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The affordable, accurate, and reliable prediction of spectroscopic observables plays a key role in the analysis of
increasingly-complex experiments. In this Article, we develop and deploy a deep neural network (DNN) – XANES-
NET – for predicting the lineshape of first-row transition metal K-edge X-ray absorption near-edge structure (XANES)
spectra. XANESNET predicts the spectral intensities using only information about the local coordination geometry of
the transition metal complexes encoded in a feature vector of weighted atom-centred symmetry functions (wACSF).
We address in detail the calibration of the feature vector for the particularities of the problem at hand, and we explore
the individual feature importances to reveal the physical insight that XANESNET obtains at the Fe K-edge. XANES-
NET relies on only a few judiciously-selected features – radial information on the first and second coordination shells
suffices, along with angular information sufficient to separate satisfactorily key coordination geometries. The feature
importance is found to reflect the XANES spectral window under consideration and is consistent with the expected
underlying physics. We subsequently apply XANESNET at nine first-row transition metal (Ti–Zn) K-edges. It can
be optimised in as little as a minute, predicts instantaneously, and provides K-edge XANES spectra with an average
accuracy of ca. ± 2–4% in which the positions of prominent peaks are matched with a > 90% hit rate to sub-eV (ca.
0.8 eV) error.

I. INTRODUCTION

Wherever there are valuable data to be predicted, processed,
labelled, or mined, one is guaranteed to find machine learn-
ing models working autonomously and leveraging recent ad-
vances in the accessibility of hardware and software opti-
mised for the task at hand. Highly-effective machine learning
models that are able to extract and learn patterns represented
in data without hand-coded heuristics continue to transform
what we can do and the way we do it across the physical
sciences1 – as they have in chemistry for quite some time.2

The trajectory of machine learning in chemistry inclines
steeply upwards, and applications continue to grow at pace.3

In the chemical research and development domain, applica-
tions include the design and discovery of new materials,4–9

catalysts,10–13 and drugs,14–16 as well as chemical reaction
prediction and synthesis planning.17–25 In the domain of ab
initio computational chemistry, interest in the disruptive po-
tential of machine learning is surging too.26–33 Here, there
have been significant successes with machine learning mod-
els that redress the accuracy/affordability balance of atom-
istic modelling – from parametric force-fields34–38 to accurate
quantum mechanical properties obtained from low-cost elec-
tronic structure calculations39–43 and accelerated excited-state
molecular dynamics.44–55

It ought to be of no great surprise that spectroscopy –
already in renaissance following fast-paced developments
in methodology and instrumentation, especially at high-
brilliance light sources56–60 should also be simultaneously
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transformed by machine learning.61 Indeed, the two are a nat-
ural pairing; machine learning is similarly grounded in linear
mathematics (e.g. least-squares regression) and probability
(e.g. maximum-likelihood parametric estimation) – concepts
that are familiar to experimental spectroscopists. With the
popularity of emergent spectroscopies on an upward trajec-
tory, resulting increasingly in situations where new methods
and new users are brought together, machine learning offers
a route to affordable and accurate "out-of-the-box", "limited-
expertise-required" analyses.

In spectroscopic applications, machine learning mod-
els are typically assigned one of two tasks: either car-
rying out "forward" (structure-to-spectrum) or "reverse"
(spectrum-to-structure, or spectrum-to-property; alternatively
"inverse") mappings. There are now many examples of
machine learning models for "reverse" mappings in the lit-
erature, although comparatively fewer for "forward" map-
pings. These collectively encompass infrared (IR),62,63 ultra-
violet/visible (UV/vis),49–51,64–67, Raman scattering,68, neu-
tron scattering,69, nuclear magnetic resonance (NMR),70, and
X-ray techniques.71–97 The focus of this Article is on a "for-
ward" mapping approach in the domain of X-ray absorption
spectroscopy (XAS).

The prediction of spectroscopic observables – a paradig-
matic "forward" mapping – is a central objective of compu-
tational chemistry for spectroscopists as it serves as a conduit
between experiment and theory. Achieving a detailed under-
standing of the properties of a molecule/material on the atomic
level via simulations is often the key to understanding and ex-
plaining experimentally-observed phenomena; ultimately, it is
also the key to harnessing them in practical applications. The
challenge lies in making the calculations capable of capturing
satisfactorily the complexity of the phenomena while simulta-
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neously accurate, affordable, and generally-applicable enough
to appeal to users. It transpires – unsurprisingly – that this is
a tall order indeed!

From the perspective of "forward" mapping methodolo-
gies, there are three distinct approaches: i) focusing on a
spectral window (e.g. a "fingerprint" window sensitive to
a particular property or observable) and developing a ma-
chine learning model to predict directly the resonances within
this window;48,49,98–103 ii) representing the resonances via a
Hamiltonian matrix associated with a closed set of secular
equations and developing a machine learning model to pre-
dict the Hamiltonian matrix elements;27,39,41,42,50 and iii) de-
veloping a machine learning model to predict directly the
spectral lineshapes.71–74,104,105 The latter approach, which we
adopt in this Article and elsewhere where we have worked
with machine learning models for XAS in theoretical71 and
practical73,74 settings, circumvents the formidable challenge
of predicting the huge number of resonances around the X-
ray absorption edge.106 Sitting alongside the well-developed
theory for XAS (e.g. multiple scattering theory, multiplet
theory, and Bethe-Salpeter k-space approaches, plus exten-
sions of popular ab initio quantum chemical strategies),106

machine learning models for fast "forward" XAS map-
pings are well placed to unlock affordable analyses in par-
ticularly challenging cases, e.g. coupling to ultrafast dy-
namics simulations,107–118 and describing accurately disor-
dered/amorphous materials.119–124 In these cases, many con-
figurations need to be sampled to simulate XAS with even
qualitative accuracy, but the time- and resource-intensiveness
of the individual computational calculations presently makes
such treatments challenging.106

In this Article, we build on our earlier proof-of-principle
work in Ref. 71 to develop and deploy a deep neural
network (DNN)125 – XANESNET (Fig. 1) – for predicting
the lineshape of first-row transition metal K-edge X-ray ab-
sorption near-edge structure (XANES) spectra. XANESNET
predicts the K-edge XANES spectral intensities using only in-
formation about the local coordination geometry of the tran-
sition metal complexes. We address in detail the calibration
of the feature vector that encodes this information for the par-
ticularities of the problem at hand, and we explore the indi-
vidual feature importances to reveal the physical insight that
XANESNET provides at the Fe K-edge. We subsequently
transfer XANESNET to nine first-row transition metal (Ti–
Zn) K-edges, where we benchmark predictive power and per-
formance.

II. TECHNICAL DETAILS

A. Datasets

Our reference datasets comprise X-ray absorption site ge-
ometries ("samples") of first-row transition metal (Ti–Zn)
complexes harvested from the transition metal Quantum Ma-
chine (tmQM) dataset.126,127 K-edge XANES spectra ("la-
bels") for these structures were calculated using multiple scat-
tering theory (MST) as implemented in the FDMNES128,129

FIG. 1. A schematic of the XANESNET DNN and workflow de-
tailed in this Article. The local geometries around first-row transi-
tion metal X-ray absorption sites (I; "samples, Section II A) are in-
puts, and the corresponding theoretically-calculated K-edge XANES
spectra (II; "labels", Section II C), are outputs. The samples are en-
coded as descriptive features vectors (III; Sections II B 2) and asso-
ciated with their labels to construct reference datasets from which
the the DNN (IV, Section II B 1) discovers a "forward" structure-to-
spectrum mapping via iterative optimisation of the internal weights
(V). We start in familiar territory at Fe K-edge, and then extend the
DNN across the first row of transition metals (Ti–Zn; VI).

package (Section II C). We have developed nine independent
reference datasets, one for each first-row transition metal (Ti–
Zn) X-ray absorption edge; the number of samples contained
in the reference datasets scales from as few as ca. 1100 (V)
to ca. 8660 (Ni). A summary of the number of samples con-
tained in the reference datasets is given in the SI (Table S1).
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We have made the reference datasets publicly available (see
our Data Availability Statement for details).

250 samples from each reference dataset were isolated at
random to form "held-out" testing datasets (evaluated post-
optimisation only; Section III D). The remaining samples
comprised the training and validation datasets used during op-
timisation (Sections III A–III C). The training and validation
subsets were constructed "on-the-fly" throughout via repeated
K-fold cross validation with five repeats and five folds, i.e. a
five-times-repeated 80:20 split.

B. Deep Neural Network

1. Architecture

The architecture of the XANESNET DNN used in this Ar-
ticle is based on the deep multilayer perceptron (MLP) model
and comprises an input layer, two hidden layers, and an output
layer. All layers are dense, i.e. fully connected, and each hid-
den layer performs a nonlinear transformation using the recti-
fied linear unit (relu) activation function. The input layer com-
prises N neurons (to accept a feature vector of length N en-
coding the local environment around an X-ray absorption site;
Section II B 2), the hidden layers each comprise 512 neurons,
and the output layer comprises 226 neurons from which the
discretised K-edge XANES spectrum is retrieved after regres-
sion, i.e. XANESNET is a multi-output MLP with each output
neuron corresponding to the spectral intensity at a given en-
ergy gridpoint. The architecture of the XANESNET DNN is
[N ×512×512×226].

The internal weights, W, are optimised via iterative feed-
forward and backpropagation cycles to minimise the empiri-
cal loss, J(W), defined here as the mean-squared error (MSE)
between the predicted, µpredict , and target, µtarget , K-edge
XANES spectra over the reference dataset, i.e. an optimal set
of internal weights, W∗, is sought that satisfies argmin

W
(J(W)).

Gradients of the empirical loss with respect to the inter-
nal weights, δJ(W)/δW, were estimated over minibatches of
32 samples and updated iteratively according to the Adaptive
Moment Estimation (ADAM)130 algorithm. The learning rate
for the ADAM algorithm was set to 1× 10−4. The internal
weights were initially set according to the He131 uniform dis-
tribution. Unless explicitly stated in this Article, optimisation
was carried out over 512 iterative epochs.

Regularization was implemented to minimize the propen-
sity of overfitting; batch standardization and dropout were ap-
plied at each hidden layer. The probability, p, of dropout was
set to 0.25.

The XANESNET DNN is programmed in Python 3 with
the TensorFlow132/Keras133 API and integrated into a Scikit-
Learn134 (sklearn) data pre- and post-processing pipeline via
the KerasRegressor wrapper for Scikit-Learn. The Atomic
Simulation Environment135 (ase) API is used to handle and
manipulate molecular structures. The code is publicly avail-
able under the GNU Public License (GPLv3) on GitLab.136

2. Featurisation

The local environments around X-ray absorption sites are
encoded via dimensionality reduction using the weighted
atom-centered symmetry function (wACSF) descriptor of
Gastegger and Marquetand et al.137 which builds on top of
the generalised ACSF descriptor introduced by Behler138,139

to overcome the unfavourable scaling as the number of atom
types in the dataset grows. The recent review by Behler in
Ref. 140 is strongly recommended to the unfamiliar reader.
The wACSF descriptor (or "feature vector", Gi) for an arbi-
trary absorption site, i, is constructed via concatenation of a
"global" (G1) wACSF, n radial (G2; two-body) wACSF, and
m angular (G4; three-body) wACSF, i.e. it takes the form:

Gi = {G1
i ,G

2
i,1,G

2
i,2, ...,G

2
i,n,G

4
i,1,G

4
i,2, ...,G

4
i,m} (1)

where n and m are chosen to cover satisfactorily the radial
and angular space of the reference dataset and discriminate
different atomic environments.

The G1, G2, and G4 wACSF each take the forms:

G1
i = ∑

j ̸=i
fc(ri j) (2)

G2
i = ∑

j ̸=i
Z j · fc(ri j) · exp−η(ri j−µ)2

(3)

G4
i = 21−ζ

∑
j ̸=i

∑
k ̸=i, j

Z jZk · (1+λ cos(θ jik))
ζ

· fc(ri j) · fc(rik) · fc(r jk)

· exp−η(ri j−µ)2 ·exp−η(rik−µ)2 ·exp−η(r jk−µ)2
(4)

where i, j, and k index atomic sites, Zi is the atomic number
of the atom at site i, ri j is the interatomic distance between
sites i and j, and θ jik is the interatomic angle between sites j,
i, and k. fc is a radial cutoff function (the cutoff set at some
radial distance, rc) that ensures that the wACSF vary smoothly
and, ultimately, go to zero where ri j ≥ rc; it takes the form:

fc(ri j) =

0.5× (cos
(

πri j

rc

)
+1) for ri j ≤ rc

0 for ri j > rc

(5)

The radial distance, rc, supplied to fc has to be sufficiently
large to include an appropriate number of nearest neighbours.
From the perspective of an absorbing atom in X-ray spec-
troscopy, rc has to reflect the "field of view" (i.e. the maximum
cutoff distance to which XANES is sensitive); for this reason,
rc = 6.0 Å throughout.

η , µ , λ , and ζ are parameters that have to be calibrated.
The effects of η and µ on the radial resolution and extent,
and of λ and ζ on the angular resolution and extent, are il-
lustrated in Fig. 2. The calibration of these parameters can
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FIG. 2. Schematic of the effect of the η , µ , λ , and ζ parameters on
the symmetry function forms. Upper Panel: a "centred" parameteri-
sation scheme where µ = 0.0 and η is varied; lighter-coloured lines
correspond to higher values of η . Centre Panel: a "shifted" parame-
terisation scheme where η is fixed and µ is varied; lighter-coloured
lines correspond to higher values of µ . Lower Panel: the effect of
the λ , and ζ parameters on the angular component of a G4 sym-
metry function; the solid and dashed lines correspond to λ = +1.0
and λ =−1.0, respectively, and lighter-coloured lines correspond to
higher values of ζ .

be achieved manually or automatically – in the latter case,
e.g., via an intelligent sampling/Bayesian approach, decom-
position, or principle component analysis (PCA),141 or using
a genetic algorithm.137 An alternative approach designed to
work "out-of-the-box" is given by the suggested parameterisa-
tion strategy of Gastegger and Marquetand et al., described in
Ref. 137 . Here, one first defines an auxiliary radial grid, R,
as a linearly-interpolated space of k points, r, between rmin.
and rmax., and then obtains either "centred" (Fig. 2; upper
panel) pairs of η and µ parameters via setting µ to zero in all
cases and setting η as:

ηi =
1

2r2
i

(6)

or "shifted" (Fig. 2; centre panel) pairs of η and µ param-
eters via setting µ to each point on the auxilliary radial grid
and setting η as:

η =
1

2(∆r)2 (7)

In the former case (Eq. 6), the wACSF are centred at the
X-ray absorption site and differ in their radial extent. In the
latter case (Eq. 7), their radial extent is constant and their
centre shifts away from the X-ray absorption site, profiling
the local environment in a series of concentric "shells".

G4 wACSF additionally need to have λ and ζ parameters
defined. Every pair of η and µ parameters is typically re-
peated for λ = ±1.0 to obtain a full 360◦ angular view, and
each triple of η , µ , and λ parameters can optionally be re-
peated for a series of values of ζ to refine the angular resolu-
tion (Fig. 2; lower panel).

Unless explicitly stated in this Article, all G2 wACSF were
constructed according to the "shifted" scheme and all G4

wACSF were constructed according to the "centred" scheme.

C. XANES Simulation

All first-row transition metal (Ti–Zn) K-edge XANES
spectra were calculated using MST as implemented in the
FDMNES128,129 package. The spectral windows were set be-
tween −15.0 and +60.0 eV (relative to the X-ray absorp-
tion edges; see Table S1), and the absorption cross-sections
were calculated in steps of 0.2 eV (i.e. 376 points). A self-
consistent muffin-tin potential with a cutoff radius of 6.0 Å
around the X-ray absorption site was used. The interaction
with the X-ray field was described by the electric quadrupole
approximation, and scalar relativistic effects were included.

The calculated absorption cross-sections were preprocessed
via convolution with a fixed-width Lorentzian function (the
width, Γi, depending on the X-ray absorption edge; see Table
S1) and resampled via interpolation into 226 points.

III. RESULTS AND DISCUSSION

We turn to the Results and Discussion here, which are bro-
ken down as follows. In the first place, we parameterise a
suitable Gi feature vector (Section III A) and, subsequently,
explore elements of the data preprocessing pipeline (Section
III B), assessing the performance of the XANESNET DNN
at the Fe K-edge. In the second place, we explore what the
XANESNET DNN takes into consideration when predicting
Fe K-edge XANES spectra (i.e. which features matter, and to
what extent; Section III C). We subsequently generalise the
XANESNET DNN across all of the first-row transition metal
(Ti–Zn) K-edges (Section III D) and benchmark performance.

A. Featurisation and Parameterisation

In this Section, we address the way in which the local en-
vironments around the transition metal X-ray absorption sites
are introduced into the XANESNET DNN, i.e. we address
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FIG. 3. Performance at the Fe K-edge for the "centred" and "shifted"
parameterisation schemes. Performance is plot relative (in %) to the
best performance in the panel. Validation results; five-times-repeated
five-fold cross-validation. Left Panel: 96 G2 wACSF. Right Panel:
96 G4 wACSF.

the encoding, or "featurisation", of the Cartesian coordinates
as parameterised Gi vectors (Section II B 2). We initially fo-
cus on the Fe K-edge reference dataset; results for the other
eight reference datasets are, however, included in the SI.

In the first instance, we assess the performance of the "cen-
tred" and "shifted" parameterisation schemes (Section II B 2)
for the G2 and G4 wACSF. Fig. 3 displays the relative per-
formance of the XANESNET DNN at the Fe K-edge where
the local environments around the X-ray absorption sites are
featurised as Gi vectors of length 97, i.e. containing a single
G1 wACSF and either 96 G2 (Fig. 3; left panel) or 96 G4 (Fig.
3; right panel) wACSF.

Reflecting the results presented in Ref. 137 , we verify
that the G2 and G4 wACSF benefit from a "shifted" and "cen-
tred" parameterisation scheme, respectively. However, the
performance penalty for following the less-suitable of the two
parameterisation schemes is much greater for the G4 wACSF
in this work (−225%) compared to Ref. 137 (−20%).
In contrast, the performance penalty for the G2 wACSF in
this work (−100%) is in line with the aforementioned results
(−75%). Acknowledging differences in the Gi vector length
and machine-learning model architecture, this result nonethe-
less evidences that the extent to which the G4 wACSF are pa-
rameterised optimally is of comparably greater importance in
this work as they communicate comparably more information
in the context of the present problem. This reflects either i)
a more ’direct’ physical relationship between the inputs and
outputs {i.e. a stronger link between the local (angular) en-
vironment and the transition metal K-edge XANES spectrum
(cf. enthalpies in Ref. 137 ), which could be expected as
resonances in the post-edge are, after all, geometric in origin}
or ii) the greater importance of the G4 wACSF, generally, in
discriminating between the diverse coordination geometries
of the transition metal complexes in the reference dataset(s).
We return to the latter point throughout this Article.

Performance is predictably improved via mixing G2 and
G4 wACSF. Fig. 4 displays the relative performance of the
XANESNET DNN at the Fe K-edge as a function of the
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FIG. 4. Performance at the Fe K-edge as a function of the G2:G4

composition of the Gi vector. Performance is plot relative (in %)
to the best performance in the panel. Validation results; five-times-
repeated five-fold cross-validation. 96 G2/4 wACSF.
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FIG. 5. Performance at the Fe K-edge as a function of the maxi-
mum value of ζ , ζmax, used in the G4 wACSF. Values of ζ used are
{1}, {1,2}, {1,2,4,8}, and {1,2,4,8,16,32,64,128}. Performance is
plot relative (in %) to the best performance in the panel. Validation
results; five-times-repeated five-fold cross-validation. 32 G2 wACSF
and 64 G4 wACSF.

G2:G4 composition of the (length 97) Gi vector. These data
are displayed for the other eight transition metal K-edge ref-
erence datasets in the SI (Fig. S1) and exhibit similar trends
to those shown in Fig. 4. Performance is optimal with 32
G2 and 64 G4 wACSF and displays a heavy skew towards the
inclusion of angular information in a 2:1 G4:G2 ratio.

Performance is modestly improved further via the inclu-
sion of higher values of ζ into the G4 wACSF. In order to
keep the length and composition (32 G2 and 64 G4 wACSF)
of the Gi vector constant, and considering that each triple
of η , µ , and λ parameters is repeated for each additional
value of ζ by construction, sets of one {1}, two {1,2}, four,
{1,2,4,8}, and eight {1,2,4,8,16,32,64,128} additional values
of ζ were trialled. Fig. 5 displays the relative performance of
the XANESNET DNN at the Fe K-edge as a function of the
greatest value of ζ , ζmax, included. These data are displayed
for the other eight transition metal K-edge reference datasets
in the SI (Fig. S2). Fig. 5 shows an improvement in per-
formance up to ζmax = 128 compared to ζmax = 1 (−10%).
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The inclusion of higher values of ζ focuses the angular extent
of the G4 wACSF around 180◦ (Fig. 2). This perhaps has
limited utility in machine learning applications using popular
databases of small organic systems (e.g. QM7, QM9) where
linear and right-angled triples of atoms are infrequently en-
countered but is of considerable utility here, where it appar-
ently improves the ability of the XANESNET DNN to dis-
criminate between local transition metal coordination envi-
ronments as these angles are commonplace in canonical co-
ordination geometries, e.g. octahedral, square-planar, square-
base- and trigonal-(bi)pyramidal.

We will consequently carry forward a (length 97) Gi vec-
tor comprising the G1 wACSF and 32 and 64 G2 and G4

wACSF, respectively, with G4 wACSF up to ζmax = 8 to bal-
ance the performance gain attainable by adding higher values
of ζ against the cost of sacrificing pairs of µ and η parameters
expressly and, consequently, limiting flexibility.

B. Optimisation and Performance

The Gi vector parameterised in Section III A now delivers
strong performance at the Fe K-edge, yet it is still – in a sense
– suboptimal, as it is likely to contain low-variance features
and feature-to-feature correlations as a byproduct of its con-
struction that are (in the best case) redundant or (in the worst
case) an obstacle to noise-free learning. Using variance and
correlation threshold filters in the data preprocessing pipeline,
redundant (low-variance and/or highly correlated) features in
the Gi vectors are able to be eliminated.

Fig. 6 displays the relative performance of the XANES-
NET DNN at the Fe K-edge as a function of the percentage
of features eliminated via action of a variance threshold filter.
These data are displayed for the other eight transition metal
K-edge reference datasets in the SI (Fig. S3). It is possible to
eliminate up to 25% of features (performance penalty <−1%)
from the Gi vector without consequence and, potentially, up
to 50% of features without incurring a wholly unacceptable
performance penalty (−10%), should exceptionally compact
Gi vectors be required.

Erring on the side of caution and eliminating 25% of fea-
tures from the Gi vector yields a truncated Gi vector of
length 71 (with the G1 wACSF retained, and otherwise com-
prising 28 G2 and 42 G4 wACSF). The reduced dimen-
sions of the truncated Gi vector coupled with the compact
[N×512×512×226] architecture (Sections II B 1 and II B 2)
reduces the number of internal weights in the XANESNET
DNN to 414,208 (cf. >3,000,000 in our earlier work; Ref.
71 ), lowering the propensity for overfitting, accelerating
optimisation, and opening up the opportunity to investigate
computationally-intensive feature selection algorithms (Sec-
tion III C).

Fig. 7 displays the relative performance of the XANES-
NET DNN at the Fe K-edge as a function of the number of
feedforward/backpropagation epochs and the elapsed time in
seconds taken to carry out the optimisation. These data are
displayed for the other eight transition metal K-edge reference
datasets in the SI (Fig. S4). With the reference datasets used
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FIG. 6. Performance at the Fe K-edge as a function of the percentage
of features eliminated via action of a variance threshold filter. Per-
formance is plot relative (in %) to the best performance in the panel.
Validation results; five-times-repeated five-fold cross-validation. 32
G2 wACSF and 64 G4 wACSF.

100 101 102
Elapsed Time / s

100 101 102 103

Epochs

3.0

2.5

2.0

1.5

1.0

0.5

0.0
R

el
. P

er
fo

rm
an

ce
 / 

×1
03  %

FIG. 7. Performance at the Fe K-edge as a function of the number of
feedforward/backpropagation epochs and the elapsed time in seconds
(optimised using an nVidia RTX 3070). Performance is plot relative
(in %) to the best performance in the panel. Validation results; five-
times-repeated five-fold cross-validation. 28 G2 wACSF and 42 G4

wACSF.

in this Article, the XANESNET DNN takes advantage of its
simple and compact MLP architecture; it can be optimised to
convergence in ca. 512–1024 feedforward/backpropagation
epochs – a process that can be completed in as little as a
minute using an off-the-shelf commercial-grade CPU (AMD
Ryzen Threadripper 3970X; 3.7–4.5 GHz) or GPU (nVidia
RTX 3070, 5888 CUDA cores; 1.5–1.7 GHz).

C. Feature Importance and Selection

In this Section, we carry forward the Gi vector parame-
terised in Section III A with 25% of the features eliminated
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FIG. 8. Feature importance for G2 and G4 wACSF at the Fe K-edge. Upper Panel: histogram of the radial distribution of atomic sites around
the X-ray absorption site in the Fe K-edge reference dataset. Centre Panel: feature importance for G2 wACSF. Performance is plot relative (in
%) to the baseline. Triangular markers indicate G2 wACSF selected via sequential feature selection (SFS). Lower Panel: feature importance
for G4 wACSF. Performance is plot relative (in %) to the baseline. Triangular markers indicate G4 wACSF selected via SFS. 28 G2 wACSF
and 42 G4 wACSF.

through the action of the variance filter as in Section III B.
We turn our attention towards addressing a different question:
what is the XANESNET DNN taking into consideration when
predicting K-edge XANES spectra (i.e. which features matter,
and to what extent?) and can it be considered physical?

The relative inference feature importance of each of the fea-
tures comprising the Gi vector has been assessed via scram-
bling the values of the Gi vectors featurewise over the refer-
ence dataset and assessing the performance penalty in each
instance at inference time. The objective of this feature im-
portance experiment is to identify how reliant the XANES-
NET DNN is on each feature for the purpose of producing ac-
curate predictions: the greater the performance penalty when
the feature is scrambled, the greater the reliance on that fea-
ture the model expresses. Fig. 8 displays the results of the
feature importance experiment on the XANESNET DNN at
the Fe K-edge. The feature importance of each of the G2 (Fig.
8; centre panel) and G4 (Fig. 8; lower panel) wACSF, using
the relative performance as a proxy, is plot relative to the op-
timal baseline performance. These data are displayed for the
other eight transition metal K-edge reference datasets in the
SI {Figs. S5 (G2) and S6 (G4)}.

In the first place, we focus on the feature importance of the

G2 wACSF (Fig. 8; centre panel); these mirror the radial dis-
tribution of atomic sites around the X-ray absorption site (Fig.
8; upper panel). The greatest feature importance is found for
first coordination shell around the X-ray absorption site {win-
dows I, II (coordination with light, first-row elements, e.g. C,
N, O, F), and III (coordination with heavier, second-row-and-
above elements, e.g. Si, P, S, Cl, Br, I), Fig. 8; upper panel}
with decreasing feature importance found for the second (win-
dows IV and V) and third (window VI and beyond) coordina-
tion shells. The feature importance approximately reflects the
density of atomic sites at the distance at which the G2 wACSF
is centred on the radial distribution, i.e. at the associated value
of the µ parameter (Section II B 2), although this is not with-
out exception. For example, the G2 wACSF centred around
1.5–1.6 Å (µ = 1.47 and 1.63 Å) have among the highest fea-
ture importance in the Gi vector, yet there are very few atomic
sites located at this distance in the radial distribution (window
I). Leakage of feature importance from the most important G2

wACSF (µ = 1.8 Å; window II, which encodes the first coor-
dination shell) is a contributing factor as the Gaussians centred
here overlap on account of their full-widths-at-half-maxima
(FWHM ≈ 0.3 Å) and, if one feature is scrambled, the radial
information lost can be recovered partially from neighbour-
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FIG. 9. Difference (high-energy region − low-energy region) feature
importance for G2 wACSF. The high-energy region of the XANES
spectrum spans +50.0 → +56.0 eV and the low-energy region of
the XANES spectrum spans −3.0 → +3.0 eV (relative to the X-ray
absorption edge). Fe K-edge. Validation results; five-times-repeated
five-fold cross-validation. 28 G2 wACSF and 42 G4 wACSF.

ing features. However, the values of the G2 wACSF centred
around 1.5–1.6 Å are also strongly indicative of a particular
class of coordination complex in the reference dataset - the
transition metal hydride - as no other atomic sites are as close
to the X-ray absorption site as H in these coordination com-
plexes. In this sense, these G2 wACSF act as useful yet rudi-
mentary ’classifiers’ and are allocated a higher feature impor-
tance than one would otherwise expect given the low density
of atomic sites at this distance in the radial distribution.

In the second place, we focus on the feature importance
of the G4 wACSF (Fig. 8; lower panel). Each white/shaded
block represents G4 wACSF constructed with a fixed value of
ζ (Section II B 2) from the set employed ({1,2,4,8}; Section
III A) and the trend of increasing feature importance (i.e. in-
creasing performance) with increasing value(s) of ζ supports
our earlier results. Within each white/shaded block, the same
trend, or pattern, recurs. There are two peaks in feature im-
portance that appear as if merged into a single peak where
ζ = 1.0 and that separate as ζ is increased and the angular
resolution is refined (Fig. 2). These correspond to the two key
types of local angular environment around X-ray absorption
sites: the linear (180◦) and right-angled (90◦) coordination
geometries, e.g. octahedral and square-planar, among others,
and the tetrahedral (105◦–115◦) coordination geometries. It is
interesting to note that, while the feature importance of the G4

wACSF for the other eight transition metal K-edge reference
datasets (Figure S6) show similar trends, Ni and Zn have com-
parably greater G4 feature importance than one would other-
wise expect. We associate this with the greater number of
four-coordinate transition metal complexes contained in the
Ni and Zn reference datasets127 – in particular, the prevalence
of tetrahedral and square-planar coordination geometries –
and the utility of the G4 wACSF for discriminating between
them.

In Fig. 9, we alternatively assess the feature importance of
the G2 wACSF in two different regions of the XANES spec-
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FIG. 10. Performance at the Fe K-edge as a function of the percent-
age of features included via a "select-from-model" strategy target-
ing high feature importance. Performance is plot relative (in %) to
the baseline. Validation results; five-times-repeated five-fold cross-
validation. 28 G2 wACSF and 42 G4 wACSF.

trum; a lower-energy region in the neighbourhood of the X-
ray absorption edge spanning −3.0 →+3.0 eV and a higher-
energy region in the post-edge spanning +50.0 → +56.0 eV
(relative to the X-ray absorption edge). Fig. 9 displays the
difference feature importance obtained by subtracting the rel-
ative feature importance in the latter from the former.

The first coordination shell is of approximately equal im-
portance to the accurate prediction of the XANES spectrum
in each of the two regions. However, G2 wACSF with lower
and higher values of µ (encoding atomic sites closer to, and
further from, respectively, the X-ray absorption site) are rel-
atively more and less important, respectively, in the higher-
energy region. Fig. 9 indicates a shift from a balanced reliance
on all of the G2 wACSF in the lower-energy region near the
X-ray absorption edge to increased reliance on only those G2

wACSF with lower values of µ that encode atomic sites in the
first coordination shell as the energy is increased. Importantly,
this mirrors the expected physics: core photoelectrons excited
close to the X-ray absorption edge (i.e. in the lower-energy re-
gion) have low kinetic energy and, by extension, longer wave-
lengths – consequently, this region of the X-ray absorption
spectrum is more sensitive to structure further away from the
X-ray absorption site. However, in the higher-energy region,
the greater kinetic energy of the core photoelectrons – which,
consequently, have shorter wavelengths – results in a reduced
"field of view", limiting the structural sensitivity to the imme-
diate locality of the X-ray absorption site. Indeed, resonances
with energy > 50 eV above the X-ray absorption edge are usu-
ally classified as belonging to the extended X-ray absorption
fine structure (EXAFS) region which is well understood to ex-
hibit structural sensitivity only to the first coordination shell
around the X-ray absorption site.142

Armed with what we now know about feature importance,
we can use the carried-forward Gi vector to construct a
further-truncated Gi vector from the ground up including only
the most important features, i.e. following a "select-from-
model" strategy. Fig. 10 displays the performance of the
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XANESNET DNN as a function of the percentage of features
included in this further-truncated Gi vector. Only about 60%
of the features from the original carried-forward Gi vector are
required to obtain performance that converges to the baseline.
Including only these features yields a compact Gi vector of
length 43 containing only the most important information: the
G1 wACSF, and 12 and 30 G2 and G4 wACSF, respectively.
The composition is displayed pictorially in the inset pie chart
on Fig. 10 – again, the G4 wACSF are overweighted com-
pared to the G2 wACSF in an approximate 1:2 ratio, indica-
tive of their importance in discriminating between the diverse
coordination geometries of the transition metal complexes in
the reference dataset.

To demonstrate that this ground-up construction based on
feature importance is not biased by including only the features
with high evaluated feature importance when taken together,
i.e. from the feature importance experiment with the whole
carried-forward Gi vector exposed to the XANESNET DNN,
we have also carried out another ground-up construction and
top-down deconstruction using "forward" and "backward" se-
quential feature selection (SFS), respectively. The SFS exper-
iment involves adding (in the "forward" formulation) or elim-
inating (in the "backward" formulation) features sequentially
to/from the Gi vector; the choice of feature to add or elimi-
nate from the pool of available features is made to maximise
the performance of the machine-learning model, and each fea-
ture addition or elimination is trialled independently. SFS is
a consequently a computationally-intensive feature selection
algorithm and can require hundreds to thousands of iterations
for a DNN, depending on the target length of the desired Gi
vector.

The plots displaying the feature importance of the G2 (Fig.
8; centre panel) and G4 (Fig. 8; lower panel) wACSF are dec-
orated with triangular markers above the features that were se-
lected via "forward" SFS (the "backward" SFS result was not
materially different) to obtain a further-truncated Gi vector of
length 33. All of the G2 wACSF covering the first coordina-
tion shell (windows I, II, and III, Fig. 8; upper panel) were
selected, as were G2 wACSF with high feature importance
in the second coordination shell (windows IV and V). Of the
G4 wACSF, those with highest feature importance were not
all selected, although high-importance features were still se-
lected more often than not, and more features were selected
from high-ζ blocks.

The Gi vector constructed via "forward" SFS comprised the
G1 wACSF, 10 G2 wACSF and G4 wACSF, i.e. it converged
towards a similar composition and, incidentally, towards simi-
lar performance by comparison with the longer Gi vector con-
structed via the "select-from-model" strategy.

D. Extension to Transition Metal K-Edges

The XANESNET DNN demonstrably needs very little
judiciously-selected information to deliver accurate and af-
forable predictions of Fe K-edge XANES spectra for arbitrary
Fe X-ray absorption sites; radial information on the first (and
to a lesser extent, the second) coordination shells suffices with

angular information sufficient to separate satisfactorily key
coordination geometries (Section III C). Although the exact
composition of the Gi vector is dataset-dependent (one of the
themes we have explored in this Article with respect to the
coordination complexes in the tmQM dataset and the particu-
larities of the problem at hand), the calibration carried out here
is extensible across the first-row transition metal (Ti–Zn) ref-
erence datasets as coordination distances are not greatly dif-
ferent on average and canonical coordination geometries are
found consistently. In this Section, we demonstrate the per-
formance of the XANESNET DNN at predicting the K-edge
XANES spectra of the nine "held-out" transition metal test
datasets (Ti–Zn, 250 samples each; Section II A).

Fig. 11 displays histograms of the median percentage error,
∆µ , between target, µtarget, and predicted, µpredict, first-row
transition metal K-edge XANES spectra; key properties of
these distributions (medians, upper and lower quartiles, and
skewness coefficients) are tabulated in Table I. Across the
nine first-row transition metal reference datasets, the median
∆µ is typically sub–5% (ca. 4.3%, on average) with the lower
and upper quartiles situated symmetrically ca. 2–3% under
and above, respectively, presenting a tight interquartile range
of ca. 3–5% that testifies to the balanced performance of the
XANESNET DNN. Coupled with the high positive skewness
coefficients (> 1.0) across the reference datasets that place
predictions squarely towards the higher-performance end of
these figures, we are confident that the XANESNET DNN de-
livers accurate and affordable predictions that generalise well
across this block of the periodic table.

The predicted K-edge XANES spectra can optionally be
broadened via an additional postprocessing step to account for
diverse effects on the spectral resolution including, although
not limited to, core-hole lifetime broadening, instrument re-
sponse, and many-body effects, e.g. inelastic losses. If this
postprocessing step is carried out (as is routine, and typically
with an energy-dependent arctangent function; see Eq. 2 in
Ref. 71 ), performance is improved appreciably (see the
values in parantheses in Table I; arctangent broadening pa-
rameters are tabulated in Table S1). Across the nine first-row
transition metal reference datasets, the median ∆µ is reduced
to ca. 3% (2.8%, on average) and the interquartile range tight-
ens further to ca. 2–3% post-broadening, with the greatest im-
provements in the finely-structured edge region of the K-edge
XANES spectra.

Fig. 12 displays parity plots of the error in energy, ∆E,
between target, Etarget, and predicted, Epredict, peak positions
in the first-row transition metal K-edge XANES spectra (a
key metric for the experimental spectroscopist); key proper-
ties (means, maxima, standard deviations, and R2 coefficients)
are tabulated in Table II. The XANESNET DNN consistently
predicts the positions of prominent peaks in the target K-edge
XANES spectra to sub-eV (ca. 0.80 eV, on average) accuracy
across the nine first-row transition metal reference datasets,
reproducing > 90% of identified targets. The coefficients
of determination, R2 – which are, for all reference datasets,
> 0.99 – evidence encouragingly strong linear relationships
between Etarget and Epredict.
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FIG. 11. Histograms of the median percentage error, ∆µ , between target, µtarget, and predicted, µpredict, first-row transition metal K-edge
XANES spectra. Evaluated on nine "held-out" transition metal test datasets (Ti–Zn) containing 250 randomly-selected samples each (Section
II A). 28 G2 wACSF and 42 G4 wACSF.

TABLE I. Summarya of the median percentage errors, ∆µmedian (%),
upper and lower quartiles, and skewness coefficients for the ∆µ dis-
tribution histograms (Fig. 11).

Edge ∆µmedian Upper Quart. Lower Quart. Skew.
Ti 5.5 (3.8) 7.7 (5.7) 4.0 (2.3) 1.898
V 5.2 (3.2) 8.6 (6.0) 2.9 (1.9) 1.625
Cr 3.8 (2.5) 6.9 (4.7) 2.5 (1.5) 1.926
Mn 4.3 (2.8) 6.7 (4.8) 2.9 (1.9) 2.242
Fe 4.7 (3.1) 7.2 (4.8) 3.1 (2.0) 1.607
Co 4.3 (2.8) 6.3 (4.3) 3.1 (1.9) 2.058
Ni 4.1 (2.6) 6.0 (4.0) 2.8 (1.7) 1.286
Cu 4.0 (2.7) 5.6 (4.2) 2.8 (1.7) 2.007
Zn 3.2 (2.2) 4.9 (3.5) 2.2 (1.5) 3.005

a Values in parenthesis are after arctangent broadening; Table S1.

TABLE II. Summary of the mean peak position errors, ∆Emean (eV),
maximum peak position errors, ∆Emax (eV), standard deviations, σ

(eV), and R2 coefficients for the peak position parity plots (Fig. 12).

Edge ∆Emean ∆Emax σ R2

Ti 0.86 4.01 1.12 0.996
V 0.54 3.96 0.81 0.999
Cr 0.65 3.55 1.08 0.997
Mn 0.76 3.91 1.04 0.997
Fe 0.83 3.81 1.11 0.996
Co 0.74 5.33 1.15 0.993
Ni 0.88 4.98 1.19 0.993
Cu 0.99 4.60 1.26 0.991
Zn 0.95 4.18 1.22 0.997
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FIG. 12. Parity plots of target, Etarget, and predicted, Epredict, peak positions. Evaluated on nine "held-out" transition metal test datasets (Ti–Zn)
containing 250 randomly-selected samples each (Section II A). 28 G2 wACSF and 42 G4 wACSF.

IV. CONCLUSION

In this Article, we have built on our earlier proof-of-
principle work in Ref. 71 and practical applications in Refs.
72 and 74 to develop and deploy a new compact neural net-
work – the XANESNET DNN – for predicting the lineshape
of transition metal K-edge XANES spectra. The XANESNET
DNN is > 80% smaller, an order of magnitude faster to opti-
mise, and yet nonetheless displays improved predictive power
and an encouraging potential for generality across the peri-
odic table. We have extended the scope of our study beyond
the familiar Fe K-edge to the nine first-row transition metal
(Ti–Zn) K-edges and assessed the predictive power and gen-
erality of the XANESNET DNN here. Our model is able to
predict K-edge XANES spectral intensities with an average
accuracy of ca. ± 2–4% across the selected spectral windows
(−15.0 → +60 eV relative to each X-ray absorption edge),
and to predict the positions of prominent peaks with a > 90%
hit rate and sub-eV (ca. 0.80 eV) accuracy.

We have addressed in detail the calibration of the feature
vector (Gi) that encodes the information on the local environ-
ment around the X-ray absorption site, and carried out an as-
sessment of the relative importance of the individual features –
particularly the radial (G2) and angular (G4) components. We
found that very little judiciously-selected geometric informa-
tion is actually needed or, indeed, used to map feature vectors
onto the lineshape of the corresponding K-edge XANES spec-
trum; radial information on the first (and to a lesser extent,
the second) coordination shells suffices alongside a quantity
of angular information sufficient to separate satisfactorily key
classes of coordination geometry. We found, in addition, that
the relative importance of the individual features differs de-
pending on the spectral window under consideration. In low-
energy windows near the X-ray absorption edge, all features
are taken into account in a balanced way, while in higher-
energy windows in the post-edge, features encoding radial
information closer to the X-ray absorption site are ascribed
higher importance, mirroring the expected physics in the shift
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from multiple scattering to single scattering with increasing
energy.

Although the exact composition of the feature vector is
dataset-dependent (one of the themes we have explored in
this Article with respect to the coordination complexes in the
tmQM dataset and the particularities of our problem), the cal-
ibration carried out here has nonetheless proved extensible
across our first-row transition metal (Ti–Zn) reference datasets
with great effect.

While accuracy, affordability, and generality (with respect
to the identity of the absorption site) are no longer cardinal
challenges, there are – of course – new challenges to tackle
and opportunities to embrace which, most pressingly, include
i) the incorporation of electronic information and ii) dataset
curation. On the topic of i), the XANESNET DNN currently
considers only the local geometric environment around the
X-ray absorption site of interest – consequently, its ability to
describe charge-state-dependent spectral features remains un-
certain. The key question here is "can electronic effects be
reproduced by the XANESNET DNN with a sufficiently large
reference dataset (i.e. to what extent is the electronic informa-
tion implicit?), or do we need to input electronic information
explicitly?" It is true that the energetic position of an X-ray ab-
sorption edge depends on the electron density at the X-ray ab-
sorption site, e.g. a reduction in electron density will shift the
X-ray absorption edge towards a higher energy as it is conse-
quently harder to remove the core electrons. However, such a
shift can also be associated with structural change (expressed
empirically via Natoli’s Rule:143 the energetic position of an
X-ray absorption edge is in proportion to the average coor-
dination distance). In fact, as changes in the charge state
and local coordination geometry around the X-ray absorp-
tion site are often strongly coupled in coordination complexes,
disentangling the extent of the competition between geomet-
ric and electronic effects presents a considerable challenge.
If we need to input electronic information explicitly, recent
work has demonstrated the ability of modern quantum chemi-
cal techniques to predict accurately core-binding energies for
X-ray absorption edge shifts, and is consequently likely to
be useful towards this end.144–149. On the topic of ii), there
are two key questions: "how can massive coordination com-
plex datasets (rivalling popular molecular organic datasets)
be curated/constructed?" and "is it necessary to construct be-
spoke molecular coordination complex datasets for machine
learning in X-ray spectroscopy?" There is potential for intel-
ligent (guided) and/or combinatorial strategies, and advances
in high-throughput computing will be well-leveraged here.150
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