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Abstract 
 
A neural network (NN)-based model is proposed to construct the potential energy surface of soot formation. Our 
NN-based model is proven to possess good scalability of O(N) and retain the ab initio accuracy, which allows the 
investigation of the entire evolution of soot particles with tens of nm from an atomic perspective. A series of NN-
based molecular dynamics (NNMD) simulations are performed using a nanoreactor scheme to investigate critical 
processes in soot formation, acetylene polymerization, and inception of PAH radicals. This shows that NNMD can 
capture the dynamic process of acetylene polymerization into PAH precursors. The simulation of PAH radicals 
reveals that physical interaction enhances chemical nucleation, and such enhancement is observed for clusters of 
π- and σ-radicals, which is distinct from the dimer. We also observed that PAH radicals of ~ 400 Da can produce 
core-shell soot particles at a flame temperature, with a disordered core and outer shell of stacked PAHs, suggesting 
a potential physically stabilized soot inception mechanism. 
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1. Introduction 
Soot emitted from human activities leads to 

respiratory diseases and global warming [1]. A 
significant number of studies are ongoing to understand 
the mechanisms responsible for soot formation, which 
involves precursor chemistry, particle nucleation, and 
mass/size growth [2,3]. The critical stage of soot 
formation is the inception process, in which gas-phase 
aromatics form condensed clusters, resulting in 
carbonaceous nanoparticles. 

Polycyclic aromatic hydrocarbons (PAHs) are 
widely accepted as precursors for soot. Two major 
pathways of soot nucleation initiated from PAHs [2,4] 
are known, namely, physical nucleation of PAHs into 
stacked clusters [5,6] and chemical nucleation of PAHs 
into an aromatic network via cross-linking reactions 
[7–9]. Physical nucleation of PAHs is only possible for 
large PAHs (>667 Da), but these species fail to be 
observed in experimental studies due to their low 
concentrations [10]. Chemical nucleation is a process 
where reactive sites on PAHs are chemically combined 
to form a stable structure. These reactive sites can be 
connected by acetylene, which refers to the well-known 
hydrogen abstraction acetylene addition (HACA) 
growth mechanism [9]. Another chemical pathway is 
the formation of a π-bonding network where π-radicals 
directly react with PAH σ-radicals without the 
requirement of hydrogen abstraction [11]. These π-
radicals can be stabilized due to delocalization, also 
known as long-lived resonantly stabilized radicals 
(RSRs). The existence of PAH π-radicals in sooting 
flames has been reported by high-resolution atomic 
force microscopy (HR-AFM) and photoionization 
mass spectrometry experiments [11,12]. The reactivity 
of different sites on a range of PAH radicals was 
examined by Martin et al. [13]. They found that σ-
radicals are the most reactive, forming bonds with other 
radicals. Partially saturated rim-based pentagonal rings 
were found to form localized π-radicals with high 
reactivities. The forward rate constants of these radicals 
are calculated by Menon et al. [14]. The maximum rate 
was 1012 cm3mol-1s-1 for aryl-radical recombination, 
which is still insufficient to trigger the nucleation flux 
for nanoparticle formation [15]. 

Physical nucleation is rapid but too weak to be stable 
at flame temperatures, while most chemical nucleation 
rates are slow. Frenklach and Mebel [15] recently 
suggested an enhancement of polyaromatic 
polymerization induced by internal rotors. These rotors 
were argued to provide multiple opportunities for an 
aryl radical to attach to the reactive edge of a PAH, 
such as a rim-based pentagonal ring. A dimerization 
reaction of π-diradicals was reported to confirm that the 
physical interaction between PAHs could accelerate 
chemical nucleation [16]. Such a mechanism, known as 
physically stabilized soot inception, shows a feasible 
pathway to explain the fast growth of soot. However, 
most previous work focuses on the dimerization 
process. The dynamic evolution between multiple 
reactive species is still not well understood. 

The complexity of the chemical and physical 
reactions during soot nucleation makes it both 
numerically and experimentally challenging. Ab initio 
molecular dynamics (AIMD) simulations have been 
widely applied to reveal the atomic insights of complex 
reactive systems based on fundamental equations of 
quantum and classical mechanics. Although AIMD has 
been successfully used for polyyne inception [17] and 
PAH reactive dimerization [16], AIMD calculations of 

large PAH molecules/radicals are still challenging due 
to the high computational cost despite impressive 
progress in computing hardware and software in recent 
decades. Over the past decade, many empirical 
potentials (or force fields) have been developed to 
mimic electronic structure calculations' potential 
energy surface (PES). Such empirical potentials, 
including ReaxFF [18,19] and REBO [20], trade 
accuracy for a lower computational expense, making it 
possible to extend simulation scales to orders of 
magnitude beyond AIMD methods. ReaxFF is a bond 
order-based force field that describes reactive systems 
without a priori knowledge of the predefined reactive 
sites. It has been a powerful tool to study kinetic 
mechanisms for systems of large molecules and 
complex reactions. Recently, machine learning-based 
tools, especially neural networks (NNs), have been 
applied to construct PES models in an entirely data-
driven manner, where the PES is abstracted from a 
well-selected training dataset using suitable functional 
expressions automatically [21]. NN models constitute 
a very flexible class of mathematical functions, which 
enable the development of PES models with the 
efficiency of the empirical potentials and the accuracy 
of the DFT method. Different NN-based PES models 
have been proposed for materials and biomolecules 
[22,23]. Zeng et al. [24] implemented an NN-based 
model to reveal the mechanisms of methane 
combustion. 

In addition to developing PES models, many other 
methods have been developed to accelerate AIMD 
calculations. The "nanoreactor" is a recently introduced 
AIMD-accelerating simulation method [25]. The rate 
of reactions can be highly accelerated with a virtual 
piston periodically pushing molecules toward the 
center of the simulation. Several new pathways for 
glycine synthesis from primitive compounds proposed 
to exist on early Earth have been successfully revealed 
[26]. Nanoreactors would provide new insights into 
complicated chemical processes and discover 
elementary steps suitable for complex systems such as 
soot. 

Here, we develop an NN-based model to explore the 
soot formation mechanism with ab initio accuracy. The 
NN-based model is first trained and validated against 
the DFT database with wide-ranging precursors 
involved in the soot formation process. Molecular 
dynamics simulations are performed to reveal the soot 
inception mechanism of PAH radicals using a 
nanoreactor scheme. The products are analyzed to 
understand the effects of different radicals on soot 
structures. 

 

2. Computational methods 
2.1 Development of the neural network potential 

The NN-based potential was constructed following 
the Deep Potential (DP) scheme recently developed by 
Zhang et al. [22], which can accurately reproduce the 
interatomic forces and energies predicted by ab initio 
calculations in condensed matter systems. Figure 1 
shows the illustration of DP scheme. The PES is 
represented by a deep neural network model that 
interprets the atomic coordination (R) into interatomic 
forces (F) and energies (E). The deep neural network 
contains a filter (embedding) network with three layers 
(25, 50, 100 nodes/layer) and a fitting net with three 
layers (240 nodes/layer). The loss function (L) is 
defined as, 
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where pe and pf are the weight for the energy and force 
terms, respectively. N represents the number of atoms 
in the structure. Similar to a classical neural network, 
the DP scheme trains the model by computing the 
gradient of the loss function using the back-
propagation algorithm [27]. The NN model is trained 
for 1.0 × 106 iterations with an exponentially decaying 
learning rate from 1.0 × 10-3 to 5.0× 10-8. 

 
Fig. 1. Illustration of the model training in DP scheme. 
 
The performance of NN potential highly depends on 

the quality of the training dataset [28,29]. Although 
NNs are good at interpolating between training points, 
they cannot predict the energies and forces of 
configurations distant from those of the training set. 
Therefore, it is critical to ensure that the dataset covers 
the PES of interest. The formation of molecular soot 
precursors starts from the fuel pyrolysis process, where 
acetylene and propargyl are the key intermediates. 
These intermediates would further react to form the 
first aromatic ring – benzene. Subsequent reactions 
lead to the formation of larger PAHs via the HACA 
mechanism. This paper constructs an ab initio database 
to cover the entire evolution from acetylene to large 
PAH molecules. In Fig. 2, there are 47 subsystems in 
the database, including alkanes, alkenes, alkynes, 
gaseous radicals, PAH molecules, PAH radicals, and 
carbon materials. Each subsystem consists of MD 
trajectories of a specific molecule. Details about the 
molecular configuration of each system are listed in 
Table S1. The trajectories are generated from ReaxFF 
MD simulation under an NVT ensemble at 
temperatures of 300, 1000, 2000, 3000, 4000, 5000, 
and 6000 K. 

To obtain accurate energies and forces, 1000 
configurations are randomly selected from a 40-ps 
ReaxFF MD simulation, and high-level DFT 
calculations are further conducted. DFT calculations 
were performed using the CP2K package [30]. Core 
electrons are treated using Goedecker−Teter−Hutter 
(GTH) pseudopotentials and the Perdew Burke 
Ernzerhof generalized gradient approximation method 
[31,32]. The Grimme DFT-D3 method [33] is used to 
account for dispersion interactions. A double-zeta 
Gaussian basis set plus polarization (DZVP-MOLOPT) 
[34] is considered. In addition to MD simulations, 
configurations are also obtained using active learning 
sampling as implemented in the DP-GEN package [35] 
with a temperature range from 300 to 4000 K. With the 
above method, an ab initio database with energy and 
force information is constructed to train the NN 
potential. 

 
Fig. 2. Illustration of the 47 species included in the ab initio 
database. The red shadow represents the position of reactive 
sites in radicals. 
 
2.2 Nanoreactor based MD simulations 

The soot formation process is investigated with our 
NN potential. Two kinds of systems are studied: 
acetylene for their polymerization and the formation of 
aromatic rings and PAH π-radicals and σ-radicals for 
physically stabilized soot inception. Figure 3 shows the 
structure of the PAH radicals studied in this work. 
PAH-a, -c, and -e are σ-radicals involved in soot 
inception, while PAH-b, -d, -f, and -g are π-radicals 
reported in simulations and experiments [12,16]. 
Before MD simulations, monomers of acetylene and 
PAH radicals were optimized using the DFT method 
with the B3LYP/6-311G(d,p) level of theory. The 
optimized monomers were duplicated 1000 times for 
acetylene and 50 for PAH radicals and then randomly 
distributed in a cubic box. The equations of motion are 
integrated by the velocity Verlet method using periodic 
boundary conditions. A Nose–Hoover thermostat is 
applied with an equilibrium temperature of 1500 K and 
a dump parameter of 20 fs. A one ns MD simulation 
with a time step of 0.l fs is performed for both acetylene 
and PAH radical systems. 

 
Fig. 3. PAH radicals studied in this work. 

 
The nanoreactor method is used to accelerate the 

simulation, where a virtual piston in a sphere is 
imposed on the system during MD simulations. The 
virtual piston is defined by a time-dependent boundary 
potential [25]: 
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where k=0.01 kcal mol-1 Å, τ = 1.0 ps, T = 2.0 ps.r0 is 
the sphere radius, m is the atomic mass, ⌊ ⌋ is the floor 
function and θ is the Heaviside step function. To 
minimize the temperature fluctuations in nanoreactors, 
the compression process is divided into three stages. 
The boundary potential oscillates between a large value 
of r1, a median value of r2, and a small value of r3. The 
r values are determined by the system density. We use 
three values of 0.1, 0.4 and 0.7 g/cm3 to calculate the 
corresponding r1, r2, and r3 values. Detailed model 
settings are listed in Table S2. 

 

3. Results and discussion 
3.1 Validation of NN-model 

The performance of the NN potential is tested 
against the ab initio database. Figure 4 shows the 
prediction of DFT energies and forces using the NN 
potential trained by the DP scheme. The results 
predicted from the ReaxFF forcefield [36] are also 
listed for comparison. Detailed mean absolute errors 
(MAEs) are listed in Table S2. We found that the MAE 
values increase with the system temperature in MD 
sampling. The DP model shows a lower error than the 
ReaxFF model (0.67 v.s. 1.18 kcal/mol/atom), 
suggesting the good fitting ability of the DP scheme. 
Surprisingly, we find that the DP model shows 
excellent performance for force prediction, while the 
ReaxFF model seriously underestimates the 
interatomic forces (38.62 kcal/mol/Å). This can be 
explained by the parameterization of ReaxFF, as only 
energy information is taken as the training targets. By 
considering the forces in loss function (Eq. 1), the DP 
model significantly improves the model prediction and, 
therefore, accurately captures the dynamic evolution of 
the soot formation process. 

 
Fig. 4. The mean absolute errors of (a) energy and (b) force 
for DP and ReaxFF models on the ab initio database. 

 
We also test the computational cost of DP and 

ReaxFF potentials on C2H2 systems with 20 to 160,000 
atoms. The NNMD simulations of the DP model are 

performed with one NVIDIA V100 GPU, and the 
ReaxFF MD simulations are on a 64-processor server 
with two AMD EPYC 7452 CPUs. Figure 5 shows that 
our DP model follows an O(N) scaling rule, while 
ReaxFF exhibits an O(NlogN) scaling rule. The better 
scaling performance of the DP model enables the 
exploration of a system with tens of thousands or even 
millions of atoms at ab initio accuracy, providing a 
possibility to investigate the entire evolution of soot 
particles from an atomic perspective. 

 
Fig. 5. The computational cost of DP (red square) and ReaxFF 
(blue circle) models on C2H2 systems with 20 to 160,000 
atoms. The system lengths are from 1 to 28 nm. The insert 
shows snapshots of the corresponding systems. 

 
3.2 Acetylene polymerization into PAH 

First, we analyze the polymerization of acetylene, 
which corresponds to the formation of soot precursor – 
PAH molecules. The reaction pathway from acetylene 
to benzene is shown in Fig. 6a. The polymerization 
starts with the collision and addition reaction between 
two acetylene molecules at 1.5 ps to generate an 
HC≡CH-CH≡CH molecule, which further grows into a 
long chain molecule (e.g., HC≡CH-CH≡CH-CH≡CH) 
with the addition of another acetylene molecule at 3.6 
ps. This species further forms a benzene via an 
isomerization reaction at 6.4 ps, and this pathway is 
consistent with a previous work [37]. Figure 6b shows 
the pathway from benzene to the 2nd aromatic ring. The 
hydrogen atom in benzene is abstracted by other 
radicals to generate a reactive site. Then, a CCH 
radical attacks the reactive site at 11.1 ps to form a 
benzene with an acetylene chain, and this structure is 
expected to be stable at flame temperatures [38]. At 
12.4 ps, the second addition reaction occurs near the 
first acetylene chain and forms the 2nd aromatic ring 
after long isomerization (~5.1 ps). In Fig. 6c, we also 
observe the formation of a large PAH with four 
aromatic rings at 101.7 ps, which follows similar 
acetylene addition and isomerization pathways. 

 
Fig. 6. Snapshots for the reaction pathways to produce the (a) 
1st, (b) 2nd, and (c) large aromatic rings. Red atoms in (c) 
represent the reactive sites. 
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The dynamic evolution of the main species during 
the polymerization process is shown in Fig. 7. Since 
there are a large number of isomers for CxHy species, 
the products are grouped by their carbon atom numbers. 
It shows that the C2 group is rapidly consumed within 
the first 10 ps. The insert in Fig. 7a illustrates the main 
species of each group, which is extracted from MD 
trajectories using the ReacNetGenerator package [39]. 
The main composition includes acetylene, but there are 
also hydrogen transfer and elimination reactions to 
produce CCH2 and CCH radicals. C4 and C6 groups 
are the main products of C2 polymerization in the first 
20 ps. In Fig. 7b, the C7-10 group represents the growth 
of the 2nd ring, which reaches a maximum at ~ 30 ps 
and starts to decrease. Groups with larger carbon atom 
numbers follow the same trends but at a slow rate. For 
example, the time needed to reach the maximum 
number of molecules was ~40 ps for the C11-15 group 
and ~200 ps for the C15-20 group. In the above 
simulation, the growth of large PAHs from small 
acetylene is observed, proving the feasibility of 
studying soot formation using our NN model. 

 
Fig. 7. Evolution of species during the simulation for (a) C2, 
C4, C6, (b) C7-10, C11-15, C15-20, and C20+ groups. The inserts in 
(a) show the main species for the C2, C4, and C6 groups. 

 
3.2 Physically stabilized soot inception of PAH 
radicals 

The inception process of PAH radicals in Fig. 5 is 
investigated using a nanoreactor scheme, where a 
sphere boundary potential with periodic changes in 
radius is imposed on the PAH radicals to accelerate the 
collision and reaction process. Seven PAH species are 
considered (Fig. 3). For each type of PAH, the atom 
number in the maximum cluster is calculated and 
normalized by PAH size for comparison. Figure 8a 
shows the normalized max cluster size of PAH-b and -
f in the first 40 ps. In Fig. 8b, the reactor radius (r) 
shows a variation with the time-dependent rectangular 
waveform. The period of each cycle is 4 ps. It starts 
with a relaxing stage of r=24.8 Å within the first 2 ps, 
followed by two compression stages with r=15.6 Å and 
r=13.0 Å for 1 ps each. Later, a new relaxing and 
compression cycle continues until simulations end. A 

reversible inception process is observed in the 
nanoreactor. During the compression stage, the reactor 
is compressed into a small volume (1/7 of the volume 
in the relaxing stage). PAH radicals collide with each 
other to form PAH clusters via physical interactions or 
chemical bonds. The reactor expands out with cluster 
decomposition in the next relaxation stage. The 
evolutions of cluster size are different for PAH-b and 
PAH-f. Cluster sizes in PAH-b fluctuate with the 
variation of reactor radius and remain a small value 
after 10 cycles (e.g., 40 ps). In contrast, the cluster for 
PAH-f gradually grows to a size of 44, although a 
decomposition stage is also observed in each relaxing 
stage. The clustering behaviors of PAH-b are somehow 
unexpected, as PAH-b is reported [13] to form a cross-
linked dimer. However, within the simulation time in 
the nanoreactor, it cannot further grow into large 
clusters. 

 
Fig. 8. (a) Evolution of normalized maximum cluster size for 
PAH-b and -f and in the first 40 ps. The evolution of the (b) 
radius of the spherical boundary and (c) temperature. 

 
The evolution of cluster numbers (Ncluster) and 

normalized maximum cluster size (Scluster) is listed in 
Fig. 9. To inhibit fluctuations induced by the 
compression and relaxing process, only the maximum 
of Ncluster and the minimum of Scluster in each relaxing 
stage are plotted, which represent the actual clustering 
state. For small radicals (<200 Da), such as PAH-a and 
PAH-b, the number of clusters decreases to ~40 at 100 
ps, while the maximum cluster size remains lower than 
5. As the physical interaction is proportional to 
molecule size, it is expected that the inception of these 
radicals is only induced by a chemical bond. The 
fraction of reactive collisions (Freac) for these PAH 
radicals has been systematically examined by Martin et 
al. [16], which indicates the possibility of forming 
covalent bonds between two PAH radical monomers in 
a collision. PAH-a has a high fraction of reactive 
collisions (e.g., 0.023) among these PAH radicals. 
However, chemical bonding does not generate a large 
number of clusters within the simulation time. For 
medium-sized radicals (200-400 Da), such as PAH-c 
and -d, cluster sizes continue to grow at a flame 
temperature (1500 K). These radicals are much smaller 
than the minimum requirement for physical inception 
(e.g., 667 Da [10]), indicating the feasibility of 
physically stabilized soot inception. For large radicals 
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(>400 Da), such as PAH-e, -f, and -g, the growth rates 
of cluster size are faster than those for medium-sized 
PAH radicals due to the strong physical interaction. 
The fraction of reactive collisions has a relation of 
PAH-g (Freac=0.024) > PAH-f (Freac=0.013) > PAH-e 
(Freac=0.008) but shows the same clustering trends (see 
Fig. 9b), suggesting that physical interactions play a 
more important role than chemical bonds for large 
radicals. Chemical nucleation is also observed in these 
radicals, but their rates are much lower than those of 
physical nucleation, which agrees with the calculations 
by Menon et al. [14]. 

 
Fig. 9. Evolution of (a) cluster numbers and (b) normalized 
maximum cluster size for all PAH radicals. 
 

In addition, we also note that the chemical 
nucleation in the large cluster is slightly different from 
that in the dimer. Since the radicals in the dimer are 
always in a parallel stacked structure, Martin et al [16]. 
reported that σ-radical dimers have weaker physical 
enhancement than π-radicals because the C-C bond 
prefers to be collinear with the aromatic planes. 
However, there are multiple stacks in a large cluster, 
which enable chemical nucleation between σ-radicals 
in the same plane. For example, chemical cross-links 
between different stacks of σ-radicals are observed in 
PAH-e clusters. In Fig. 10a, we summarize the physical 
enhancement of the nucleation mechanism of dimers 
and large clusters. In a dimer, PAH radicals are stacked 
in parallel due to physical interactions, which can 
accelerate the cross-linking between π-radicals but 
does not affect σ-radicals. In a large cluster, there are 
multiple stacks, and σ-radicals can form cross-links 
with adjacent stacks. 

Figure 11 includes the final products collected from 
different precursors in the nanoreactors, which are 
mapped according to the precursor properties. These 
products are postprocessed using the TEMSIM 
package [40] to obtain simulated TEM images, which 
can be directly compared to the structures seen in 
HRTEM experiments [41,42]. For PAH-a and PAH-b, 
the PAHs are arranged in a gaseous form. Most radicals 
form cross-linked dimers or trimmers, and no large 
cluster is observed. For PAH-c and PAH-d, a 
prominent cluster is produced in the box center. The 
structure of PAH-c is disordered and loosely packed, 
similar to the covalently bound incipient particle 

predicted by Johansson et al. [11]. For PAH-d, a core-
shell-like structure is observed, where the core region 
shows disordered and cross-linked structures, and the 
shell region (upper right part) is ordered and close-
packed stacks. For large radicals, such as PAH-e, -f, 
and -g, the final products are spherical stacked 
structures with cross-links between different layers. 

 

 
Fig. 10. (a) Illustration of the physical enhancement for dimers 
and clusters of σ- and π-radicals. (b) A snapshot of the 
chemical nucleation of PAH-e (σ-radical) between different 
stacks. The green circle represents the location of a new 
formed cross-link bond. 
 

These results suggest that the morphology of the 
final products is highly related to the size of the 
precursors. At flame temperatures, no PAH cluster can 
form when the molecular mass of precursors is lower 
than 200 Da. This critical mass is lower than the value 
of 666 Da for physical nucleation of PAH molecules 
simulated by Mao et al. [36]. This can be attributed to 
the higher reactivity of PAH radicals, which can form 
cross-links and lead to chemical nucleation. For PAH 
molecules without reactive sites, a higher temperature 
(2500 K) is required for chemical nucleation, which is 
too high for typical sooting flames. As the size of the 
precursors increases, the product particle changes from 
a disordered cluster into an ordered and close-packed 
structure. It is interesting to note that the product of 
PAH-d has a core-shell structure, which includes a 
disordered core and outer shell of stacked PAHs 
[41,42]. Such structures are also reported in HRTEM 
experiments [41,42]. Another piece of evidence is from 
a recent mass spectrum experiment [43], which shows 
that PAHs of 239-838 Da are the main component of 
soot particles, suggesting that physically stabilized soot 
inception of PAH radicals larger than 200 Da is a 
potential inception mechanism. 

In summary, the inception mechanism of PAH 
radicals can be divided into three groups: chemical, 
“physical+chemical”, and physical, as shown in Fig. 10. 
When the radical molecular mass is lower than 200 Da, 
the physical interaction is too weak at flame 
temperature, and chemical nucleation is the dominant 
mechanism. With increasing radical mass, the physical 
interaction becomes stronger, and a stack cluster 
structure can be formed with the combined effect of 
physical and chemical nucleation. For large radicals 
(>400), the physical interaction becomes the dominant 
nucleation mechanism. 
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Fig. 11. The final products taken from a nanoreactor at 1 ns with different PAH precursors. The inserts show snapshots and 
simulated TEM images.

4. Conclusions 
In this work, we develop a neural network (NN)-

based model to explore the soot formation mechanism 
with ab initio accuracy. NN-based molecular dynamics 
simulations (NNMDs) of acetylene and PAH radicals 
of different sizes are performed using a nanoreactor 
scheme to investigate the mechanism of soot inception. 
The product structures of PAH radicals are analyzed to 
interpret the potential nucleation mechanism for 
different sized radicals. 

Our NN model considers both energy and force 
information from high-level DFT calculations, which 
has been proven to have significantly higher accuracy 
than the ReaxFF model. In particular, the ReaxFF 
model is shown to underestimate the atomic force of 
DFT calculations, which affects the model accuracy 
when dealing with the reaction dynamics process. Our 
NN model also indicates that good scaling performance 
follows O(N), providing the possibility to investigate 
the entire evolution of soot particles from an atomic 
perspective. 

The inception mechanism of PAH radicals is 
investigated with our NN model. We find that the 
physical interaction enhances chemical nucleation, and 
such enhancement is observed for clusters of π- and σ-
radicals, which is distinct from the dimer. It is also 
found that PAH radicals can produce soot particles at 
flame temperatures (1500 K), and the particle 
morphology is strongly affected by PAH size. For PAH 
radicals of 374 Da, a core-shell soot particle with a 
disordered core and outer shell of stacked PAHs is 
observed, and similar structures are also observed in 
HRTEM experiments. These results suggest that 
physically stabilized soot inception of PAH radicals 
larger than 200 Da is a potential nucleation mechanism. 
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