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Abstract 26 

Polyparameter linear free energy relationships (PP-LFERs) are accurate and robust models 27 

employed to predict equilibrium partition coefficients (K) of organic chemicals. The accuracy 28 

of predictions by a PP-LFER depends on the composition of the respective calibration data set. 29 

Generally, extrapolation outside the model calibration domain is likely to be less accurate 30 

than interpolation. In this study, the applicability domain (AD) of PP-LFERs was systematically 31 

evaluated by calculating the leverage (h) and prediction interval (PI). Repeated simulations 32 

with experimental data showed that the root mean squared error of predictions increased 33 

with h. However, the analysis also showed that PP-LFERs calibrated with a large number (e.g., 34 

100) of training data were highly robust against extrapolation error. For such well-calibrated 35 

PP-LFERs, the common definition of extrapolation (h > 3 hmean, where hmean is the mean h of 36 

all training compounds) may be excessively strict. Alternatively, the PI is proposed as a metric 37 

to define the AD of PP-LFERs, as it provides a concrete estimate of the error range that agrees 38 

well with the observed errors, even for extreme extrapolations. Additionally, published PP-39 

LFERs were evaluated in terms of their AD using the new concept of AD probes, which 40 

indicated the varying predictive performance of PP-LFERs in existing literature for 41 

environmentally relevant compounds. 42 

 43 

Keywords 44 

Applicability domain, linear solvation energy relationship, extrapolation, property prediction, 45 
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Synopsis 48 

Calculating the prediction intervals delineates the applicability domain of polyparameter 49 

linear free energy relationship models. 50 

 51 
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1. Introduction 53 

Equilibrium partition coefficients largely determine the environmental distribution of organic 54 

contaminants and are crucial parameters for environmental risk assessments. Among various 55 

models, the linear solvation energy relationships (LSERs),1 or generally, polyparameter linear 56 

free energy relationships (PP-LFERs) that use Abraham’s solute descriptors have been 57 

confirmed to be accurate and robust for predicting partition coefficients.2 The PP-LFERs cover 58 

the intermolecular interactions relevant to the phase partitioning of neutral organic 59 

compounds. Their successful environmental applications have been previously reviewed.3,4 60 

PP-LFERs are multiple linear regression models that typically use five solute 61 

descriptors. The following three types of equations are most often applied.1,5 62 

 Log K = c + eE + sS + aA + bB + vV (1) 63 

 Log K = c + eE + sS + aA + bB + lL (2) 64 

 Log K = c + sS + aA + bB + vV + lL (3) 65 

The symbols denote the following: K, partition coefficient; E, excess molar refraction; S, solute 66 

polarizability/dipolarity parameter; A, solute hydrogen (H)-bond donor property; B, solute H-67 

bond acceptor property; V, McGowan’s molar volume; and L, logarithmic hexadecane/air 68 

partition coefficient. The lowercase letters are regression coefficients and are typically trained 69 

with several tens of compounds for which experimental log K and the solute descriptors (i.e., 70 

E, S, A, B, V, and L) are available. The fitting of the PP-LFERs is high even to data that are highly 71 

diverse in size and polarity. For solvent/water and solvent/air partition coefficients, the 72 

calibration typically results in a standard deviation (SD) of 0.2 or below for the log K values.1  73 

Partition systems that involve a heterogeneous phase (e.g., natural organic matter) can 74 

exhibit a lower quality of fit (SD, 0.3–0.5 log units).3 75 

 PP-LFERs are derived from a multiple linear regression; therefore, their applicability 76 

domain (AD) is related to the training (calibration) set of compounds. Generally, extrapolation 77 

(i.e., prediction beyond the calibrated domain) is likely to be less accurate than interpolation. 78 

Moreover, a long-range extrapolation is expected to be more error-prone than a short-range 79 

extrapolation. However, in a multidimensional space (here, 5 descriptors), it is unclear how 80 

the terms interpolation and extrapolation can be defined and how a quantitative relationship 81 

between the extent of extrapolation and prediction accuracy may be established. Notably, an 82 

extrapolation can be less accurate but is not necessarily inaccurate or unreliable. The required 83 
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accuracy depends on the purpose of the model use, and extrapolation can be acceptable 84 

within the range where its accuracy is satisfactory. 85 

 Among various approaches, calculation of the leverages has been considered to define 86 

and evaluate the AD for linear regression models.6-9 The leverage is a quantitative measure of 87 

the distance from the entire set of calibration data. Leverage calculation is applied to identify 88 

outliers within the calibration set, and it can also be used to quantitatively define 89 

extrapolation in the prediction. A large leverage value indicates a long distance from the 90 

calibrated domain and thus an extrapolation with the possibility of increased error. 91 

The prediction interval (PI) is the range of values where future model predictions are 92 

expected to fall at a given frequency. Typically, 95 or 99% PIs are calculated. Although PIs are 93 

frequently calculated for predictions by a simple linear regression model, they are not 94 

commonly presented for multiple linear regression models, including PP-LFERs. However, the 95 

PI can be more useful than the leverage, as the PI considers both the distance from the 96 

calibration set and the quality of the model fitting (see Section 2.2 for more details). 97 

 The purposes of this study are three-fold: (i) To quantitatively demonstrate how the 98 

prediction accuracy of a PP-LFER decreases when moving away from a specific domain of 99 

calibration defined by the leverage, (ii) to compare actual prediction errors with error margins 100 

expected by PIs, and (iii) to evaluate several calibration sets for PP-LFERs in terms of their AD 101 

using a new concept of AD probes. On the basis of these, a discussion is presented on the 102 

definition and evaluation of AD for PP-LFER models. The information should also be helpful 103 

for the future development of PP-LFERs because it ensures an optimized calibration data set. 104 

 105 

2. Methodology 106 

2.1 Definition and calculation of the leverage and PI 107 

The definition and calculation of the leverage and PI are described in full in SI-1 of the 108 

Supporting Information (SI) and only briefly here. 109 

The PP-LFER regression can be expressed in matrix form as follows, 110 

 y = X β + ε (4) 111 

where y is the vector of observations for log K, β is the vector of regression coefficients, and 112 

ε is the error vector. X is the design matrix containing solute descriptors of n training 113 

compounds. The hat matrix (H) can be derived from X, and the diagonals of H (i.e., hii) are 114 
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referred to as the leverages and infer the distance of each calibration compound from the 115 

others in terms of the solute descriptor combination. hii is between 0 and 1, and the sum of 116 

hii for the n training compounds is equal to the number of fitting parameters p, which is 6 for 117 

the PP-LFERs (including the regression constant). An overly high hii indicates that the 118 

respective calibration compound is an outlier in terms of its descriptors. Typically, hii = 3hmean 119 

is considered a threshold value,6-9 where hmean is the mean of hii for all calibration compounds 120 

and is equal to p/n. To evaluate the extrapolation for compound j, which is not included in 121 

the calibration set, h is calculated as, 122 

 h = xj
T (XT X)-1 xj (5) 123 

where xj is the column vector containing the solute descriptors of j. Analogous to the 124 

identification of outliers in the training set, h = 3hmean is typically considered the threshold 125 

value for extrapolation.6-9 126 

The PI of the PP-LFER can be expressed as [log Kj – Δ(log K), log Kj + Δ(log K)], where 127 

log Kj is the value for compound j predicted with eq 4 (i.e., log Kj = xj
T β) and Δ(log K) is half 128 

the width of the PI. Δ(log K) is calculated as, 129 

 ∆(log𝐾) = 𝑡𝛼/2,𝑛−𝑘−1SDtraining√1 + 𝑥j
𝑇(𝑋𝑇𝑋)−1𝑥j  (6) 130 

 = 𝑡𝛼/2,𝑛−𝑘−1SDtraining√1 + ℎ  (7) 131 

where tα/2,n-k-1 is the two-tailed t-value for a given confidence level (α, e.g., 95%), number of 132 

training data (n), and number of independent variables (k; 5 for PP-LFERs). SDtraining is the 133 

standard deviation of the PP-LFER model fitted to the training data. Δ(log K) may be 134 

normalized to SDtraining, as 135 

 ∆(log𝐾)/SDtraining = 𝑡𝛼/2,𝑛−𝑘−1√1 + ℎ  (8) 136 

In this study, the following two tests were performed to discuss the use of h and the 137 

PIs to delineate the AD of PP-LFERs. 138 

2.2 Test 1: Comparison of prediction errors with h and the PIs 139 

In the first test, the variation of actual prediction errors by PP-LFERs with h and the PIs was 140 

examined. Six experimental data sets of partition coefficients from existing literature were 141 

used: octanol/water (Kow, n = 314);10 air/water (Kaw, n = 390);11 oil/water (Koilw, n = 247);12 soil 142 

organic carbon/water (Koc, n = 79);13 phospholipid liposome/water (Klipw, n = 131);14 and 143 

bovine serum albumin/water (KBSAw, n = 82).15 These data sets comprise a relatively large 144 
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number of compounds and exhibit environmental and toxicological relevance. Kow, Kaw, and 145 

Koilw were partition coefficients between two homogeneous solvents, whereas Koc, Klipw, and 146 

KBSAw involved a heterogeneous or anisotropic phase. The K values and solute descriptors 147 

were obtained from the aforecited references, are listed in Tables S1–S6, and are summarized 148 

in Table S7 (SI-2 of the SI) 149 

 To evaluate prediction accuracy, the K data of each set were divided into training and 150 

test sets. Training compounds were randomly selected from the entire data set. The number 151 

of the training compounds (ntraining) was 20, 30, 40, 50, 75 or 100. Rather small values of ntraining 152 

were also included in this test to simulate cases of insufficient calibration. The compounds 153 

that were not selected as training compounds were used as test compounds. The PP-LFER in 154 

the form of eq 1 was calibrated with the training data and was used to predict log K for the 155 

test compounds. Prediction errors (predicted log K − experimental log K) were calculated and 156 

compared with h and Δ(log K). For each combination of the K set and ntraining, the cycle of 157 

“random generation of a training set,” “calibration of the PP-LFER,” and “prediction for the 158 

test set” was repeated 200 times. This number was arbitrary but appeared sufficient for stable 159 

results.  160 

Additionally, using the 200 calibrated PP-LFERs for each case, the experimental log K 161 

values of per- and polyfluoroalkyl substances (PFASs) and organosilicon compounds (OSCs) 162 

were predicted. PFASs and OSCs possess extremely weak van der Waals interaction 163 

properties; thus, the E and L values are comparatively low for their molecular sizes.16 164 

Therefore, PP-LFERs often have to be extrapolated to predict K values. These classes of 165 

compounds are not present in the data set of any considered PP-LFER and are used to 166 

evaluate the influences of extrapolation on the prediction accuracy. 167 

All calculations mentioned above were performed with R software. 168 

2.3 Test 2: Evaluating reported PP-LFERs with AD probes 169 

In the second test, h and PI calculation was applied to evaluate the AD of reported PP-LFER 170 

equations. Here, n, SDtraining, and the solute descriptors of the calibration compounds were 171 

extracted from existing literature and used to calculate h and PIs for 25 selected compounds 172 

(Table S8, SI-3). These compounds, referred to as AD probes herein, were selected because 173 

of their wide variations in descriptor values, structural diversity, and environmental relevance. 174 

They represented aliphatic and aromatic, polar and nonpolar, and small and large compounds 175 
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and included multifunctional polar compounds such as various pesticides and 176 

pharmaceuticals, a neutral PFAS, and an OSC. Solute descriptors for the AD probes were 177 

obtained from the UFZ-LSER database and listed in Table S8 (SI-3).17 Test 2 did not require the 178 

experimental K values of the AD probes, and only solute descriptors were used for the 179 

calculation. As the SI, an Excel file with a macro is provided that calculates h, h/hmean, and 180 

Δ(log K) for the AD probes and any desired chemical based on the user-entered training data. 181 

Note that there exist compounds with extreme descriptor values that are not covered by the 182 

25 AD probes proposed here. For example, an antibiotic erythromycin (E = 2.90, S = 3.73, A = 183 

1.25, B = 4.96, V = 5.773)18 exhibits exceptionally high S, B and V values. However, such 184 

compounds are rarely used for calibration and are always out of the calibration domain; 185 

therefore, they are not necessary specifically in this evaluation.  186 

 187 

3. Results and discussion 188 

3.1 Prediction errors compared to h and the PIs (Test 1) 189 

Figure S1 (SI-4) shows the root mean squared errors (RMSEs) for training and testing sets 190 

randomly generated 200 times. The test compounds were grouped into several bins according 191 

to the h normalized to hmean (h/hmean) before the RMSEs were calculated. The observed RMSE 192 

for the test compounds increased with h for a given K data set and ntraining. The increasing 193 

trend of RMSE with h was particularly clear for simulations with small ntraining values (i.e., 20, 194 

30). The trend was sometimes unclear for simulations with high ntraining values, likely because 195 

large ntraining resulted in a relatively small ntest, which may not be able to provide 196 

representative RMSEs, particularly for high h/hmean bins. 197 

 To demonstrate the increase in RMSE with h/hmean more clearly, the RMSE values for 198 

the test data relative to the RMSE for the training data were calculated (Figure 1, Figure S2 in 199 

SI-4). The relative RMSE generally increased with h/hmean but to a lesser extent when ntraining 200 

was large. For example, the relative RMSEs of log Kow data in the “2 < h/hmean < 3” bin were 201 

1.75, 1.52, 1.42, and 1.34 for ntraining = 20, 40, 75, and 100, respectively. This result suggests 202 

that if the PP-LFER is trained with a sufficient size of data, the RMSEs for interpolations (i.e., 203 

h/hmean < 3) will resemble the RMSE for the training set. Noteworthily, even for the “3 < 204 

h/hmean < 4” bin (i.e., extrapolation), the relative RMSE for any K considered was < 1.5 when 205 

ntraining ≥ 50, and < 2.2 when ntraining ≥ 20. These RMSEs can be sufficiently accurate for various 206 
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purposes. Although h = 3hmean is the common definition of extrapolation, the actual threshold 207 

of h may be adapted to the required accuracy of predictions, depending on the quality of the 208 

PP-LFER fit and ntraining. For example, if the required accuracy is 0.3 log units, which is typically 209 

the level of accuracy of contaminant fate models,19 then extrapolations by the PP-LFERs for 210 

log Kow and log Kaw up to an h/hmean of 4 can be allowed, according to the results of Test 1 211 

(Figure S1). In contrast, a stricter threshold, e.g., h/hmean < 2 or even < 1, should be set to log 212 

Koc, log Klipw, and log KBSAw to comply with the criterion of 0.3 log unit RMSE. Alternative AD 213 

thresholds are further discussed in Section 3.3. 214 

 215 

Figure 1. RMSEs of the test data, sorted according to h/hmean, relative to the RMSE of the 216 

training data. The plots for ntraining = 30 and 50 and log Koc and log KBSAw are available in the 217 

Figure S2 (SI-4). 218 

 219 

 220 

 Along with average errors, such as RMSEs, the risk of an extremely inaccurate 221 

prediction is of interest. Individual data of Test 1 for log Kow and log Klipw were plotted against 222 

h (Figure 2). All other data are shown in Figure S3 (SI-5). When ntraining was small (e.g., 20, 30), 223 

both h (x-axis) and prediction errors (y-axis, normalized to SDtraining) for the test data were 224 

widely distributed. Extremely large errors (|error/SDtraining| > 5) occasionally occurred, 225 

particularly if h was large (> 10hmean). In contrast, when ntraining was large (e.g., 75, 100), the 226 

training and test data were similarly distributed in terms of  h and the prediction errors.  227 

 228 



10 
 

 229 

Figure 2. Prediction errors normalized to SDtraining plotted against h. Results from 200 230 

simulations are shown. The vertical line indicates 3hmean. The dashed horizontal lines 231 

indicate errors that are 3 times the SDtraining. The curves indicate the 95% (inside) and 99% 232 

(outside) prediction intervals. Top, log Kow; bottom, log Klipw. All other data are shown in 233 

Figure S3 (SI-5). 234 

 235 

 236 

 The percentage of large prediction errors, defined by |error/SDtraining| > 3, was 237 

generally higher for extrapolation (h/hmean > 3) than interpolation (h/hmean < 3) (Figure S4, SI-238 

6). However, the percentage strongly decreased with ntraining. As an example: for log Kow, when 239 

ntraining = 20, 3.3% of the interpolations and 17% of the extrapolations suffered from large 240 

prediction errors. In contrast, when ntraining = 100, 0.94% of the interpolations and 4.7% of the 241 

extrapolations resulted in large prediction errors, which conversely indicated that 94% of the 242 

extrapolations ended up with errors within 3 SDtraining.  243 

Figures 2 additionally shows the 95% and 99% PIs as a function of h. The PIs were 244 

narrow up to h ~ 1 and diverged with h, as expected from eq 8. The extent of divergence was 245 

large when ntraining was small, which can be explained by a large tα/2,n-k-1 in eq 8. The data points 246 

from Test 1 were within the PIs with a few outliers. The percentage of the test data within a 247 
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given PI agrees with the theoretical expectations; e.g., ca 95% of the test data are within the 248 

95% PI, independent of ntraining (Figure S5, SI-7). 249 

 Overall, Test 1 demonstrated that the mean prediction error increased with h and 250 

could be used to identify “risky predictions” that frequently cause high inaccuracy. However, 251 

a threshold of 3hmean did not appear to be versatile in defining the AD, as the ntraining appeared 252 

to influence the range of prediction errors. The plots in Figures 1, 2, and S1–S5 suggested that, 253 

when ntraining was large, h = 3hmean might be overly strict as a threshold, because prediction 254 

errors were often similar in magnitude even when h > 3hmean. Note that Test 1 was also 255 

performed with eq 3, the PP-LFER equation that uses L instead of E. However, the results were 256 

similar to those of eq 1 and are thus not discussed herein. 257 

 258 

3.2 PFASs and OSCs 259 

Using 200 trained PP-LFERs, log Kow of 3 PFASs (4:2 fluorotelomer alcohol (FTOH), 6:2 FTOH, 260 

and 8:2 FTOH) and 3 OSCs (octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane 261 

(D5), and dodecamethylcyclohexasiloxane (D6)) were predicted and compared to the 262 

experimental data (Figure 3; additional data in Figure S6, SI-8.16 For this comparison, eq 3 263 

instead of eq 1 was used because the latter is known to be unsuitable for PFASs and OSCs (ref 264 

16; also compare Figures S6 and S7 in SI-8 and SI-9, respectively). The h/hmean ratios for these 265 

six chemicals were always above 3 with any ntraining used and were up to 300, indicating strong 266 

extrapolations. The predictions were highly inaccurate when the ntraining was small. However, 267 

the predictions appeared to improve with an increase in ntraining. When ntraining = 100, even 268 

largely extrapolated FTOHs (h ~ 2, h/hmean ~ 33) were frequently predicted within 3 SDtraining. 269 

The dependence of the prediction error on h was well captured by the PIs; the majority of the 270 

data were within the 99% PIs, and this was the case for extreme extrapolations as well (Figures 271 

3, S6). The results for PFASs and OSCs can be considered another indication that well-272 

calibrated PP-LFERs are robust against extrapolation and that h = 3hmean as the cutoff criterion 273 

is excessively strict if the ntraining is large.  Notably, although well-calibrated PP-LFERs appear 274 

to bear extrapolation, the inclusion of PFASs and OSCs in the calibration set is the first choice 275 

to develop PP-LFERs that work for these classes of chemicals, as that substantially decreases 276 

h for PFASs and OSCs.16 277 
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 278 

Figure 3. Prediction errors for log Kow of PFAS and OSCs normalized to SDtraining plotted 279 

against h. The results from 200 simulations are shown. The lines indicate the same as in 280 

Figure 2. Equation 3 was used for this plot (see text for more details). Additional data are in 281 

Figure S6 (SI-8). 282 

 283 

3.3 How can we define the AD of PP-LFERs? 284 

In previous discussions regarding the AD of quantitative structure activity relationships 285 

(QSARs), the use of h with a cutoff value of 3hmean has been frequently presented. As shown 286 

in Test 1 of this study, however, this cutoff may excessively limit the potential of well-287 

calibrated PP-LFERs to predict a broad range of compounds above the 3hmean threshold. The 288 

use of the PI, in contrast, has rarely been investigated in the context of QSAR development 289 

but may be more practical for multiple linear regression models, such as PP-LFERs, because 290 

the PI encompasses the distance (h), quality of model fit (SDtraining), and size of training data 291 

(influencing h and tα/2,n-k-1) and provides a concrete estimate of the error range (eq 7). To use 292 

the PI to define the AD, an upper threshold for Δ(log K) must be set. Here, two ways that may 293 

be acceptable are discussed.  294 

(A) Set the Δ(log K) threshold at a multiple of SDtraining. The AD may be defined by a 295 

Δ(log K) threshold that is a multiple of SDtraining. An example of such a criterion is Δ(log K)99%PI 296 

< 3SDtraining. According to eq 8, this condition corresponds to, 297 

 𝑡99/2,𝑛−𝑘−1√1 + ℎ < 3 (9) 298 

Inequality 9 describes the two intersections in Figures 2 and 3 where the curves for the 99% 299 

PI meet the horizontal lines for ±3SDtraining. By solving this inequality for h, we obtain, 300 
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 ℎ < (
3

𝑡99/2,𝑛−𝑘−1
)
2

− 1 (10) 301 

Inequality 10 describes a new h threshold that is derived from “Δ(log K)99%PI < 3SDtraining“ and 302 

is a function of tα/2,n-k-1. As tα/2,n-k-1 is dependent on ntraining, this h threshold is also dependent 303 

on ntraining (Figure 4). For example, if ntraining = 50, the new threshold is h < 0.24, which is h/hmean 304 

< 2.0. If ntraining = 100, the threshold is h < 0.30, which is h/hmean < 5.0. The common threshold 305 

of h/hmean < 3 can be derived when ntraining = 66.6. Thus, the new threshold is stricter if ntraining 306 

≤ 66 and less strict if ntraining ≥ 67, compared with the 3hmean rule.  307 

 308 

Figure 4. New thresholds of h and h/hmean derived from Δ(log K)99%PI < 3SDtraining as a criterion 309 

(eq 10). 310 

 311 

(B) Set the Δ(log K) threshold at a certain value. In the second approach, the AD is 312 

defined in such a way that the PI becomes narrower than a certain range. For example, we 313 

may consider Δ(log K)99%PI < 0.5 (i.e., a factor of 3 for K) as an acceptable error margin, then 314 

eq 7 becomes, 315 

 𝑡99/2,𝑛−𝑘−1SDtraining√1 + ℎ < 0.5 (11) 316 

which can be rewritten as, 317 

 ℎ < (
0.5

𝑡99/2,𝑛−𝑘−1SDtraining
)
2

− 1 (12) 318 

Using the SDtraining value for the PP-LFER of log Kow (Table S7, SI-1) as an example, we can 319 

derive a threshold of h specific to log Kow. By inserting SDtraining = 0.154 and t99/2,n-k-1 = 2.59 320 

(with n = 314) in inequality 12, we obtained h < 0.57 (i.e., h/hmean < 30). Note that if SDtraining 321 

is high (e.g., 0.285 for log Klipw), “Δ(log K)99%PI < 0.5” is not achievable no matter how large 322 

ntraining is, because t99/2,n-k-1 is > 2.58 regardless of ntraining and the righthand side of inequality 323 
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12 is always negative. The difficulty associated with this approach to define the AD may be to 324 

set the acceptable Δ(log K)99%PI level such that it is both useful and achievable. 325 

 326 

3.4 Evaluating AD of published PP-LFERs with AD probes (Test 2) 327 

Using the 25 AD probes, 10 published PP-LFER equations10-15,20-23 including those used in Test 328 

1 were evaluated (Figure 5, Figure S8 in SI-10). 329 

 330 

Figure 5. Leverage (bars) and prediction intervals (triangles and circles) of 25 applicability 331 

domain (AD) probes calculated with the training data sets of four PP-LFERs. Solid horizontal 332 

lines indicate h/hmean = 3 and Δ(log K) = 3SD. *The cited reference does not give SD but a 333 

“mean error” of 0.2, which was used here. Plots for all 10 PP-LFERs are shown in Figure S8, 334 

SI-10.  335 

 336 

The h calculation showed that none of the 10 training sets considered encompassed 337 

all the 25 AD probes within the 3hmean domain. This indicates that certain environmentally 338 

relevant compounds must be extrapolated with these PP-LFERs. Particularly, 8:2 FTOH and D5 339 

always appeared as highly extrapolated chemicals (h/hmean = 8–50), reflecting the fact that 340 

PFASs and OSCs were not included in any of the training sets and indicating that these 341 
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compounds were not well represented by other training compounds. For each type of 342 

chemical, the small compounds (e.g., dichloromethane, methyl tert-butyl ether, benzene) 343 

exhibited lower h/hmean ratios than the large compounds (e.g., hexadecane, tri-n-butyl 344 

phosphate, benzo[ghi]perylene). Generally, relatively small compounds are easy to measure, 345 

and their data are present in the training set, whereas obtaining data for large compounds 346 

tends to be more challenging. Consequently, PP-LFERs must be frequently extrapolated for 347 

large compounds. 348 

 The data sets for log Kow
10 and log Kaw

11 exhibited similar patterns for h/hmean and Δ(log 349 

K). Thus, the h/hmean ratios of the small compounds were < 3 (interpolation) and those of the 350 

large compounds were in the range of 3–15 (extrapolation) (Figure 5A). However, the Δ(log 351 

K) values were not largely different across the 25 AD probes. Although 12 out of 25 AD probes 352 

exhibited h/hmean > 3, Δ(log K)95%PI and Δ(log K)99%PI were ~ 0.3 and ~ 0.4, respectively, for all 353 

the AD probes. Even for strongly extrapolated 8:2 FTOH, Δ(log K)95%PI and Δ(log K)99%PI of log 354 

Kow predictions were 0.36 and 0.47, respectively. These relatively low Δ(log K) values for the 355 

extrapolated compounds originated from the substantial size of training data for Kow and Kaw. 356 

The log Koilw
12 data set resulted in similar patterns for h/hmean and Δ(log K), but the values of 357 

Δ(log K) were higher than those of log Kow and log Kaw because of the higher SDtraining of log 358 

Koilw (Figure S8). 359 

 The data set for log Klipw
14 had the benefit of excellent coverage of the AD probes; only 360 

5 out of 25 AD probes exhibited h/hmean > 3 (Figure 5B). A wealth of data for hydrophobic 361 

compounds (e.g., PAHs), substituted phenols, hormones, and pharmaceuticals in addition to 362 

simple aliphatic and aromatic and polar and nonpolar compounds with varying sizes resulted 363 

in the low h/hmean for the AD probes. Because of the low h/hmean and high n, the Δ(log K) values 364 

were similar for all AD probes. Nevertheless, the values of Δ(log K)95%PI and Δ(log K)99%PI (~ 0.6 365 

and ~ 0.8, respectively) for log Klipw were higher than those for log Kow by a factor of ~ 2, 366 

because the SDtraining of log Klipw was higher by the same factor. 367 

 Figures 5C and 5D show illustrative examples of PP-LFERs with limited training data. 368 

The data set of fulvic acid/water partition coefficients (KFA/w)20 comprised 34 training data, 369 

and 16 out of 25 AD probes were extrapolated (h/hmean > 3). The major difference from log 370 

Kow and log Klipw was the wide range of Δ(log K); the Δ(log K)95%PI and Δ(log K)99%PI values for 371 

log KFA/w were in the range of 0.5–1.0 and 0.7–1.4, respectively. The data set of activated 372 

carbon/water partition coefficients (KAC/w)23 was a clearer example of insufficient calibration. 373 
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It only contained 14 training data, and all AD probes were considered extrapolated (h/hmean, 374 

8–480). Although the model fitting seemed to be good (the stated mean error, 0.2),23 the PIs 375 

were extremely broad, with Δ(log K)95%PI and Δ(log K)99%PI being 1.0–6.8 and 1.5–10, 376 

respectively. These results indicate that PP-LFERs from such small training sets will have a 377 

limited predictive ability for external compounds. Conversely, the calculation of h and the PIs 378 

will be most useful for such poorly calibrated PP-LFERs, as they can identify compounds for 379 

which the precision of prediction is still acceptable.  380 

 In SI-10 of the SI, a comparative discussion is provided for three data sets of log 381 

Koc
13,21,22 in terms of their ADs. These data sets possessed different characteristics, which were 382 

demonstrated by the AD probes. 383 

Overall, it can be concluded that the 25 AD probes are useful in illustrating the 384 

strength and weakness of calibrated PP-LFERs. The missing classes of compounds in the 385 

training data, e.g., large hydrophobic compounds and multifunctional polar compounds, can 386 

be identified using the h/hmean values, and the associated elevation of error margins can be 387 

evaluated by calculating the PIs.  388 

 389 

3.5 Practical implications 390 

This study demonstrated that extrapolation was error-prone when the number of training 391 

data was limited and the h/hmean value was extremely high. In contrast, well-calibrated PP-392 

LFERs with many training data (e.g., 100) were highly robust against extrapolation. For 393 

partition coefficients between solvent phases or solvent and air such as Kow and Kaw, the data 394 

are typically accurate and abundant. Thus, extrapolations can frequently result in low 395 

prediction errors. Extrapolation matters for heterogeneous environmental, biological, and 396 

technical phases, because the data are often limited, and SDtraining tends to be large. 397 

The commonly used threshold of h < 3 hmean appeared not to be useful in defining the 398 

AD of PP-LFER models. Alternatively, two possible ways were proposed in this article to define 399 

the AD based on the calculation of the PI. For practical purposes, presenting the PIs for each 400 

time of prediction may be highly recommended. For example, using the PP-LFER, log Kow for 401 

hexachlorobenzene is predicted as 5.49 with a 95% PI of [5.16, 5.81]. With these PI values, 402 

the model user can appreciate the reliability of the prediction and decide whether the value 403 

is taken or not, following the accuracy required for the given model use. It could be claimed 404 
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that calculating the PI each time is more important and useful than seeking a strict definition 405 

of the AD, because the former presents a quantitative estimate of the error range, while the 406 

latter is a qualitative, binomial indicator with an arbitrary cutoff in the end.  407 

To develop a robust PP-LFER, the training set should contain (A) a large number (>60, 408 

preferably >100) of (B) accurate experimental K data for (C) diverse compounds with (D) 409 

accurate descriptors available. (A) decreases tα/2,n-k-1 and h, (B) and (D) decrease SDtraining, and 410 

(C) decreases h in eq 7, all contributing to tight PIs. The predictive performance of an empirical 411 

model is always restricted by the quality and quantity of the underlying experimental data. 412 

The improvement in data accuracy and availability will contribute to the further development 413 

of PP-LFER approaches.  414 

Extended use of the PI may be considered for evaluating the AD of QSARs that are 415 

derived by the multiple linear regression analysis. The calculation of the PI is no more complex 416 

than h is, but the former provides far more insights into the reliability of predictions, as 417 

discussed above. Noteworthily, the success of applying the PI for PP-LFERs may be partially 418 

related to the excellent linearity of the PP-LFER descriptors to log K. The suitability of the PI 419 

for various existing QSAR descriptors and properties warrants future investigation. 420 

 421 

Associated content 422 

Supporting information 423 

The Supporting Information is available free of charge at … 424 

Additional explanations for h and PIs, tables listing the used K data and AD probes, additional 425 

figures for Tests 1 and 2 (PDF)  426 

MS Excel file with a macro to calculate h and the PIs (XLSM) 427 

 428 

Conflicts of interest 429 

The author has no conflicts of interest associated with this article. 430 

 431 

Acknowledgments 432 

This work was supported by JSPS KAKENHI Grant Numbers JP18K05204 and JP16K16216 and 433 

by the MEXT/JST Tenure Track Promotion Program. Kai-Uwe Goss and Jort Hammer are 434 

thanked for their valuable comments on an earlier version of this manuscript. 435 



18 
 

 436 

References 437 

1. Abraham, M. H.; Ibrahim, A.; Zissimos, A. M., Determination of sets of solute 438 

descriptors from chromatographic measurements. J. Chromatogr. A 2004, 1037, (1-2), 29-47. 439 

2. Goss, K.-U.; Schwarzenbach, R. P., Linear free energy relationships used to evaluate 440 

equilibrium partitioning of organic compounds. Environ. Sci. Technol. 2001, 35, (1), 1-9. 441 

3. Endo, S.; Goss, K.-U., Applications of Polyparameter Linear Free Energy Relationships 442 

in Environmental Chemistry. Environ. Sci. Technol. 2014, 48, (21), 12477-12491. 443 

4. Poole, C. F.; Ariyasena, T. C.; Lenca, N., Estimation of the environmental properties of 444 

compounds from chromatographic measurements and the solvation parameter model. J. 445 

Chromatogr. A 2013, 1317, 85-104. 446 

5. Goss, K.-U., Predicting the equilibrium partitioning of organic compounds using just 447 

one linear solvation energy relationship (LSER). Fluid Phase Equilib. 2005, 233, (1), 19-22. 448 

6. Netzeva, T. I.; Worth, A.; Aldenberg, T.; Benigni, R.; Cronin, M. T.; Gramatica, P.; 449 

Jaworska, J. S.; Kahn, S.; Klopman, G.; Marchant, C. A.; Myatt, G.; Nikolova-Jeliazkova, N.; 450 

Patlewicz, G. Y.; Perkins, R.; Roberts, D.; Schultz, T.; Stanton, D. W.; van de Sandt, J. J.; Tong, 451 

W.; Veith, G.; Yang, C., Current status of methods for defining the applicability domain of 452 

(quantitative) structure-activity relationships. The report and recommendations of ECVAM 453 

Workshop 52. ATLA Altern. Lab. Anim. 2005, 33, (2), 155-73. 454 

7. Jaworska, J.; Nikolova-Jeliazkova, N.; Aldenberg, T., QSAR Applicability Domain 455 

Estimation by Projection of the Training Set in Descriptor Space: A Review. ATLA Altern. Lab. 456 

Anim. 2005, 33, (5), 445-459. 457 

8. Gramatica, P., Principles of QSAR models validation: internal and external. QSAR Comb 458 

Sci. 2007, 26, (5), 694-701. 459 

9. Gramatica, P.; Giani, E.; Papa, E., Statistical external validation and consensus 460 

modeling: A QSPR case study for Koc prediction. J. Mol. Graph. Model. 2007, 25, (6), 755-766. 461 

10. Abraham, M. H.; Chadha, H. S.; Whiting, G. S.; Mitchell, R. C., Hydrogen bonding. 32. 462 

An analysis of water-octanol and water-alkane partitioning and the log P parameter of seiler. 463 

J. Pharm. Sci. 1994, 83, (8), 1085-100. 464 



19 
 

11. Abraham, M. H.; Andonian-Haftvan, J.; Whiting, G. S.; Leo, A.; Taft, R. S., Hydrogen 465 

bonding. Part 34. The factors that influence the solubility of gases and vapors in water at 298 466 

K, and a new method for its determination. J. Chem. Soc. Perkin Trans. 2 1994, (8), 1777-91. 467 

12. Geisler, A.; Endo, S.; Goss, K.-U., Partitioning of Organic Chemicals to Storage Lipids: 468 

Elucidating the Dependence on Fatty Acid Composition and Temperature. Environ. Sci. 469 

Technol. 2012, 46, (17), 9519-9524. 470 

13. Bronner, G.; Goss, K.-U., Predicting sorption of pesticides and other multifunctional 471 

organic chemicals to soil organic carbon. Environ. Sci. Technol. 2011, 45, (4), 1313-1319. 472 

14. Endo, S.; Escher, B. I.; Goss, K.-U., Capacities of Membrane Lipids to Accumulate 473 

Neutral Organic Chemicals. Environ. Sci. Technol. 2011, 45, (14), 5912-5921. 474 

15. Endo, S.; Goss, K.-U., Serum Albumin Binding of Structurally Diverse Neutral Organic 475 

Compounds: Data and Models. Chem. Res. Toxicol. 2011, 24, (12), 2293-2301. 476 

16. Endo, S.; Goss, K.-U., Predicting Partition Coefficients of Polyfluorinated and 477 

Organosilicon Compounds using Polyparameter Linear Free Energy Relationships (PP-LFERs). 478 

Environ. Sci. Technol. 2014, 48, (5), 2776-2784. 479 

17. Ulrich, N.; Endo, S.; Brown, T. N.; Watanabe, N.; Bronner, G.; Abraham, M. H.; Goss, K. 480 

U., UFZ-LSER database v 3.2 [Internet]. 2017. 481 

18. Abraham, M. H.; Ibrahim, A.; Acree, W. E., Jr., Air to lung partition coefficients for 482 

volatile organic compounds and blood to lung partition coefficients for volatile organic 483 

compounds and drugs. Eur. J. Med. Chem. 2008, 43, (3), 478-485. 484 

19. Mackay, D.; Arnot, J. A., The Application of Fugacity and Activity to Simulating the 485 

Environmental Fate of Organic Contaminants. J. Chem. Eng. Data 2011, 56, (4), 1348-1355. 486 

20. Neale, P. A.; Escher, B. I.; Goss, K.-U.; Endo, S., Evaluating dissolved organic carbon–487 

water partitioning using polyparameter linear free energy relationships: Implications for the 488 

fate of disinfection by-products. Water Res. 2012, 46, (11), 3637-3645. 489 

21. Nguyen, T. H.; Goss, K.-U.; Ball, W. P., Polyparameter linear free energy relationships 490 

for estimating the equilibrium partition of organic compounds between water and the natural 491 

organic matter in soils and sediments. Environ. Sci. Technol. 2005, 39, (4), 913-924. 492 

22. Endo, S.; Grathwohl, P.; Haderlein, S. B.; Schmidt, T. C., LFERs for soil organic carbon-493 

water distribution coefficients (KOC) at environmentally relevant sorbate concentrations. 494 

Environ. Sci. Technol. 2009, 43, (9), 3094-3100. 495 



20 
 

23. Shih, Y.-h.; Gschwend, P. M., Evaluating Activated Carbon−Water Sorption Coefficients 496 

of Organic Compounds Using a Linear Solvation Energy Relationship Approach and Sorbate 497 

Chemical Activities. Environ. Sci. Technol. 2009, 43, (3), 851-857. 498 


