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Materials optimization for organic solar cells (OSCs) is a highly active field, with many

approaches using empirical experimental synthesis, computational brute-force approaches

to screen candidates in a given subset of chemical space, or generative machine learning

methods which often require significant training sets. While these methods may find high-

performing materials, they can be inefficient and time-consuming. Genetic algorithms

(GAs) are an alternative approach, allowing for the "virtual synthesis" of molecules and

a prediction of their “fitness” for some property, with new candidates suggested based

on good characteristics of previously generated molecules. In this work, a GA is used

to discover high-performing unfused non-fullerene acceptors (NFAs) based on an empir-

ical prediction of power conversion efficiency (PCE) and provides design rules for future

work. The electron withdrawing/donating strength, as well as the sequence and symmetry

of those units are examined. The utilization of a GA over a brute force approach resulted in

speedups up to 1.8×1012. New types of units not frequently seen in OSCs are suggested,

and in total 5,426 NFAs are discovered with the GA. Of these, 1,087 NFAs are predicted

to have a PCE greater than 18%, which is roughly the current record efficiency. While

the symmetry of the sequence showed no correlation with PCE, analysis of the sequence

arrangement revealed that higher performance can be achieved with a donor core and ac-

ceptor end groups. Future NFA designs should consider this strategy as an alternative to

the current A-D-A′-D-A architecture.
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I. INTRODUCTION

Organic solar cells (OSCs) offer the vast tailorability of organic molecular, oligomer, and poly-

mer motifs to convert light into electrons. To improve the performance of OSCs, there has been

much research focusing on the optimization of p-type donor materials, with conjugated organic

polymers being the most popular1–4. For a p-type donor material to perform well, however, it

needs to be paired with a complementary n-type acceptor, frequently small molecules. Multiple

properties can determine whether the materials are a good match, such as strong absorption of

different wavelengths, energy level alignment for efficient exciton splitting and low energy loss,

and optimal solubility to form suitable domains within the active layer.

Up until recently, fullerenes were the most frequently used acceptor due to their excellent elec-

tron transport and good energy alignment with commonly used donors5. They have drawbacks

when acting as acceptors, however, including weak light absorption, complex synthesis, limited

tunability, and poor photostability6,7. As an alternative, non-fullerene small molecules emerged,

showing highly tunable optical and electronic properties, strong absorption of visible and near-

infrared (NIR) light, and low production cost6–8. The most common design for NFAs is joining

electron-withdrawing units and electron donating units, due to their "push-pull" effect and en-

hanced intramolecular charge transfer (ICT). This effect has been shown to improve the PCE by

broadening the absorption spectrum and improving charge mobility9,10.

Huge strides have been made in the last two years due to the emergence of the Y-series

acceptors11,12, with the PCE surpassing 18%13,14, much higher than the highest PCE of 11.7%

for fullerene binary devices15,16. Due to their extended conjugation, they have narrower optical

band gaps, allowing the absorption of visible to NIR light17. The general configuration is A-

DA′D-A, with the fused backbone allowing for planarity which increases the crystallinity and π

orbital stacking within the device18. While fused NFAs have shown great promise, they have some

drawbacks that limit their commercial potential. To form the fused backbone structure requires

complex synthesis, often with 5-15 steps19,20. This difficult synthesis process increases the cost

and results in low yield. Recent studies also show poor stability of fused ring NFA devices, due to

their tendency to undergo photo-oxidation when exposed to light and air21–25. A recent strategy

to mitigate some of these issues is to use unfused analogs of these acceptors. Unfused NFAs are

similarly designed with electron-withdrawing (acceptor) and electron-donating (donor) organic

conjugated units, but are separated by single bonds instead of fused rings. This allows a much
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simpler synthesis (around 2-4 steps), higher yield, and generally better photostability22,26,27.

It has been previously shown that the arrangement of acceptor and donor units in conjugated

polymers affects their optoelectronic properties28–30. While A-DA′D-A is the most common se-

quence, attributed to the high success of this sequence in Y-series NFAs, other sequences are

emerging as strong contenders, with asymmetry showing much promise19. Asymmetric NFAs

may have larger dipole moments, broader absorption, higher electron mobility, and lower crys-

tallinity than their symmetric counterparts31–35.

The current highest PCE for organic solar cells is 19%36, much lower than the theoretical limit

of ~33% predicted by Shockley and Queisser37 for single-junction devices. With the perfect com-

bination of materials, we should be able to far exceed the current highest experimentally-produced

PCE. However, finding these materials is similar to finding two needles in different haystacks.

Not only do we need optimal acceptor and donor materials, but they need to be perfectly comple-

mentary for energy level alignment and light absorption to minimize energy losses. To discover

new materials, the use of computational screening methods has emerged as a promising alternative

to experimental screening.38–50 The molecular chemical space for organic molecules is estimated

to be 1018-10200 compounds51,52, which is impossible to evaluate experimentally. Computational

screening allows for "virtual synthesis", a quick and relatively cheap method to explore promising

materials and create in silico molecular libraries41,45. One type of computational screening is high-

throughput virtual screening (HTVS), where every candidate in a library is screened38,40,53. The

largest HTVS for organic photovoltaics (OPVs) is the Harvard Clean Energy Project, which used

electronic structure calculations to evaluate the PCE for 2.6 million conjugated donor molecules

and 51,000 NFAs using Scharber’s model47,49. However, HTVS and other brute-force searches are

inefficient and screen a massive number of molecules unlikely to be high-performing candidates.

An alternative technique is the use of inverse design strategies, which set an ideal target value

of a property as a starting point, and use algorithms to design new materials that optimize that

property. One such technique is a genetic algorithm (GA), a type of evolutionary algorithm based

on natural selection in which the fittest candidates pass to the next generation. In a GA designed

for materials discovery, a population of potential molecules is generated that optimize a given

property and their suitability is evaluated with a "fitness function". Considering many fitness

functions require quantum chemical calculations, low cost semi-empirical methods should be used

for fast and efficient chemical searches. Since the goal of this work is to evaluate potential NFAs,

the Organic Photovoltaic Efficiency Predictor using simplified time-dependent density functional
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FIG. 1. A simplified genetic algorithm scheme displaying the selection, crossover, and mutation opera-

tions to optimize non-fullerene acceptors composed of electron-accepting (acceptor) and electron-donating

(donor) units.

theory (OPEP/sTD-DFT) model proposed in our earlier work54 is used as the fitness function to

quickly evaluate the PCE of NFAs. This model requires the difference in energy between the

HOMO and HOMO-1 and the sum of the oscillator strengths of the acceptor, obtained through

sTD-DFT calculations. Other parameters for the model include properties of the donor material,

with the polymer PBDB-T-SF producing the highest PCEs out of 20 donors. Thus, PBDB-T-SF

is selected as the donor material to pair with new NFAs in the GA. The best candidates of each

generation are selected to undergo crossover and mutation operations to ensure the exploration of

4



nearby chemical space, producing children for the next generation. This cycle of parent selection,

crossover, mutation, and evaluation of fitness continues until the target property has been satisfied,

or after a certain number of generations, as seen in Fig. 1. The main advantage of using a GA is

to learn from each successive generation to design even better candidates. Our group previously

used a GA to efficiently screen donor polymers for fullerene-based OPVs, producing hundreds of

promising targets and discovering design principles related to the sequence of the monomers30.

In this work, we report new design principles for NFAs discovered by screening thousands of

molecules with a genetic algorithm. The types of building blocks, sequence, and symmetry are

analyzed, and new NFAs are proposed that can reach PCEs over 22%.

II. RESULTS AND DISCUSSION

Four versions of the genetic algorithm were implemented to understand the structure-property

relationships and provide design rules for optimized NFAs. In version 1, the GA searched for high-

performing NFAs with an A-D-A′-D-A structure. This is a commonly used sequence, especially

it being the unfused analogue of the high performing y-series acceptors. The acceptor and donor

units comprising these NFAs were chosen from a library of units found in high-performing NFAs.

This library was compiled by examining hundreds of NFAs previously published in literature.

Within this library, the units were classified as either terminal or core units, where terminal refers

to end-capping units and the core can be anywhere in NFA. The library for version 1 contains 104

acceptor units and 88 donor units (Fig. 2).

To expand the search space, the library was extended to small conjugated organic molecules not

frequently employed in NFAs. Previous work in our group utilized a GA to search for donor ma-

terials for OSCs30, which uses units similarly found in NFAs. In versions 2 and 3, the unit library

was expanded to 949 donor units and 295 acceptor units (Fig. 2). In addition to expanding the

search space, the arrangements of the units are analyzed. In version 2, the sequence was restricted

to symmetrical arrangements and in version 3, any sequence was permitted. To ensure that most

of the top candidates were found, a fourth version was performed whose dataset comprised of the

units frequently selected in versions 1 and 2, and allowed any sequence of these units.

The GA was allowed to run for 100 generations, or until the best PCE remained steady for

approximately 30 generations, whichever occurred later. Fig. 3 shows the best PCE among 32

NFAs from each generation. As expected, the PCE increases as the generations evolve, confirming
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FIG. 2. Examples of building block units used in versions 1 (V1), 2 (V2), and 3 (V3), with terminal units

referring to units used as end groups on the NFA, and cores referring to use anywhere in the molecule.

Cores are included in the terminal subset.

that the GA works and is efficiently exploring the chemical space. Version 1, with the dataset

containing units already used in NFAs and restricted to the sequence A-D-A′-D-A, found the best

performing NFA with a PCE of 20.9% after 26 generations. Version 2, containing the expanded

dataset and restricted to symmetrical sequences, found the top performing NFA with a PCE of

22.9% after 39 generations. Once the sequence was unrestricted in versions 3 and 4, the best PCE

took longer to stabilize, mainly due to the increase in magnitude of the size of the search space.

Version 3 found the best NFA after 84 generations with a PCE of 20.2%, while Version 4 found

the best NFA after 70 generations of 22.3%. As the search space increases, the GA requires more

generations to efficiently search for top candidates. With the current record PCE of 15.2% for

unfused NFAs55, these results show tremendous potential. Utilization of a GA instead of a brute-

force approach shows a massive speedup, up to a magnitude of 1012, seen in Table I. While the

search space for each version is massive, on the order of 105, 107, 1015, 1011, for versions 1-4,

respectively, tiny percentages of these areas had to be traversed to find high-performing NFAs.

Examination of the sequences selected in versions 2-4 shows a preference for donor cores and

acceptor end groups. Over 80% of the NFAs in version 2 had either the A-D-D′-D-A or A-A′-

D-A′-A sequence (Fig. S1). Version 3 shows over 80% of the NFAs have one central donor

unit flanked by two acceptor units, while version 4 shows over 60% of the NFAs discovered have
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FIG. 3. Plots of the PCE of the best scoring candidate for each generation for versions 1-4. All PCEs were

calculated using OPEP/sTD-DFT with the donor PBDB-T-SF

TABLE I. Performance of all four versions of the GA, including the highest PCE found, the percentage of

search space examined before the best PCE was found, and the speedup of using a GA over a brute force

approach (search space/ total NFAs analyzed)

Version Best PCE Search Space Speedup

1 20.9% 2.8×105 733

2 22.9% 6.4×107 1.1×105

3 20.2% 2.1×1015 1.8×1012

4 22.3% 1.7×1011 1.7×108

three donor core units and acceptor terminal units (Figs. S2a and S3a). Similar results within

all three versions suggests a donor core and acceptor end groups are essential for improving the

PCE. The symmetry of the sequence was also examined. Around 70% of the sequences in version

3 were asymmetric, while around 70% of sequences in version 4 were symmetric (Figs. S2b

and S3b). While there is no clear correlation between the symmetry of the sequence and PCE, it is

interesting to note that the top performers from version 3 were symmetric while the top performers

from version 4 were asymmetric.

The types of units frequently selected were explored to examine if current experimental NFAs

efficiently select promising building-blocks. Fig. 4 demonstrates that there are multiple units

that appeared in hundreds or even thousands of NFAs throughout the GA. The top ten units most

commonly selected as terminal groups all originated from the initial dataset used in version 1. This

indicates that experimental NFAs currently employ the top high-performing end groups. However,
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out of the top ten core units, eight of them are from the expanded dataset of units not currently

utilized in NFAs. This suggests new types of units to be incorporated into future NFAs.
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FIG. 4. The top occurring monomer units. a) Frequency of the top 10 terminal units (one point of attach-

ment, can only be end units) throughout all four GA versions. b) Frequency of top 10 core units (two points

of attachment, can be used anywhere in the molecule) throughout all four versions. c) Molecular structures

of the top 10 terminal units seen in a). d) Molecular structures of the top 10 core units found in b).

To understand the impact of the electron-withdrawing/donating strength of the building units

on the PCE, the HOMO energy of each unit is examined. In Fig. 5, the HOMO energy levels of the

top five candidates from each version are examined. Thiophene was selected as a middle-ground

with a monomer HOMO of -6.55 eV, allowing the classification of acceptors to be units with a

HOMO below thiophene, and donors as above. The deeper the color, the stronger the electron-

withdrawing or donating strength. When the sequence was not restricted (versions 2-4), the top

performing NFAs all contained similar electronic sequences. The results suggest that having NFAs

with acceptor end groups and donor cores can result in better performing NFAs. To further verify

this, 50 high-performing NFAs from version 1 with the A-D-A′-D-A sequence were compared to

their A-D-D-D-A analogues (Fig S4). If there were multiple NFAs from version 1 that would result

in the same A-D-D-D-A sequence (same terminal acceptor and donor core), then the NFA with the

highest PCE was selected for comparison, since this is the theoretical highest PCE analyzed for

that sequence. When comparing the PCE, 57.1% of the NFAs showed better performance with the

A-D-D-D-A sequence. This is an encouraging result, since it negates the need to limit NFAs to the

8



alternating A-D sequence and instead attach three donor units together as a synthetic alternative.

Additionally, the overall top performers from version 2 all have a strong donating core, suggesting

charge transfer to the end units. This agrees with our understanding of the current design rules of

π−π stacking with the end units56. Results from versions 3 and 4 support this as well and show

that it is not necessary to have strongly withdrawing/donating units to obtain a high PCE.
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FIG. 5. Plot of the HOMO (eV) of each unit in the top 5 NFAs discovered in each version. Thiophene

monomer is used as the midpoint (HOMO = -6.55 eV), with blue indicating electron donors and red as

electron acceptors. The deeper the color, the stronger the electron withdrawing/donating strength. All PCEs

were calculated using OPEP/sTD-DFT with the donor PBDB-T-SF

Throughout all four versions, 5,426 unique NFAs were analyzed. Of these, 1,087 have a PCE

above 18% and of those, 159 have a PCE above 20%. Fig. 6a is a histogram of all NFAs dis-

covered, showing the average PCE of 15.8%. This distribution can be split up into each version’s

contributions, as seen in the kernel density estimate plot in Fig. 6b. Version 3 had the widest range

of PCEs, which was anticipated due to having the largest chemical search space. Version 1 had

the most narrow distribution, as expected due to the smallest search space and less drastic modifi-

cations in the GA. Version 4 discovered the largest percentage of the NFAs above 18%, validating

the purpose of this version to find the top candidates using the top performing units from previous

versions.

Optical and electronic properties of all NFAs discovered were analyzed. Fig. S5 shows the

optical band gap and its predicted oscillator strength of every NFA examined, with NFAs with a

PCE above 20% colored. There is a wide range of band gaps with varying oscillator strengths,
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FIG. 6. (a) Histogram of all NFAs discovered, with green bars indicative of above 18% PCE (b) Kernel

density estimate plot of the PCE in all four versions, with the dashed line indicating PCE of 18%. All PCEs

were calculated using OPEP/sTD-DFT with the donor PBDB-T-SF

indicating there is no optimal band gap for high performance. The fundamental band gap of all

NFAs was analyzed in Fig S6. All high-performing NFAs have a fundamental band gap between

2-3.5 eV. This small band gap range is consistent with the idea of small band gap NFAs absorbing

in lower energy regions and complementary to a donors absorption, therefore increasing the PCE.

This range although is still relatively large, indicating there is leeway in the ideal fundamental

band gap range for the design of new NFAs.

The top six performing NFAs were examined in Fig. 7. The NFAs displayed in Figs. 7 a, b, d,

and e were discovered in version 2, while the NFAs in Figs. 7c and f were discovered in version

4. The OPEP fitness function scored these NFA candidates highly on two properties: the sum of

the oscillator strengths and the difference in energy between the HOMO and HOMO-1 energies.

Examination of the absorption spectra shows strong absorption in the UV and high-energy visible

regions for all top NFAs, with NFAs c and d showing broad absorption across the visible and near-

IR region, a highly desired property in photovoltaics. The difference in energy between HOMO

and HOMO-1 is conceptually connected to the density of states and delocalization of holes, and

is maximized in each of these NFAs as well. Finally, we note that the central core unit seen in

Figures 7 a, b, c, and d, breaks the aromaticity with an sp3-hybridized carbon and a non-conjugated

side-chain. At first, we believed the monomer was incorrectly specified to the GA, but we note

that several other top candidates exhibit broken aromaticity or conjugation. These motifs may

modulate the electronic structure, and the side chain appears to serve as a conformational lock on
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the neighboring monomers.
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FIG. 7. Best 6 NFAs discovered using the GA, with the PCE calculated using OPEP/sTD-DFT with the

donor PBDB-T-SF. Note that surprisingly, most of these structures do not retain aromaticity in all units.

III. CONCLUSION

In this work, the chemical design rules for high-performing NFAs were established. Through

the utilization of a genetic algorithm, 5,426 NFAs were discovered, of which 1,087 are predicted

to have a PCE above 18% and 159 above 20%. The results indicate that the best sequence for

high-PCE is A-D-D-D-A or A-A-D-A-A, with a donor core and acceptor end groups. There is no

significant difference in performance if the sequence is symmetric or asymmetric. When selecting

individual building blocks, current terminal acceptor units employed in common NFAs are found

to be top performers in the GA candidates. For core units, however, further exploration is needed,

with the units suggested here providing some interesting starting points. The acceptor terminal

groups can be weakly electron-withdrawing, and the donor core performs well when it is strongly

electron-donating. Overall, this work suggests that new design rules for unfused NFA materials

can yield further improvements in power conversion efficiency.
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IV. COMPUTATIONAL DETAILS

A. Dataset

For version 1, a dataset of 192 organic conjugated electron-withdrawing/accepting units with

three fused rings or less was constructed by examining high-performing NFAs reported in the lit-

erature. Versions 2 and 3 used the dataset from version 1 with the addition of 1,221 units from a

previous GA project in our group57. Structures were generated for each unit and optimized with

MMFF9458 or UFF59 force fields before additional optimization with GFN2-xTB60–62. Further

geometry optimization was performed with Orca 4.2.0.63 using B3LYP-D3BJ/def2-SVP64–67. To

classify the units as electron acceptors or donors, their HOMO values were compared to thio-

phene’s HOMO. If the unit’s HOMO is lower than thiophene’s, it is considered an acceptor; if

the HOMO is higher, it is a donor. Thiophene was chosen as an arbitrary midpoint since it is a

common organic semiconductor unit and is typically found as π-bridges in OPV materials, where

its HOMO is not too deep or shallow. The dataset was grouped into four categories: acceptor

terminal, acceptor core, donor terminal, and donor core, where the terminal refers to one point of

attachment, so it must be an end unit, and the core refers to two points of attachment and can be

used as either a terminal unit or a central unit.

B. Fitness Function

The OPEP/sTD-DFT PCE54 model was selected as the fitness function due to the high accuracy

and low computational cost of the sTD-DFT method. This model has six terms, four of which are

from the donor and two from the acceptor. For evaluation of fitness, 22 donors were analyzed

with sTD-DFT to optimize the donor term, resulting in PBDB-T-SF being selected as the best

performer. The two terms for the acceptor are the sum of the oscillator strengths and the difference

in energy between the HOMO and HOMO-1 eigenvalues. To evaluate these properties for each

candidate acceptor, force field and GFN2-xTB geometry optimization were performed, and the

electronic and optical properties are calculated with sTD-DFT68–70 using CAM-B3LYP with def2-

SVP66 basis set in Orca 4.2.0. The maximum energy threshold is set to 5.0 eV, since the majority

of the solar spectrum we are interested in for solar cell applications is below this energy.
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C. Version 1

The GA is constructed to design high-performing unfused NFAs with an A-D-A′-D-A se-

quence, meaning the central A’ is a different unit than the terminal A units and results in a sym-

metrical structure. In this GA, 32 NFAs are chosen as the initial population, with each NFA

constructed from random A and D units. In each generation, the PCE of each candidate is eval-

uated and the population is ranked from the highest to lowest PCE with the top 50% selected as

parents for the next generation. Each successive generation contains 32 NFAs, 16 are the parents

from the previous generation, and 16 are newly formed NFAs created using crossover and muta-

tion operators on the parents. These children are constructed through a crossover operation that

randomly chooses two units to keep from one random parent and one to keep from another. The

crossover operation is repeated until 16 new children are constructed and added to the generation.

The mutation rate is set to 40%, and if selected the mutation operator will replace one of the three

types of units with a new building block, chosen at random. Termination occurs when the highest

PCE remains the top performer for 30 generations or 100 generations have occurred, whichever is

later.

D. Versions 2 and 3

To further expand the search space, the sequence restriction of A-D-A′-D-A was lifted. Ver-

sion 2 allowed for symmetrical sequences while version 3 allowed any sequence. Both versions

used the expanded dataset. To initialize the first generation, sequences and units were chosen ran-

domly. For version 3, sequences are first randomly selected to be symmetric or asymmetric, as

required due to a large number of possible asymmetric sequences, and then a random sequence is

selected from within the given symmetry subgroup. During the crossover operation, the units and

sequences of two parents are crossed, however, if there is not enough of the required unit types for

that sequence, then the units are reused. For the mutation operator, either the sequence or unit type

is altered. If the sequence is chosen, the units are rearranged to fit the sequence, however, if there

are not enough units to satisfy the sequence, random units are pulled from the initial dataset. If

swapping a unit is chosen, a randomly chosen unit is replaced with a random unit from the initial

dataset, ensuring the unit is of the same type as the one it is replacing so that the sequence does

not change.
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E. Version 4

The dataset of units were created by selecting units from versions 1 and 2 that were used in

a NFA for more than 5 times. The sequence was unrestricted and the GA operations were the

same as version 3. Unfortunately, an error occurred during this version due to a mismatch in la-

beling between the units and their corresponding designation of acceptor or donor. This resulted

in the GA occasionally selecting a different sequence than intended and it being mislabeled. For

example, if during the crossover step, the sequence A-D-A′-D-A was selected to pass to the next

generation. However, the unit it selected as D may have been mislabeled and is actually an accep-

tor. Therefore, while the GA was not perfect, the results still indicate high-performing NFAs were

discovered, and all figures shown have the true sequence.

V. DATA AVAILABILITY

The data that supports the findings of this study are openly available at: https://github.

com/hutchisonlab/GA_unfused_NFAs

VI. SUPPLEMENTARY MATERIAL

See supplementary material for analysis of sequences in versions 2-4, symmetry of sequences

for versions 3 and 4, comparison of the A-D-A′-D-A sequence to A-D-D-D-A, optical and funda-

mental band gaps of every NFA discovered.
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