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Unraveling the liquid structure of multi-component molten salts is challenging due to the di�culty
in conducting and interpreting high temperature di↵raction experiments. Motivated by this chal-
lenge, we developed composition-transferable Gaussian Approximation Potentials (GAP) for molten
LiCl-KCl. A DFT-SCAN accurate GAP is active learned from only ⇠1100 training configurations
drawn from 10 unique mixture compositions enriched with metadynamics. The GAP-computed
structures show strong agreement across HEXRD experiments, including for a eutectic not explic-
itly included in model training, thereby opening the possibility for composition discovery.

Molten salts (MS) are a class of high temperature ionic
liquids relevant to liquid metal batteries, concentrated so-
lar power systems, and molten salt reactors [1–5]. Crit-
ical to technological applications of MS are the eutec-
tic mixtures of alkali/alkali-earth halides, whose melting
temperatures can be lowered by tuning the mixture com-
position [6, 7]. Tuning the thermophysical properties of
multi-component salts requires a precise atomistic under-
standing of the liquid structure; challenges for this task
include (a) the di�culty of in situ experimental measure-
ments, due to the extreme reactivity of molten salts, (b)
the lack of a priori knowledge regarding optimal eutectic
compositions for di↵erent MS chemistries [8], and (c) the
inability of conventional molecular modeling approaches
to capture the complex intermolecular interactions and
spatiotemporal scales characteristic of molten salts [9–
14].

Machine learning (ML) has enabled [15–18] a new
generation of low-cost interatomic potentials (IP) that
provide access to quantum mechanically accurate many-
body potential energy surfaces for condensed phases [19–

28]. These ML-IP can drive mesoscopic simulations of
atomic processes with ab initio accuracy, bypassing the
length scale limitations imposed by traditional ab initio
methods. Recent e↵orts have begun applying these meth-
ods to single and multi-component MS [29–33]. However,
current ML-IP for MS are generally fit to a small num-
ber of mixture compositions (including a priori known
eutectic compositions) and lack transferability to arbi-
trary or unknown mixture compositions. This lack of
transferability inhibits eutectic discovery for arbitrary
MS chemistries, and limits existing ML-IP to simple
interpolative e↵orts between known MS compositions.
Thus there is an urgent need for ML-IP of MS ex-
hibiting multi-component, compositional transferability
across the space of possible anion and cation combina-
tions.
LiCl-KCl mixtures exhibit high potential for molten

salt reactors, pyroprocessing and energy storage appli-
cations due to their preferable physiochemical proper-
ties such as low melting point, high solubility of fission
products, and high heat capacity [34–36]. In this letter,
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we develop a LiCl-KCl ML-IP with broad compositional
transferability, and apply it to ascertain the composition-
dependent structure of LiCl-KCl mixtures. The composi-
tional transferability of this methodology opens the door
for a priori prediction, by molecular modeling, of eutectic
compositions for MS. Finally, we demonstrated the use
of ML-IP to accurately compute thermal conductivity of
the eutectic molten LiCl-KCl.

We have designed a combined experimental and mod-
eling workflow for investigating multiple compositions of
LiCl-KCl melts (Fig. 1). The modeling component of the
workflow leads to the generation of a multi-composition
ML-IP, specifically a Gaussian approximation potential
(GAP) [19], for LiCl-KCl. The GAP model uses two-
body squared exponential and many-body smooth over-
lap of atomic positions (SOAP) kernel functions [37, 38]
to measure chemical similarity between local chemical
neighborhoods. The short-range GAP model is a reason-
able choice given that the goal is to model bulk liquid
structure [29, 39]. However, explicit inclusion of long-
range electrostatics is necessary for modeling scenarios
requiring inclusion of nonisotropic chemical environments
such as interfaces or electric field [40]. GAP model-
ing training utilizes atomic configurations drawn from a
diverse set of melt compositions. Configurational sam-
pling (Fig. 1a) was initialized with 10 unique composi-
tions hand picked by the experimentalist, listed here as
molar fractions of KCl (100%, 90%, 80%, 67%, 58%, 50%,
33.3%, 30%, 20%, and 10%). Initial simulation densities
are fixed to literature values [41]. At each composition, a
small unit cell of 60–64 atoms is used to sample a range of
melted atomic configurations by using the Born-Mayer-
Huggins-Tosi-Fumi (BMHTF) rigid ion model (RIM) at
an elevated temperature of 2100K. Configuration sam-
pling was explicitly not performed for the middle of the
composition map between 50% to 33.3% KCl molar frac-
tion. This conscious choice was made in order to not in-
clude the actual eutectic composition of 58.5-41.5 mol%
LiCl-KCl as part of the training set. By doing so the
ability of the generated GAP model to accurately pre-
dict compositions that are not explicitly included in the
training data could be confirmed.

Configurational sampling for each composition uses ap-
proximately 20,000 melt configurations drawn at 2100K
and processed by using active learning (AL). The AL
consists of an unsupervised clustering algorithm com-
bined with Bayesian optimization for on-the-fly hyper-
parameter tuning of the GAP model. A detailed de-
scription of the AL procedure can be found in previous
work [39, 42, 43]. Single point DFT calculations (Fig. 1b)
are performed on the AL-extracted configurations by us-
ing the SCAN exchange correlation (XC) functional [44],
which shows superior performance compared to general-
ized gradient approximation XC functionals [45]. Further
details on the DFT calculations are reported in the sup-
plementary material section B.

90:10 
LiCl:KCl

80:20 
LiCl:KCl

70:30 
LiCl:KCl KCl

Ĥ" = $"

Compositional Map

Active Learning 

%&' −)* β

γ

+

Metadynamics

a)

b) c)

e) d) HEXRD

r

G(
r)

GAP-ML
HEXRD

FIG. 1. Workflow for mapping and validating multi-
composition LiCl-KCl melts. (a) Sample the configuration
space for 10 unique compositions of pure KCl to 10 mol% KCl
mixture with LiCl. Each composition is melted by using the
rigid ion model at 2100K. Clustering-based AL enables down
selection. Ensemble simulations and AL are orchestrated by
using the Colmena framework [46]. (b) Perform single point
DFT for the AL samples and fit the GAP-ML model. (c) En-
rich the configuration space by using metadynamics [47] on
the GAP-ML based MD. (d) High energy X-ray di↵raction ex-
periments. Illustration of X-ray intensity measurement. (e)
Perform rigorous validation of GAP-ML driven MD simula-
tion by using the high energy X-ray pair distribution functions
(PDFs).

An initial GAP model is fitted to the AL-extracted
configurations for the 10 compositions (Fig. 1b), with
“labels” computed by using DFT-SCAN calculations.
Since all training configurations are drawn from equi-
librium MD simulations, there is no guarantee of con-
figurational or compositional transferability for the GAP
model. To circumvent the limitations of Boltzmann sam-
pling, strategies such as random structure search and
enhanced sampling have been applied to enrich train-
ing databases [48, 49]. Here, we employ metadynam-
ics to construct a history-dependent repulsive potential
as a function of a set of collective variables (CVs), pro-
viding access to a large configuration space of ion pair
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coordination environments that would be unexplored by
simple equilibrium MD [47, 50]. We hypothesize that
the increased configurational diversity at each training
composition should manifest in improved compositional
transferability across the LiCl-KCl composition range.

Enhanced sampling is performed by using the well-
tempered variation of metadynamics for an equal frac-
tion of LiCl and KCl (i.e., 50%) [51]. A system size
of 64 atoms near the melting temperature (⇠757K) is
simulated by using the atomic pair coordination collec-
tive variable (CV) parameterized by the first minimum
of the pair distribution function (PDF). Further infor-
mation on the metadynamics procedure is discussed in
supplementary material section C. The evolution of the
CV over 4 ns is shown in supplementary material sec-
tion C Fig. 1. In equilibrium MD the sampled config-
uration will be dominated by ⇠4 and ⇠7 coordinated
Li-Cl and K-Cl, respectively (Table I). Metadynam-
ics facilitates e�cient exploration of out-of-equilibrium
regions of configuration space. The configurations ob-
tained from over 4 ns of metadynamics simulation were
passed to AL and down-selected. It is observed that AL
e�ciently samples from near and far away from equi-
librium regions of metadynamics configurations, thereby
enriching the training database (supplementary material
section C Fig. 1). The final GAP model is trained by
using the metadynamics-enriched dataset. The details
of the GAP training database and hyperparameters are
discussed in the supplementary material section A Ta-
bles I, II. The entire GAP model is generated with only
1,127 training samples which is also the total number of
single point DFT performed as a part of this letter, e↵ec-
tively bypassing expensive ab initio molecular dynamics.
A single compute node benchmark with 64 atoms unit
cell of 50-50 mol% showed 15,000⇥ speedup of GAP-MD
(⇠ 0.042 s/MD time step) relative to DFT-SCAN (⇠ 618
s/MD time step).

High energy X-ray di↵raction (HEXRD) experiments
were performed to characterize the structure of molten
LiCl-KCl mixtures in parallel with the modeling work
(Fig. 1). For HEXRD experiments, LiCl-KCl mixture
samples were prepared in an ultra-high purity Ar glove-
box (<1 ppm O2, <1 ppm H2O). Samples with the de-
sired LiCl-KCl ratio were melted in glassy carbon cru-
cibles to create homogeneous mixtures, then the solidi-
fied mixtures were crushed and loaded into silica glass
(SiO2) ampules and sealed under vacuum for the exper-
iments. HEXRD experiments were performed at beam-
line 6-ID-D of the Advanced Photon Source, Argonne
National Laboratory. LiCl-KCl mixtures were heated to
the desired temperatures at which di↵raction data was
recorded. The di↵raction patterns of empty furnace and
empty glass ampules were also recorded for background
subtraction. The di↵raction data of LiCl-KCl with sev-
eral compositions including 70-30 mol%, 58.5-41.5 mol%
(eutectic composition) and 50-50 mol% were recorded

at multiple temperatures. Temperature dependence is
studied by measuring the structures of 70-30 mol% at
⇠822K, 797K, 772K, and 747K. The 58.5-41.5 mol% (eu-
tectic composition) and 50-50 mol% are measured near
the melting temperatures of ⇠645K and 757K, respec-
tively.
The final GAP model obtained from the workflow in

Fig. 1 is used to perform simulated annealing with a sys-
tem size over ⇠1000 atoms at each of the experimental
compositions and temperatures (supplementary material
section D Table III ) [52]. We performed GAP MD us-
ing the LAMMPS software package compiled with the
QUIP pair style [53, 54]. The structure prediction with
simulated annealing is performed in three steps: 1) Each
simulation condition is initially thermalized at 1100K in
the (NVT) ensemble [55, 56], followed by volume relax-
ation in an isothermal-isobaric (NPT) ensemble with a
pressure coupling of 1 bar [57–59], 2) the temperature is
increased to 1700K over 200 ps in the NPT ensemble, and
3) the system is cooled from 1700K to the target temper-
ature over 200 ps of NPT simulations. All heating and
cooling MD simulations used a time step of 0.5 fs. At the
target temperature the volume of the system is relaxed
for over 2 ns with a time-step of 1.0 fs and the last 1 ns
is used for computing the structure. Further information
on the number of atoms, starting densities, and densities
estimated from GAP-MD for each composition and tem-
perature are listed in supplementary material section D
Table III (includes outside of experiment condition).
To determine the quality of the generated GAP model,

the structures obtained from simulations are validated
by comparison to HEXRD measurements. The structure
factors and PDFs from experiments and simulations are
shown in Fig. 2. Note that such a comparison at temper-
atures just above the melting points has not been previ-
ously reported. The simulated PDF (G(r)) and structure
factors (S(q)) exhibit excellent agreement with those ob-
tained from HEXRD across all examined compositions.
Specifically, GAP accurately predicts the structure of the
eutectic (Fig. 2a, 2b) despite lacking any training data
specifically in this composition regime. These results in-
dicate that the GAP model is capable of predicting the
structure of LiCl-KCl across all relevant compositions.
This performance is a direct result of the use of AL to
sample diverse configurations, and introduces the poten-
tial to develop ML-IP for binary MS mixtures of arbitrary
composition.
Use of the validated GAP models provides insight into

the atomistic ordering of LiCl-KCl melts across all com-
positions. As KCl content decreases in the mixture, the
peak in the pair distribution curve near 3.1 Å also de-
creases, which can be attributed to the decreased amount
of K-Cl bond in the melt (Fig. 2a). This also manifests in
the reduced structure factor, as the peaks near 4 Å�1 and
5 Å�1 both increase (Fig. 2b). Unlike MgCl2-KCl mix-
tures, which contain a single network former (Cl-Mg-Cl)



4

c)b)a)

FIG. 2. GAP-predicted structures of molten LiCl-KCl compared to those measured by HEXRD: (a) PDFs and (b) reduced
structure factors of LiCl-KCl with compositions of 50-50 mol%, 58.5-41.5 mol% (eutectic) and 70-30 mol%, at 757.15K, 645.15K,
and 747.15K; (c) PDFs of molten 70-30 mol% LiCl-KCl at 747K, 772K, 797K, and 822K.

and a single network breaker (K-Cl), the components in
LiCl-KCl are both network breakers [52, 60]. Therefore,
we do not expect that the variation of LiCl and KCl con-
tent will change the mid-range (i.e., on the scale of 1 nm)
ordering of the melt. To further elucidate the preferen-
tial interaction/exclusion of K/Li with Cl at short range
(i.e., r < 5 Å), we have computed the local/bulk par-
tition coe�cient (KP (r)) as described in supplementary
material section E [61, 62]. The supplementary material
section E equation (2) can be interpreted as KP (r) > 1
in regions where K preferentially interact with Cl and
KP (r) < 1 in regions where Li preferentially interact with
Cl. The composition dependence of KP (r) estimated at
a fixed temperature of 747K is shown in supplementary
material section E Fig. 2. All three compositions have a
KP (r) > 1 at short range, showing a preferential inter-
action of K with Cl. Further, at short range the maxi-
mum values of KP (r) show a trend of 70:30 > Eutectic
> 50:50, indicating an increase of preferential interac-
tion of K with respect to Cl with decreasing content of
KCl in the mixture. Complementary to the information
in Fig. 2c, the temperature dependence of KP (r) at the
70:30 composition are visualized in supplementary ma-
terial section E Fig. 3. It can be observed that temper-
ature does not lead to any significant change in KP (r).
We also examined the coordination number of Li-Cl and
K-Cl of LiCl-KCl mixtures with di↵erent compositions
by integrating the partial PDF to the first minimum, and
found that the coordination number decreases as the KCl
content increases in the mixture at similar temperatures
(i.e., 747K to 757K). This might be due to the larger size
of K ions that reduce the number density of the melt.
Increased temperature also leads to Li-Cl and K-Cl coor-
dination numbers decreasing, however, when the change
is di�cult to distinguish when the temperature variation
magnitude is less than 100K. Details of the coordination
number changes are listed in Table I.

Composition Temperature (K) Li-Cl K-Cl
747 4.42 7.28

70-30 772 4.37 7.40
797 4.45 7.27
822 4.42 7.37
645 4.56 7.50

Eutectic 747 4.21 6.90
50-50 757 4.06 6.87

TABLE I. Coordination numbers estimated from GAP-MD

Finally, we assessed if the accurate prediction of struc-
ture translated to the prediction of thermophysical prop-
erties, specifically the thermal conductivity at the eutec-
tic composition. We estimated the thermal conductivity
by using the wave method [63]. A detailed discussion on
the wave method and calculations are available in sup-
plementary material section F and G. Here we applied
GAP MD simulation to predict the thermal conductiv-
ity of eutectic LiCl-KCl at 645.15K. The value obtained
from GAP MD (0.659 W/(m.K)) is very close to the ex-
perimental value [41] (0.690 W/(m.K)), whereas the RIM
value is significantly overestimated (0.856 W/(m.K)).
The AL-enabled, and HEXRD-validated, ML-IP work-

flow described in this letter allows for the rapid charac-
terization of multi-component molten salts of arbitrary
compositions and will find broad applicability to other
eutectic salt systems. This workflow accelerates explo-
ration processes aimed at identifying the optimal MS
composition for target applications by scanning the en-
tire composition map, while simultaneously enabling the
real-time deconvolution of complex chemical structures
obtained from HEXRD experiments.
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regression for materials and molecules, Chemical Reviews
121, 10073 (2021).

[17] M. Ceriotti, C. Clementi, and O. Anatole von Lilienfeld,
Machine learning meets chemical physics, The Journal of
Chemical Physics 154, 160401 (2021).

[18] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, na-
ture 521, 436 (2015).
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Supplemental materials to the manuscript ”A Composition-Transferable Machine

Learning Potential for LiCl-KCl Molten Salts Validated by HEXRD”

A. GAP TRAINING DATASET AND HYPERPARAMETER

System Number of samples

Melt 928

Metadynamics 196

Isolated atoms 3

Total 1127

TABLE I: GAP training database

Parameter Name Two-body SOAP

Cut o↵ (Å) 5.92 5.92

Sparse method Uniform CUR

Sparse points 65 1200

Delta (eV) 2.74 0.78

(lmax, nmax) - (4,8)

TABLE II: GAP model hyperparameter

The GAP model (Table I, II) validated on 120 independent test samples showed an root mean square error in
energy and force of 5 meV/atom and 0.12 (± 0.04 ) eV/Å, respectively.

B. DENSITY FUNCTIONAL THEORY

DFT single point calculations are performed using the Vienna ab initio simulation package [1]. The SCAN exchange-
correlation functional and projector-augmented wave method are employed [2, 3]. A large plane wave cuto↵ of 700
eV with an electronic convergence criterion of 10�7 eV is used. A �-centered 1⇥ 1⇥ 1 k-mesh is used for reciprocal
sampling.

C. METADYNAMICS SAMPLING

The metadynamics calculations are performed using the plumed 2 packages [4]. A coordination number collective
variable is chosen. For any two arbitrary chemical species groups A and B, they are estimated using the following
switch function:

CAB =
X

i2A,j2B

1� ( rijr0
)6

1� ( rijr0
)12

(1)

with rij being the distances between the atom-atom pairs from the species groups.
A system size of 64 size with 16 anion-cation pairs each for Li-Cl and K-Cl is used for sampling. The r0 was

parametrized from the first minima of the partial pair distributions functions. For Li-Cl and K-Cl the r0 of 3.35 Å
and 4.25 Å respectively are found to be optimal. The metadynamics used an initial Gaussian height of 40 kJ/mol.
The Gaussian widths of 1.45, 2.58 are used for CLiCl, and CKCl respectively. A Gaussian was deposited every 250 fs
with a bias factor equal to 50.
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FIG. 1: Evolution of the anion-cation pair collective variable for the 50:50 composition over 4 ns of well-tempered metadynamics
performed using the intermediate GAP-ML model. The configurations selected by active learning for single point DFT are
shown as black dots. The y-axis shows coordination number (CN) averaged over 16 anion-cation pair used in the CV definition.

D. GAP-MD SETTINGS AND RESULTS

Composition (LiCl:KCl) Number of atoms Temperature (K) Initial density (g.cm�3) Density from GAP-MD (g.cm�3)

747.15 1.602 1.696 (± 0.012)

70-30 1120 772.15 1.602 1.692 (± 0.012)

797.15 1.602 1.690 (± 0.012)

822.15 1.602 1.685 (± 0.012)

Eutectic 1040 645.15 1.622 1.558 (± 0.015)

50-50 1024 757.15 1.584 1.555 (± 0.015)

30-70 1120 900 1.583 1.580 (± 0.012)

80-20 960 800 1.578 1.764 (± 0.012)

TABLE III: GAP MD simulation set up. A 50-50 composition of LiCl:KCl with 1024 atom system is equal to 256 anion-cation
pairs for each salt. The initial density and targer temperature used for MD simulation. The density computed from the last
1 ns of GAP-MD based NPT simulation along with standard deviations (parenthesis) are reported in the last column. The
additional compositions 80-20, and 30-70 are computed to show case the capability of the GAP model to predict outside of
experiment conditions.
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E. LOCAL/BULK PARTITION COEFFICIENT

The local/bulk partition coe�cient [5, 6] is defined as

KP =
(hn↵(r)i/hn�(r)i)local

(ntot
↵ /ntot

� )bulk
(2)

where hnX(r)i indicates the cumulative number distribution function of X (X = ↵ for K around Cl, X = � for Li
around Cl) at a distance r and ntot

X indicated the total number of X in the simulation box. KP > 1 indicated a
preferential interaction of K with respect to Cl.

FIG. 2: Local/bulk partition coe�cient computed at 747K as function of LiCl:KCl composition.
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FIG. 3: Local/bulk partition coe�cient computed for LiCl:KCl composition of 70:30 as function of temperature.

F. THERMAL CONDUCTIVITY

The thermal conductivity estimated from virial stress based heat flux implemented with LAMMPS is not valid
beyond pair interaction models [7, 8]. Hence they cannot be applied to many-body ML-IP such GAP model. To
bypass this problem we will estimate the thermal di↵usivity of eutectic liquid using the thermally driven liquid
density fluctuation at hydrodynamic limit (i.e. as system size goes to infinity, k ! 0) [9, 10]. The most relevant
details of the approach are reproduced below. The density field of the liquid in bulk limit (⇢(r, t)) is computed from
equilibrium MD simulation. For a periodic system with dimension of {Lx, Ly, Lz}, the Fourier transform of the density
field ⇢(r, t) in a bulk liquid is defined as:

e⇢(k, t) = 1

V

NX

i=1

exp(�ik.ri(t)), (3)

where the reciprocal lattice vector, k = { 2⇡nx
Lx

, 2⇡ny

Ly
, 2⇡nz

Lz
}. The power spectrum of the density field fluctuation

with frequency ! is defined as:

S(k,!) =
1

T0

Z T0

0
he⇢(k, 0)e⇢(k, t)i exp(�i!t)dt (4)

The S(k,!) derived from the MD simulation can be fitted to power spectrum equation derived from hydrodynamic
theory:
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S(k,!) =
S(k)

2⇡

" 
� � 1

�

!
2DT k2

!2 + (DT k2)2
+

1

�

 
�k2

(! + csk)2 + (�k2)2
+

�k2

(! � csk)2 + (�k2)2

!#
(5)

where, � = cP /cV is the ratio of particle specific heat capacities (defined below), DT is the thermal di↵usivity,
cs is the adiabatic speed of sound, b is the kinematic longitudinal viscosity, and the sound attenuation constant
� = (� � 1)DT /2 + b/2. The first term in eqn. 5 is related to thermal transport and the last two terms corresponds
to sound wave travelling in opposite direction. Further details on the methodology along with the code is discussed
in detail elsewhere [10].

Now we will briefly discuss the thermodyanmic relation relvant to quantities that arise in Eqn. 5. These quantities
are estimated from numeric partial deviates with respect to state variables as defined below:

cV =
1

N

 
@E

@T

!

V

(6)

cP � cV = � T

N

 
@P

@T

!2

V

 
@P

@V

!�1

T

(7)

c2s = �V 2�

Nm

 
@P

@V

!

T

(8)

As described in Ref. [10], DT and b will be treated as the fit parameters. Once the DT is obtained by a linear fit,
the thermal conductivity (�) can be computed using the following relation:

� = ⇢0cPDT (9)

where ⇢0 is the liquid density.

G. THERMAL CONDUCTIVITY FROM GAP-MD

The GAP MD simulation was performed for Eutectic system at 645.15K with a elongated system [10]. In order
to avoid finite size e↵ect a very large Lz ⇡ 1000 Å is chosen which translates to a system size of 8,320 atoms (1.558
g. cm�3). For benchmark purposes we also set up a simulation with RIM model with same number of atoms and
elongation (1.512 g. cm�3). The simulations are performed with in NVT ensemble with a global stochastic velocity
rescaling thermostat [11]. A time step of 0.5 fs is used and the simulations are performed for 500 ps. The results are
reported in Table IV.

Method cv ( J/(K.mol) ) � cs (Å/ps) DT (Å2/ps) � ( W/(m.K))

GAP 34.1 1.21 0.434 27.5(2) 0.659

RIM 29.8 1.20 0.355 43.9(2) 0.856

Experiment [12] - - - - 0.690

TABLE IV: Fit parameters for eqn. 5 and the estimated thermal conductivity. Linear fit DT (k) is performed as function of k
for all the points where statistical error up to 10�2 (paranthesis) and extrapolated to k=0 as explained in Ref [10].
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