer) Doravirine 

MR 95.31 68.81 150.43 76.02 125.68 95.36 

TPSA 81.42 114.73 213.36 143.14 131.4 105.7 

iLOGP 2.49 1.28 3.52 0.17 3.01 2.69 

XLOGP3 
 

1.74 2.23 1.91 -1.34 2.17 2.09 

WLOGP 1.82 0.24 2.21 -1.65 1.6 3.81 

MLOGP 1.64 0.29 0.18 -1.15 0.41 1.89 

Silicos-IT Log P 
 

3.29 1.96 -0.05 -1.82 2.25 3.27 

Consensus Log P 
 

2.2 1.2 1.56 -1.16 1.89 2.75 

ESOL Log S 
 

-3.49 -3.36 -4.12 -0.83 -3.58 -3.9 

ESOL Solubility (mol/l) 
 

3.27E-04 4.39E-04 7.59E-05 1.46E-01 2.64E-04 1.26E-04 
 

ESOL Class 
 

Soluble Soluble Moderately soluble Very soluble Soluble Soluble 

Ali Log S 
 

-3.07 -4.27 -6.01 -1.17 -4.56 -3.94 

Ali Solubility (mol/l) 
 

8.58E-04 5.31E-05 9.69E-07 6.81E-02 2.74E-05 1.15E-04 
 

Ali Class 
 

Soluble Moderately 
Soluble 

Poorly soluble Very soluble Moderately soluble Soluble 

Silicos-IT LogSw 
 

-5.83 -3.46 -4.77 0.12 -3.94 -5.71 
 



Silicos-IT Solubility (mol/l) 
 

1.49E-06 3.44E-04 1.71E-05 1.32 1.14E-04 1.95E-06 
 

Silicos-IT class 
 

Moderately 
soluble 

Soluble Moderately soluble Soluble Soluble Moderately soluble 

GI absorption 
 

High High Low Low High High 

BBB permeant 
 

No No No No No No 

Pgp substrate Yes No Yes No Yes No 

CYP1A2 inhibitor 
 

Yes No No No No No 

CYP2C19 inhibitor 
 

No No No No No No 

CYP2C9 inhibitor 
 

Yes No No No No Yes 

CYP2D6 inhibitor 
 

No No No No No No 

CYP3A4 inhibitor 
 

Yes No Yes No Yes No 

log Kp (cm/s) 
 

-7.19 -6.44 -8.62 -9.26 -7.81 -7.41 

Total Drug-likeness 
violations 

0 0 11 3 2 0 

PAINS alerts 
 

0 1 0 0 0 0 

Brenk alerts 
 

0 0 1 1 0 0 

Lead-likeness violations 
 

0 0 2 0 2 1 

Synthetic Accessibility 
 

3.84 2.55 6.33 4.49 4.82 3.28 

Bioavailability Score 0.55 0.56 0.17 0.55 0.55 0.55 

 
 
Docking Script RosettaLigand Score Function 
<ROSETTASCRIPTS> 

<SCOREFXNS> 
<ScoreFunction name="ligand_soft_rep" weights="ligand_soft_rep"> 

<Reweight scoretype="fa_elec" weight="0.42"/> 
<Reweight scoretype="hbond_bb_sc" weight="1.3"/> 
<Reweight scoretype="hbond_sc" weight="1.3"/> 
<Reweight scoretype="rama" weight="0.2"/> 

</ScoreFunction> 
<ScoreFunction name="hard_rep" weights="ligand"> 

<Reweight scoretype="fa_intra_rep" weight="0.004"/> 
<Reweight scoretype="fa_elec" weight="0.42" /> 
<Reweight scoretype="hbond_bb_sc" weight="1.3"/> 
<Reweight scoretype="hbond_sc" weight="1.3"/> 
<Reweight scoretype="rama" weight="0.2"/> 

</ScoreFunction> 
</SCOREFXNS> 
<LIGAND_AREAS> 

<LigandArea name="inhibitor_dock_sc" chain="X" cutoff="6.0" add_nbr_radius="true" 
all_atom_mode="true"/> 

<LigandArea name="inhibitor_final_sc" chain="X" cutoff="6.0" add_nbr_radius="true" 
all_atom_mode="true"/> 

<LigandArea name="inhibitor_final_bb" chain="X" cutoff="7.0" add_nbr_radius="false" 
all_atom_mode="true" Calpha_restraints="0.3"/> 

</LIGAND_AREAS> 
<INTERFACE_BUILDERS> 

<InterfaceBuilder name="side_chain_for_docking" ligand_areas="inhibitor_dock_sc"/> 
<InterfaceBuilder name="side_chain_for_final" ligand_areas="inhibitor_final_sc"/> 
<InterfaceBuilder name="backbone" ligand_areas="inhibitor_final_bb" extension_window="3"/> 

</INTERFACE_BUILDERS> 
<MOVEMAP_BUILDERS> 

<MoveMapBuilder name="docking" sc_interface="side_chain_for_docking" minimize_water="false"/> 
<MoveMapBuilder name="final" sc_interface="side_chain_for_final" bb_interface="backbone" 

minimize_water="false"/> 
</MOVEMAP_BUILDERS> 
<SCORINGGRIDS ligand_chain="X" width="30"> 

<ClassicGrid grid_name="classic" weight="1.0"/> 
</SCORINGGRIDS> 
<TASKOPERATIONS> 



    </TASKOPERATIONS> 
<MOVERS> 

<StartFrom name="start_from" chain="X"> </StartFrom> 
<Transform name="transform" chain="X" box_size="14" move_distance="0.2" angle="20" cycles="1000" 

repeats="1" temperature="5" initial_perturb="5.0"/> 
<HighResDocker name="high_res_docker" cycles="6" repack_every_Nth="3" scorefxn="ligand_soft_rep" 

movemap_builder="docking"/> 
<FinalMinimizer name="final" scorefxn="hard_rep" movemap_builder="final"/> 
<InterfaceScoreCalculator name="add_scores" chains="X" scorefxn="hard_rep"/> 

</MOVERS> 
<PROTOCOLS> 

<Add mover_name="start_from"/> 
<Add mover_name="transform"/> 
<Add mover_name="high_res_docker"/> 
<Add mover_name="final"/> 
<Add mover_name="add_scores"/> 

</PROTOCOLS> 
</ROSETTASCRIPTS> 
 
Figure S3: Docking Script used with RosettaLigand (pre-talaris 2013) for ligand docking runs.  
 
 
Table S9 Clustering of the 272 anti-viral phytochemicals used in SBVS. Compound names and ligand 
IDs used in the supplementary spreadsheet titled “Ligand_Library_Key_SBVS” are given. Cluster 
numbers are given in the left column. Cluster numbers here correspond to the cluster numbers on the 
dendogram in Figure 6A. 
0 

    
    
ALOE-EMODIN (27)                                         ALOIN (28)                                                                    CITPRESSINE-1  (95)                                         CITRUSININE-I  (97)            

 
CITRUSININE-II  (98)                                          EMODIN-BIANTHRONE (128)                                            EMODIN (136)                                              RHEIN (234) 
 
 

1 

   GLYCYCOUMARIN (154)                                            GLABRIDIN (158)                       LICOPYRANOCOUMARIN (185)                         TETRAHYDROCANNABINOL (255) 
 
 

2 

       ARCTIGENIN (41)                           ARISTOLCHIC-ACID (42)                 CHELIDONINE (82)        DIHYDROANHYDROPODORHIZOL (118)             LYCORINE (194)         



 

 
 
           NARCOTINE (203)    

3 

     APPARICINE  (39)                             DESMETHOXYRESERPINE (122)                        PERIVINE (213) 

4 

          BERBAMINE (55)                                              CODEINE (99)                                THEBAINE (257) 

5 

AMENTOFLAVONE (33)                                                     APIGENIN (37)                                                  BILOBETIN (65)                                                       CHRYSIN (87) 

           CHRYSOERIOL (88)                                                          DIOSMETIN (120)                                    GINKGETIN (151)                                       HINOKIFLAVONE (163) 
 
 

 
 

 
 
 
 
 

                       LUTEOLIN (190) 



6 

           CYANIDOL (104)                                                 DAIDZEIN (109)                                           GENISTEIN (149)                                  GLYCYRRHISOFLAVONE (156)      
 

                PELARGONIDIN (211)       

7           

          (-)-EPICATECHIN (4)                                           CATECHIN-7-O-GALLATE (76)                                  CATECHIN (77)                               EPIGALLOCATECHIN (137) 
 
 

                GAMBIRIIN-A1 (147)                                               GAMBIRIIN-B3  (148)                             PROCYANIDIN-A-2 (219)                           PROCYANIDIN (220) 
 

 
 
 
 
 
 
 
 
 
 

 
                 PROCYANIDIN B2  (227)                                      THEAFLAVIN (256) 

8 

    CHEBULAGIC-ACID (80)                                                 TANNIN  (270)                                                  GERANIIN  (272)                            PENTAGALLOYL GLUCOSE (273) 

                            EUGENIIN (274) 



9 

3,3’-DIMETHYLQUERCETIN (11)               3,7’-DIMETHYLQUERCETIN (12)                  3-METHYLQUERCETIN (13)                4',7-DIHYDROXY-3-METHOXY-5,6-DIMETHYLFLAVONE (15) 

    

5,4'-DIHYDROXY-3,7,3'-TRIMETHOXYFLAVONE (17)                    AXILLARIN (50)                                          CHRYSOSPLENETIN (89)                               CHRYSOSPLENOL-C (90) 
 
 
 
 

CHRYSOSPLENOL-D (91)                                                       PACHYPODOL (209)                                    PENDULETIN (212)                                     QUERCETIN-3-O-METHYL-ETHER (230)    

 

10 

2-O-CAFFEOYL-(+)-ALLOHYDROXYCITRIC-ACID (10)             CHICORIC-ACID (83)                           CHLOROGENIC ACID (85)                         CHLOROGENIC ACID BUTYL ESTER (86) 
 
 

ROSMARINIC ACID (236) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



11  

 
ADENINE (22)           BENZYL ISOTHIOCYANATE (54)          CAFFEINE (69)                               CATECHOL (78)                    CINNAMALDEHYDE (94)                DICTAMNINE (117)                   
 
 

         EPHEDRINE (129)                                                 HARMINE (161)                                               PAPAVERINE (210)                                                     PHENOL (214) 

 
ANTHOCYANIN (226)                                                     RICININ (235)                                              THEOPHYLLINE (258)                                        TANNIN PYRAGALLOL (266) 

 
12 

          BOROPINIC ACID (67)                                                 CAFFEIC-ACID (68)                                         CURCUMIN (103)                                              CAPSAICIN (106) 

DEMETHOXYCURCUMIN  (121)                                             EUGENOL (138)                                   FERULIC-ACID (139)                                         MOUPINAMIDE (200) 

N-CIS-FERULOYLTYRAMINE (202)                                                            SUBAPHYLLIN (248)                                                              VANILLIN (263) 



13 

3-O-TRANS-CAFFEOYLTORMENTIC ACID (14)                                  MASLINIC ACID (196)                                         OLEANOLIC ACID (206)  

URSONIC ACID (261)                                                                                       URSOLIC ACID (262)   

14 

ANAGYRINE (34)                                                                       CINCHONIDINE (93)                                          CRYPTOPLEURINE (102)                                                EMETINE (127) 
15 

4-HYDROXY-3-METHOXYFLAVONE (16)                      8-METHOXY PSORALEN (21)                     ANGELICIN (35)                                         COLCHAMINE (100)    
 

                        ELLAGIC ACID (126)                                     JUGLONE (179)                                LEPTODACTYLONE (191)                                            PSORALEN (225) 
                                          
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                          TASPINE (253) 



16 

             AJOENE  (24)                                                           ALLICIN (25)                                      ALLYL ALCOHOL (26)                  ASCORBIC ACID (45)                      CALCIUM ELENOLATE (70)          

CANAVANINE (72)                                                                    CARNOSINE (73)                                                                 CASTANOSPERMINE (74)                             D-GLUCOSAMINE (108)  
 
 

DIALLYL DISULFIDE (115)                                                        DIALLYL TRISULFIDE (116)                      DIHOMO GAMMA LINOLEIC ACID (123)                                  ERYSOLIN (134) 
 

FORMALDEHYDE (141)                                                                          LAURIC ACID (183)                                        PROTOANEMONIN (222)                                              THIARUBRINE-A (259) 
 

       SULPHORAPHAN  (267)                                                          NONACOSANE (268)                                                               OCTACOSANOL (269)       
                                

17 

2,7-DIHYDROXYCADALENE  (9)                            APOGOSSYPOL (38)                                        BETA-RESERCYLIC ACID (58)                 GALLIC ACID (146)                  GENTISIC ACID (150) 
 
 

 
GOSSYPOL (157)                                                   ISOLIQUIRITIGENIN (176)                 LICOCHALCONE-A (184)                  METHYL GALLATE (197)           PROTOCATECHUIC ACID (223) 

SUGIOL (252) 
 



18 

ALPHA-PINENE (31)             BORNYL ACETATE (66)             DEOXYARTEMISININ (113)            EPICUBEBOL GLYCOSIDE (130)                      ERGOSTEROL (133)      
 

HAINANOLIDE (160)                                        ISOBORNEOL (173)                                LOLIOLIDE (193)                                        STEMODIN (245) 

19 

           APIIN (51)                                                                                                                                RHOIFOLIN (238) 

20 

   FISETIN  (140)                                                                GALANGIN (145)                                            ISOLICOFLAVONOL (175)                                   KAEMPFEROL (181) 
 

            MORIN  (198)                                                                                 MYRICETIN (199)                                                                QUERCETIN (231) 



21 

5-O-METHYLGENISTIN (19)                                                                        CYANIN (105)                                                                                          LUTEOLIN-7- GLUCOSIDE (189) 
 
 

                     POLYDATIN (217)                                                                  QUERCETAGITRIN (229)                                                                                        QUERCIMERITRIN (232) 

22 

ALPHA-APOPICROPODOPHYLLOTOXIN (29)           ANHYDROPODOPHYLLOL (36)                      DEOXYPODOPHYLLOTOXIN (114)                              ETOPOSIDE (135) 
 
 

                         LIGNANS (186)                                                         PICROPODOPHYLLOTOXIN (215)                                      PODOPHYLLOTOXIN (216) 



23 

(1’S)-1’-ACETOXYCHAVICOL ACETATE (6)                              AR-CURCUMENE (40)                                                BAKUCHIOL (53)                                  BETA_BISABOLENE (61)                                                        CITRAL (96) 
 
 
 

 
 LAPACHOL (182)                                                                                                LINALOOL (187)                                                                 LIMONENE (192)                                                                              NERYL ACETATE (205) 
   
 

           P CYMENE (208)                                                                                              SHIKONIN (250) 
 

24 

              HYPERIN (169)                                                                                     ISOQUERCETIN (177)                                                   KAEMPFEROL-3-O-GLUCOSIDE (180) 

MYRICITRIN (201)                                                                                   QUERCITRIN (233)                                                                                       RUTIN (237)                      
25 

SCOPADULCIC-ACID-B (240)                                                                                 SCOPADULIN (241) 

 



26 

                  ATROPINE (48)                                                    HOMATROPINE (164)                               HYOSCYAMINE (167)                                 SCOPOLAMINE (242)                                           
27 

           AURANTIIN (49)                                                                   HESPERITIN (162)                                   HESPERIDIN (171)                                   NARINGENIN (204) 
28 

PROSCILLARIDIN-A (221)                                              SCILLARENIN (239) 
29 

ALPHA PELTATINE (32)                                                                             BETA PELTATINE (62) 
30 

DIHYDROFISETIN (119)                                                                                                            FUSTIN (142)                                                                                    SILIBININ (251)                      

TAXIFOLIN  (254)                                                                               



31 

          GLYCYRRHETINIC ACID (155)                                                                              GLYCYRRHIZIN (271) 
32 

                             FENUGREEKINE (144) 
33 

                        CASTELANONE (75)                                                                  CHAPARRINONE (79)                                                                 GLAUCARUBOLONE (153) 
34 

BETULIN (63)                                                                                             BETULINIC ACID (64)                                                                    EPILUPEOL ACETATE (131)                         

 

           EPILUPEOL (132)                                                                                            LUPEOL (188) 

35 

DAMMARENOLIC ACID (112)                                                              EICHLERIANIC ACID (125)                                                            SHOREIC ACID (244) 



36 

BERBERASTINE (56)                                                               BERBERINE (57)                                               CHELERYTHRINE (81)                                    FAGARONINE (143) 
37 

DAMMARADIENOL (110)                                                       DAMMARARNEDIOL-II (111)                               HYDROXYDAMMARENONE-I  (165) 

HYDROXYHOPANONE (166)                                                                ISOFOUQUIEROL (174) 

38 

MANGIFERIN (195)                                                                                  PUERARIN (228)                                                                        VITEXIN (264) 
39 

 
GITOXIN (275) 



40 

              OUABAIN (207) 
41 

BETA SITOSTEROL 3-O-BETA D GLUCOPYRANOSIDE (59)                                          BETA SITOSTEROL (60)                                                                            STIGMASTEROL (246) 

42 

ATALAPHILLIDINE (46)                                                            ATALAPHILLININE (47) 
43 

    ARTEANNUAN (43) 
44 

7-O-METHYL GLABRANINE (20)                                                            GLABRANIN (152) 



45 

6 HYDROXYCRINAMINE (18)                                      CRINAMINE (101)                        HAEMANTHAMINE (159)                                   PRETAZETTINE (218) 
46 

CRYPTOTANSHINONE (107)                                                TANSHINONE IIA (260) 
47 

WITHAFERIN A (265) 
48 

(+)-CATECHIN 3-O GALLATE (1)                                                          (-)-EPICATECHIN 3 O GALLATE (2)                                   (-)-EPIGALLOCATECHIN GALLATE (3) 

 
 

(-)-GALLOCATECHIN 3-O GALLATE (5) 



49 

10-METHOXYCAMPTOTHECIN (7)                                                         CAMPTOTHECIN (71) 

50 

13’,II8 BIAPIGENIN (8)                                                AGATHISFLAVONE (23)                                 BAICALEIN (52)                                                   ISOSCUTELLAREIN (178)  

 
 

SCUTELLAREIN (243)                                                                     SCUTELLARIN (249) 

51 

HYPERICIN (168)                                                                                             PSEUDOHYPERICIN (224) 

 
 
  



Table S10. Drug-likeness screening results and docking results of the 18 promising leads. Bolded 
compounds were identified using LBVS and SBVS. Molecule design could be applied for further 
property improvements. * The three solubility categories are ESOL, Ali, and Silicos IT. ** Out of 5 main 
P450 cytochromes: CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4. 

Compounds Average 
solubility* 

(mol/L) 

Number of 
cytochromes 
inhibited**  

Target PDB Docking 
E-Score 

Cluster 

10-methoxycamptothecin 2.9E-04 4 NSP7&8 6YHU -14.0 49 
3,3'-dimethylquercetin 2.8E-05 4 NSP9 6W9Q -18.7 9 
5,4'-dihydroxy-3,7,3'-

trimethoxyflavone 
1.5E-05 4 NSP7&8 6XIP -16.6 9 

7-ethylcamptothecin 7.1E-05 5 NSP7&8 6XIP -17.0 49 
6YHU -13.4 

Acacetin 3.3E-05 4 NSP7&8 6YHU -14.3 5 
Camptothecin 4.0E-04 3 NSP7&8 6YHU -13.5 49 

 
Columbamine 

 
3.7E-05 

 
3 

NSP7&8 6YHU -14.4  
36 NSP13 6ZSL -18.6 

Spike RBD 6XM4 -16.2 
Coptisine 4.3E-05 2 NSP13 6ZSL -18.5 36 

 
Dihydrochelerythrine 

 
8.6E-06 

 
5 

NSP7&8 6XIP -16.8  
36 6YHU -16.6 

NSP13 6ZSL -18.2 
Eupatilin 2.0E-05 4 NSP7&8 6YHU -14.6 50 

Hydroxycamptothecin 4.1E-04 1 NSP7&8 6XIP -16.6 49 
6YHU -13.7 

Jatrorrhizine 3.7E-05 3 NSP7&8 6YHU -13.7 36 
Oroxylin A 2.7E-05 4 NSP7&8 6YHU -15.4 50 

Palmatrubine 3.7E-05 3 NSP7&8 6XIP -17.0 36 
6YHU -15.4 

Papaverine 1.2E-04 5 NSP7&8 6XIP -17.0 36 
Pectolinarigenin 2.8E-05 4 NSP7&8 6YHU -14.2 50 

Rhein 2.8E-04 0 NSP13 7NIO -18.2 0 
Salvigenin 1.7E-05 5 NSP7&8 6YHU -13.8 50 

 
             
             
             
             
             
             
  


