
AIMSim: An Accessible Cheminformatics Platform for
Similarity Operations on Chemicals Datasets
Himaghna Bhattacharjeea,b,c, Jackson Burnsa,c, Dionisios G. Vlachos*a,b

aDepartment of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St.,

Newark, DE 19711

bCatalysis Center for Energy Innovation, RAPID Manufacturing Institute, and Delaware Energy Institute,

221 Academy St., Newark, DE 19716

cEqual contribution

*Corresponding author: vlachos@udel.edu

Abstract
The recent advances in deep learning, generative modeling, and statistical learning have ushered in a

renewed interest in traditional cheminformatics tools and methods. Quantifying molecular similarity is

essential in molecular generative modeling, exploratory molecular synthesis campaigns, and drug-

discovery applications to assess how new molecules differ from existing ones. Most tools target

advanced users and lack general implementations accessible to the larger community. In this work, we

introduce Artificial Intelligence Molecular Similarity (AIMSim), an accessible cheminformatics platform

for performing similarity operations on collections of molecules (molecular datasets). AIMSim provides a

unified platform to perform similarity-based tasks on molecular datasets, such as diversity

quantification, outlier and novelty analysis, clustering, and inter-molecular comparisons. AIMSim

implements all major binary similarity metrics and molecular fingerprints and is provided as a Python

package that includes support for command-line use as well as a fully functional Graphical User Interface

for code-free utilization.

Keywords
Cheminformatics, molecular fingerprints, similarity, data visualization, open-source software

Introduction
Quantifying molecular similarity in datasets of molecules is a subject of immense importance in machine

learning [1-5], synthetic chemistry [6], and cheminformatics [7-11] at large. Decades of research in

developing suitable approaches have yielded various descriptors for molecules, particularly fingerprints,

and dozens of metrics for comparisons. Molecular representations and similarity metrics are covered at

length below with case studies in the fields mentioned above.

Tools to implement molecular descriptors and similarity measures exist but are fragmented, difficult to

use, often accessible only from the command line, and require substantial coding by the end-user. For

example, RDKit [12], the ubiquitous Python cheminformatics package, makes many tools available

through the Boost library, requiring the end-user to work with C data types at intermediate stages.

mordred, a cheminformatics tool with more than 1,000 molecular descriptors in a single package, has a

separate command line or scripting interface [13]. ccbmlib [14] implements several common molecular

fingerprints but is quite limited regarding implemented descriptors and broader functionalities. chemfp

performs similarity searching remarkably fast on user-specified fingerprints but is command-line only

and not fully open-source [15]. Similarity metrics are available throughout numerous Python packages,

some in cheminformatics and others in statistics or machine learning packages.

Here we introduce AIMSim to make common cheminformatics tools available to end-users with no code

required. Morgan [16], Daylight [17], and RDKit’s [12] topological fingerprints are implemented.

Additionally, we provide support for all molecular descriptors implemented in the mordred [13], PaDEL-

Descriptor [18], and ccbmlib [14] software packages, including hashed fingerprints and simple scalar

descriptors. We implement 47 similarity measures, including all standard metrics used in

cheminformatics, such as the Tanimoto similarity [19, 20]. Finally, we explore applications of AIMSim to

homogeneous catalysis, organic chemistry, and machine learning with case studies.

Background and Theory

Molecular Fingerprints
Molecular fingerprints are an essential tool in cheminformatics for representing molecules in various

fields, from virtual high throughput experimentation [8] to drug discovery [9]. They have been the go-to

for decades, known for their ease of use thanks to minimal setup yet broad flexibility [3]. Since their

inception with the Daylight fingerprint in the mid-20th century [17], many molecular fingerprints have

been created and refined into substructure-based and atom-pair fingerprints. This division results

primarily from the performance of the former on large molecules. Atom-pair fingerprints are far more

effective on large molecules, such as peptides, but ineffective on small molecules common in

pharmaceutical development. Capecchi et al. [9] have recently defined a universal fingerprint; yet, many

workflows depend on a specific fingerprint, and systems are built around the existing technology. For

this reason, AIMSim allows the user to select from any of the commonly known molecular fingerprints

through a single interface. For further specialized use cases, AIMSim also implements all molecular

descriptors available through the mordred [13], PaDEL-Descriptor [18], and ccbmlib [14] software

packages. These are considered “experimental descriptors” since their implementation and

maintenance are not part of AIMSim.

Similarity and Distance Metrics
Similarity measures have been used widely to quantify the structural similarity of molecules [21-23]. The

importance stems from the Similar Property Principle [24], which states that structurally similar

molecules are likely to have similar properties or quantities of interest (QoI). As a result, a wide range of

similarity measures is used for virtual screening, diversity quantification, and clustering [7, 25-33].

Formally, a similarity measure between two vectors is a function:

𝑅𝑛 × 𝑅𝑛 → 𝑅

Additionally, we constrain the similarity measures in the range [0, 1] by a linear transformation, if
necessary. 0 denotes minimum similarity and 1 identity.

Distances

Unlike similarity, distance quantifies dissimilarity. A distance metric is helpful for clustering data,

diversity quantification, etc. All AIMSim similarities are scaled to [0, 1] and are converted to a distance

metric using the linear transformation (the only exceptions being cosine and dice distances that are

converted to their analogous metric distances. The formulae can be found in the SI, Table S1):

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1 − 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦. 𝐸𝑞. 3

For a true distance metric, a mapping 𝑑(𝒙, 𝒚):

𝑅𝑛 × 𝑅𝑛 → 𝑅. 𝐸𝑞. 4

must satisfy the following criteria:

1. 𝑑(𝒙, 𝒚) = 0 ⇔ 𝒙 = 𝒚 (Identity of indiscernibles)
2. 𝑑(𝒙, 𝒚) = 𝑑(𝒚, 𝒙) (Symmetry)
3. 𝑑(𝒙, 𝒛) ≤ 𝑑(𝒙, 𝒚) + 𝑑(𝒚, 𝒛) (Triangle inequality)

Generally, distances derived from asymmetric similarity measures do not satisfy criteria 1 and 2 [30] and
are non-metric or semi-metric. Clustering can only be carried out using metric similarity measures. This
is enforced in AIMSim. The non-metric cosine similarity measure is an exception, which is converted to a
metric angular distance using a linear transformation (vide infra).

Choosing the Appropriate Metrics
Different features may be generated for a molecule based on the descriptors or fingerprinting

algorithms and weighting schemes. Pairing the correct fingerprint or molecular descriptor with a

similarity measure is essential. For a given QoI, some featurization and similarity measures are more

appropriate [34-36]. We propose a simple algorithm to accomplish this for a QoI.

Step 1: Select an arbitrary featurization scheme (fingerprint).

Step 2: Featurize the molecule set using the selected scheme.

Step 3: Choose an arbitrary similarity measure.

Step 4: Select each molecule’s nearest and furthest neighbors in the set using the similarity measure.

Step 5: Measure the correlation between a molecule’s QoI and its nearest neighbor’s QoI.

Step 6: Measure the correlation between a molecule’s QoI and its further neighbor’s QoI.

Step 7: Define a score that maximizes the value in Step 5 and minimizes the value in Step 6.

Step 8: Iterate Steps 1 – 7 to select the featurization scheme and similarity measure to maximize the

result of Step 7.

The chemical intuition behind this algorithm is straightforward. It is desirable to choose a featurization

scheme and a similarity measure such that a pair of “similar” molecules have “similar” (correlated) QoIs.

Mathematically, a featurization scheme and similarity measure implicitly define a feature space to

embed molecules. Thus, we convert chemical entities into mathematical objects. The QoI should ideally

be a function of the molecule’s coordinates and a smooth and continuous function to make it amenable

to machine learning methods or optimization. The algorithm proposed above empirically enforces the

smoothness criteria:

𝑓(𝑥 + 𝜖) → 𝑓(𝑥) 𝑎𝑠 𝜖 → 0. 𝐸𝑞. 5

Here, 𝑓() is the QoI function, 𝑥 is the feature space embedding of a molecule, and 𝑥 + 𝜖 becomes the

feature space embedding of its neighbor as 𝜖 → 0. AIMSim selects the most appropriate fingerprint and

similarity measure. This, and other functionalities, are discussed in the next section.

Overview of AIMSim Software Design
AIMSim is written in the widely used Python programming language. The implementation is modularized

and written strictly in an Object-Oriented fashion. The software design is divided orthogonally into

backend and frontend segments. The backend includes all the computational functionalities and data

structures of the software. The functionalities themselves are arranged into abstractions called Tasks,

which are discussed later. The backend also exposes several API (Application Programming Interface)

methods to utilize the functionalities of AIMSim programmatically in the same way as a Python package.

The primary focus of AIMSim is making cheminformatics tools accessible. Therefore, the software has

been designed as a stand-alone application with code-free design in mind. This is achieved by the

frontend of the software that provides an intuitive Graphical User Interface (GUI) for launching any of

the complex functionalities of AIMSim without a single line of code. A Task Manager module manages

the connection between the front end and backend of AIMSim and abstracts away any low-level details

from the user. The frontend design elements are described in this section and the backend

functionalities in a later section.

Task Manager
All tasks are accessible as classes with modules accessible to perform subtasks and are available on the

documentation page. However, for the stand-alone version of AIMSim (with GUI), a Task Manager class

is provided for scheduling tasks and pre-verifying configuration settings before launching any intensive

computations (Figure 1). This prevents the user from wasting time waiting for a set of data to run which

would otherwise never complete.

Figure 1. Flowchart of AIMSim’s input verification and execution.

Graphical User Interface (GUI)
We provide a full-featured, easily installed, and launched GUI interface with key internal functions

(Figure 2). Similarity measures and molecular descriptors are available in dropdown menus with

commonly accessed configuration options accessible from toggles. This interface automatically

generates configuration files for use by AIMSim. It allows the user to execute the files directly from the

interface or open them in an external text editor for fine-grain changes and subsequent execution from

the command line. The GUI can be run from a local installation of AIMSim using a single command to

configure all dependencies automatically. The layout of AIMSim, including brief descriptions of the

functionalities explored in the case studies, is shown in Figure 3.

Figure 2. AIMSim Graphical User Interface (GUI). a) AIMSim implements almost 50 common similarity measures selected via a
drop-down menu. b) AIMSim implements the Morgan, Daylight, and topological fingerprints. c) The “Show experimental
descriptors” checkbox enables the user to select from a range of third-party fingerprints provided in the mordred [13], PaDEL-
Descriptor [18], and ccbmlib [14] libraries. d) The complete GUI with all components labeled. A full walkthrough of all
components is included in the SI.

Figure 3. a) Main classes and methods of AIMSim. B) Core structure of AIMSim with brief description of the classes.

Overview of Functionalities
AIMSim implements many functionalities and can generate similarity density distributions and pairwise

heatmaps simply using a list of SMILES strings. One can use the forty-plus distance metrics and common

molecular fingerprints, including the Morgan [16] and Daylight specifications [17]. Dimensionality

reduction can be performed to visualize high dimensional fingerprints in 2 dimensions. At the

implementation level, multithreading and configurable output levels facilitate the analysis of large

datasets, as discussed at length in the Use Case #3. The rest of this section is an overview of the various

capabilities of AIMSim.

Accepted Input Formats
AIMSim can ingest many common cheminformatics file types. Protein Data Bank (.pdb), SMILES strings

(.txt, .SMILES, or .smi), Excel workbooks (.xlsx), and Comma Separated Values (.csv) are all directly

supported. Directories containing a collection of these datatypes can also be parsed directly in AIMSim

without the need for file aggregation or repeat execution.

Tasks
At the core of AIMSim‘s functionalities are Task objects to encapsulate the operations run over chemical

datasets. They are described below, along with references to case studies for illustration.

Task: Measure Search
Virtual screening or exploratory synthesis campaigns may not have a rich body of heuristics or

benchmark studies for new applications. Then, it becomes necessary to pair a fingerprint to a similarity

measure (this choice is called “a measure” here for brevity). AIMSim implements the algorithm

discussed above for measure search via the MeasureSearch Task class. Using a user-specified random

subsample of the data (due to the computational load of this task), MeasureSearch scores the measures

based on the degree of correlation in the QoI properties between molecules and their nearest and

furthest neighbors in the space defined by the measure. The scoring is done using a user-specified

strategy to maximize correlation in QoI properties between nearest neighbors (max strategy), minimize

absolute correlation in QoI properties between furthest neighbors (min strategy) or place an equal

weight combination of the two strategies (max-min strategy). In the min strategy, we reduce the

absolute value of the correlation and not the correlation itself (the property of a molecule should be

uncorrelated from its furthest neighbor; minimizing the correlation drives the search towards anti-

correlation (-1) instead of 0. A bar graph enumerating the score and neighbor correlations for the top n

(user-specified) measures can be displayed. Alternatively, the top measure can be programmatically

extracted (for module-level usage). This Task is automatically launched when the measure is set to

‘determine’ in the configuration file (when operating AIMSim as a stand-alone application). The user can

constrain the optimization to specific fingerprints and similarity measures or to only metric distances

(which can be used for clustering). Generally, we find that a combination of Morgan fingerprint and a

Tanimoto similarity metric works reasonably well for a lot of use cases and is used for illustrative

purposes in this work. It is recommended that measure search is used if this measure choice is not found

to be satisfactory.

Task: See Property Variation with Similarity
Upon selecting a suitable measure, using the AIMSim Measure Search task or heuristics, one can verify

the efficacy by quantifying the correlation with the nearest and furthest neighbors. The correlation with

the nearest (furthest) neighbor properties should be close to 1 (0). AIMSim creates a parity plot with the

Pearson correlation coefficient as a legend, as illustrated in Case Study #1.

Task: Visualize Dataset
At the beginning of machine learning or computational model-building, it is helpful to quantify the

diversity in the training set or the outputs of a molecular generative model (Case Study #3) or for

substrate scope verification (Case Study # 2). This task generates a heatmap and density plot of the

pairwise similarity between molecules in a molecule set for exploratory analysis.

Dimensionality Reduction for Visualizing Molecule Set

After the clustering operation, AIMSim embeds the entire molecule set from the high dimensional space

of fingerprints (typically ~1024 dimensions corresponding to the number of bits used for generating the

fingerprint) to two dimensions. AIMSim currently implements multidimensional scaling [37-39], T-

distributed Stochastic Neighbor Embedding (t-SNE) [40] and Principal Component Analysis (PCA) [41] for

dimensionality reduction. Note that dimensionality reduction can only be done using similarity

measures that yield a valid distance (metricity requirement).

Task: Compare Target Molecules to Molecule Set
Comparing a target molecule to a database is vital for locating molecules with similar or different

properties and narrowing the candidates (leads or hits) to explore experimentally or computationally.

For example, one may need to replace a top-performing but toxic solvent with a green one of similar

properties. Conversely, it might be required to select the set of molecules most different from a query

molecule. Such a use case is typical in designing a training set for a machine learning model, where one

is interested in identifying molecules that enhance the diversity of the training set or making the model

more robust and generalizable to unseen data. The task generates a pairwise similarity distribution

quantifying the similarity between a target molecule and an entire molecule set, its most similar and

dissimilar molecules, and the top “n” most similar and dissimilar molecules. Optionally, AIMSim also

generates a structural representation of these molecules. An example is shown in Case Study #1.

Task: Cluster Data
Clustering is an unsupervised technique used to group similar molecules. Performing this analysis and

visualizing the results yields deeper insight into patterns in the data and is often the first step. This task

clusters a set of molecules based on structural similarities.

Clustering Algorithms

AIMSim implements two broad classes of clustering algorithms:

Hierarchical Agglomerative clustering [42]: The data points are clustered by grouping similar points in a

hierarchical fashion. This is done by constructing coarse grouping and then subdividing the groupings

into smaller sizes until the required number of clusters is obtained. There are several implementations

of hierarchical clustering. AIMSim implements complete linkage, single linkage, and average linkage

algorithms for binary fingerprints and Ward’s algorithm for arbitrary vector descriptors using norm-

based similarity metrics. AIMSim uses Agglomerative Clustering implementation of the scikit-learn

package.

K-medoids [43]: The k-medoids is a partitioning algorithm that builds clusters of data points by

minimizing the distance of each point to the median of their respective clusters. The k-medoids are

implemented for arbitrary vector descriptors using norm-based similarity metrics. AIMSim uses the k-

medoids implementation of scikit-learn-extra package [44, 45].

Clustering algorithms typically require inter-sample distances. Calculating this distance is an expensive

O(𝑛2) operation in terms of dataset size. The similarity matrix is internally converted to a distance matrix

using linear operations for the molecule set to avoid this computational cost. This distance matrix is

used by the clustering algorithm. AIMSim automatically detects the clustering algorithm (non-Euclidean

vs. Euclidean) based on the descriptors (binary fingerprints vs. arbitrary vector values). This task

generates a json file containing the names of molecules in the different clusters. Additionally, if the

molecule set is initialized with molecular properties (QoI), it generates a plot of the distribution of

molecular properties in the different clusters. This plot enables visual comparison of the efficacy of the

clustering (ideally, a separation of the distributions in the molecular properties is desired).

Dimensionality Reduction for Visualizing Clusters
AIMSim generates another 2D embedding of the molecule set where the molecules are colored

according to the cluster they belong to. This plot enables a visual inspection of the success of the

clustering process. Clustering molecules based on structural similarity can be achieved if the similarity

measure satisfies the metricity requirement (as discussed in the distance section above) and can yield a

valid distance metric.

This task is illustrated in Case Study # 1.

Task: Outlier Detection
This task implements an isolation forest to identify outliers. Every molecule in a dataset is assigned a

dissimilarity score: a value of 0 or below implies an outlier. Accessible from the user interface via a

simple toggle, this task can provide a “sanity check” to avoid erroneous data and verify molecule

additions not already represented in the data. The results can be written to the command line as visual

output or saved to a file.

Automated Testing
Since AIMSim is an Open-Source project, community participation and contributions are encouraged

through the GitHub project page. However, it is necessary to maintain the integrity and correctness of

the codebase for reliable utilization by the community. Therefore, we have made available an extensive

suite of automated tests. Only changes that successfully pass all these tests are incorporated into the

main codebase. This ensures the health of the project. The tests can be found on the GitHub page and

additional test suggestions are accepted and encouraged.

Case Study #1: Exploratory Solvent Search
An essential use of AIMSim is for catalyst discovery and solvent search. The latter case is illustrated here.

The data is taken from Wang et al. [46]. The authors screened 2214 organic solvents for reactive

extraction of HMF (5-hydroxylmethylfurfural), a platform chemical produced in the acid-catalyzed

dehydration of hexoses, in biphasic organic-water systems. The authors obtained the log (water-

candidate molecule) partition coefficient of HMF from the ADFCRS-2018 database using the ADF

COSMO-RS software package.

It is essential to visualize the “information richness” of the dataset. A diverse set is preferred to

maximize the information and avoid wasting time and resources investigating similar molecules of no

practical interest. AIMSim provides a priori diversity identification. For this use case, we utilize the

Morgan fingerprint (radius 3)[16] and the Tanimoto similarity measure. Figures 4a and 4b show the

correlation in QoI (log(water-candidate molecule) partition coefficient of HMF). The high linear

correlation in the responses of nearest neighbors (Pearson coefficient of 0.78, Figure 4a) and the low

correlation of furthest neighbors (0.02, Figure 4b) illustrate that this measure works, i.e., molecules

grouped as similar have correlated responses.

Figure 4c shows the 2-dimensional embedding of the dataset visualized by AIMSim using the MDS

algorithm. Figure 4d shows the results of clustering this dataset using AIMSim’s hierarchical clustering

functionality. Two distinct clusters are identified and can be separating out in the lower dimensional

embedding generated by AIMSim. While these clusters separate out in low dimensions, note that these

clusters are not immediately apparent from a visual inspection of the low dimensional embedding in

Figure 4c. This is due to the high dimensional nature of fingerprints and highlights the importance of

clustering. Plots generated by AIMSim showing number of molecules in each cluster and distribution of

QoI for molecules in each of the clusters are shown in Figure S1.

Finally, we run a simulated example of a typical solvent search scenario. The authors of the work note

that the phenolic group of the solvents lead to a higher HMF partition coefficient with water. Thus,

solvents with phenolic groups should be better for reactive extraction of HMF. Thus, we run a target

search of the simplest such solvent (phenol) against the dataset. In general, since the study was used for

screening good solvents, we would expect that phenol to have a high degree of similarity with the

dataset. In fact, phenol was studied by the authors. Using it as a query molecule is done for illustrative

purposes to mimic the situation when a collection of molecules with favorable properties are known and

a new molecule that resembles this molecule set is sought. In such a case, a high-throughput in-silico

search over multiple candidates can be made using AIMSim. Only the SMILES string (or some other

structural identifier) of the candidates is needed. As a control, we also run a target search using

ammonia, a molecule which we expect to be very different from the solvents studied in the work.

Figure 4e shows the results of running a target search using ammonia. The pairwise similarity density is

strongly peaked around 0 indicating that the solvents are all very different from ammonia. Figure 4f

shows the results of running a target search using phenol. The pairwise similarity distribution now has a

heavy tail away from zero indicating that the solvents in general are similar to phenol (with those in the

extremes of the tail being very similar to phenol). Thus qualitatively, we can conclude that phenol is

similar to the collection of solvent molecules. AIMSim also displays the structures of molecules which

are most similar and least similar to the query. In Figure 4g and h, the structures for the most and least

similar molecule to the target molecule (phenol) as generated by AIMSim are shown. The most similar

molecule (Figure 4g) to phenol is of course phenol itself (since the authors had included phenol in their

dataset) and the least similar molecule (Figure 4h) is a branched saturated fluoroalkane which is clearly

very different from a phenolic compound.

Figure 4. AIMSim analysis of solvents for biphasic extraction of 5-hydroxymethylfurfural. Data from [38]. a-b) Parity between log
partition coefficient of (a) nearest neighbor and (b) furthest neighbor solvents using the Morgan fingerprint and Tanimoto

similarity measure. c) Low dimensional embedding of the dataset using the MDS algorithm. D) Low dimensional embedding
generated after the clustering using the complete linkage agglomerative hierarchical clustering algorithm. Two distinct clusters
of molecules are shown. e-f) Target analysis of the dataset using AIMSim using e) N (ammonia) target SMILES. and f) phenol. g-

h) Structure of the most similar (g) and most dissimilar (h) molecule to the target.

Case Study #2: Substrate Scope Diversity Verification
When proposing a novel reaction, it is essential to evaluate the transformation’s tolerance of diverse

functional groups and substrates [6]. This collection of molecules is conventionally referred to as the

substrate scope, or more often, simply the scope. Using AIMSim, one can evaluate the structural and

chemical similarity across an entire scope to ensure that it avoids redundant examples and is sufficiently

diverse prior to experimentation to avoid unnecessary and expensive work. Using existing literature data

paired with AIMSim, one can evaluate if a novel substrate not included in a given scope is similar to any

substrates assessed.

Figure 5 is an example of a similarity heatmap and a distribution generated by AIMSim for published

chemical data. The data is retrieved from Chen and coworkers’ copper-catalyzed three-component

sulfonamide synthesis [47]. In their work, an aryl- or alkenyl-boronic acid and a substituted amine were

simultaneously coupled to a sulfone to yield the sulfonamide, essential for pharmaceuticals and

agrochemicals. To evaluate the functional group tolerance and overall applicability of the proposed

transformation, they created 104 products, each composed of a unique combination of amine and

boronic acid coupling partners. These products are compared using the Rogers-Tanimoto distance and

the Morgan fingerprint, the default configuration for AIMSim.

Figure 5. Similarity heatmap (a) and similarity distribution (b) for Chen’s three-component sulfonamide synthesis substrate
scope.

As shown in the heatmap, the prominent region of high similarity near the diagonal corresponds to

substrates presented sequentially in the publication with only minor structural differences, such as a

different aryl-methyl substitution pattern. In the bulk of the heatmap, and more obviously in the

similarity distribution, most samples have a similarity of approximately 0.2-0.4. This matches

expectations, as the substrate scope was constructed by allowing one partner in the coupling to vary at

a time.

AIMSim can verify that an additional sample for this dataset would be sufficiently diverse to make it

worth investigating. Shown schematically in Figure 6 and Figure 7, AIMSim can quickly identify which

members of a given dataset already evaluated are most similar, indicating if the new one is unexplored.

For the examples, the proposed additions include a variation on the aryl-halide substituent and an

increase in the amine ring size, extensions provided in the original scope.

Figure 6. Proposed addition to the dataset and its most similar pre-existing example.

Figure 7. Substantially different potential addition to the scope and the most similar substrate already evaluated.

As shown above, AIMSim identifies another phenyl-halide functionalized substrate when queried with

the bromide species. This is an obvious conclusion to a practicing chemist, though it can be supported

with data and be tractable on too large datasets for human inspection. When presented with what

seems to be a highly different species in Figure 7, AIMSim identifies a cluster of methoxy groups as the

most similar. This unlikely pairing may stem from similar steric behavior by the two species. Still, given

the low similarity score, it would be advisable to investigate it on the lab bench. The morpholine

fragment, a common feature in the substrate scope, is identified as most similar to the 1,5-oxazocane,

which matches expectations.

Case Study #3: Generational Library Diversity Verification
Generative Neural Networks (GNNs) have seen increasing use in virtual high throughput screening in the

last few years for evaluating novel targets. Their general purpose is to ‘create’ new molecules digitally

for subsequent evaluation via molecular docking or machine learning. For hypothetical molecules to be

of any use, they must be sufficiently different from existing examples to explore unknown chemical

space. Tools, such as MOSES, set out to quantify various performance metrics for generated molecule

sets [1], including similarity score distributions. AIMSim extends this effort by providing a more readily

accessible and human interpretable representation of molecular diversity, accessible through a GUI,

while also including a richer feature set.

One dataset analyzed by MOSES was generated using the Hidden Markov Model, referred to as the

HMM dataset. This collection includes more than 10,000 individual molecules represented as SMILES

strings. MOSES reports various scalar descriptors for this dataset, such as the Validity and Uniqueness,

and while these are informative, they are inherently reductive. AIMSim instead provides a distribution of

similarity density based on comprehensive pairwise comparisons, as illustrated in Figure 8.

Figure 8. Similarity density for the HMM dataset provided by MOSES [1] and available in AIMSim.

It is now clearly visible that this generative model created a diverse dataset. There is a substantial area

of the distribution with similarity below 0.2, i.e., most of the species share only 20% similarity to other

examples in the dataset. This representation also reveals a large spike in similarity around 0.35 and a

similar spike at 1 (perfect similarity). The former may be attributed to cases as those presented in Use

Case #2 above, where one component of a larger substrate is being altered at a time. The peak at

perfect similarity indicates that the generative model returns a non-zero number of identical or nearly

identical molecules. AIMSim provides numerous molecular descriptors and similarity metrics, creating

further avenues to ensure proper performance.

Multiprocessing
Execution time becomes a concern on datasets of this order of magnitude due to the underlying

algorithm for comparisons being of O(𝑛2) complexity. To handle the large size of generative data sets,

AIMSim implements multiprocessing and sampling techniques to reduce execution time. Using the

multiprocess Python library [48], any number of processes can be spawned to divide the task of

comparing molecules. Because much of the execution time is spent on performing molecular

comparisons, the continued addition of processes is highly efficient with speedup in excess of 90% on

datasets of 500 or more molecules, as shown in Figure 9. Table S2 includes more extensive testing. All

molecules are retrieved from the combinatorial dataset of similar size to generative datasets, provided

as part of MOSES and reproduced in AIMSim.

Figure 9. Speedup efficiency for molecular sets of different sizes.

With sufficiently sized datasets, the costs associated with multiprocessing and performance gains

become substantial. Minimal efficiency and speedup on small datasets are expected due to the

computational expense of spawning and joining processes. Warnings are included in the documentation

to prevent multiprocessing on unsuited datasets, and AIMSim includes an automatic configuration

option which uses the heuristics above to estimate if multiprocessing will result in faster execution and

then configure itself accordingly.

Conclusions
AIMSim is a completely open-source cheminformatics software designed for code-free utilization as well

as a Python package for more specialized programmatic usage. From a user-friendly graphical user

interface, AIMSim can calculate similarity density distributions, similarity heatmaps, single-molecule

database comparisons, and dimensionality reductions to facilitate research in various fields. Nearly 50

common distance metrics used in cheminformatics are available via AIMSim, as well as a host of

molecular fingerprints and descriptors. AIMSim’s full parallelization, supporting multiprocessing

capabilities, greatly boosts performance. Thus, AIMSim can tractably analyze large-scale datasets typical

in machine learning applications. With speedups greater than 90% on datasets with 500 or more

molecules, the diversity of generative models can be verified on a molecule-by-molecule basis.

Code Availability
AIMSim is freely available on its GitHub project page (https://github.com/VlachosGroup/AIMSim) along

with detailed user documentation (https://vlachosgroup.github.io/AIMSim/). A limited version of

AIMSim can also be run in a browser. Details can be found on the GitHub page.

https://github.com/VlachosGroup/molSim
https://vlachosgroup.github.io/molSim/

Acknowledgements
The authors would like to acknowledge the RAPID manufacturing institute, supported by the

Department of Energy (DOE) Advanced Manufacturing Office (AMO), Award Number DE-EE0007888-9.5.

RAPID projects at the University of Delaware are also made possible by funding provided by the State of

Delaware. The Delaware Energy Institute gratefully acknowledges the support and partnership of the

State of Delaware in furthering the essential scientific research conducted through the RAPID projects.

The authors would also like to acknowledge Kelly Walker for the design of the logo.

References
1. Polykovskiy, D., et al., Molecular Sets (MOSES): A Benchmarking Platform for Molecular

Generation Models. arXiv:1811.12823 [cs, stat], 2020.
2. Janet, J.P., et al., A quantitative uncertainty metric controls error in neural network-driven

chemical discovery. Chemical Science, 2019. 10(34): p. 7913-7922.
3. Padula, D., J.D. Simpson, and A. Troisi, Combining electronic and structural features in machine

learning models to predict organic solar cells properties. Materials Horizons, 2019. 6(2): p. 343-
349.

4. Bhattacharjee, H. and D.G. Vlachos, Thermochemical Data Fusion Using Graph Representation
Learning. Journal of Chemical Information and Modeling, 2020. 60(10): p. 4673-4683.

5. Bhattacharjee, H., N. Anesiadis, and D.G. Vlachos, Regularized machine learning on molecular
graph model explains systematic error in DFT enthalpies. Scientific Reports, 2021. 11(1): p.
14372.

6. Collins, K.D. and F. Glorius, A robustness screen for the rapid assessment of chemical reactions.
Nature Chemistry, 2013. 5(7): p. 597-601.

7. Cereto-Massagué, A., et al., Molecular fingerprint similarity search in virtual screening. Methods,
2015. 71: p. 58-63.

8. Muegge, I. and P. Mukherjee, An overview of molecular fingerprint similarity search in virtual
screening. Expert Opinion on Drug Discovery, 2016. 11(2): p. 137-148.

9. Capecchi, A., D. Probst, and J.-L. Reymond, One molecular fingerprint to rule them all: drugs,
biomolecules, and the metabolome. Journal of Cheminformatics, 2020. 12(1): p. 43.

10. Golbraikh, A., Molecular Dataset Diversity Indices and Their Applications to Comparison of
Chemical Databases and QSAR Analysis. Journal of Chemical Information and Computer
Sciences, 2000. 40(2): p. 414-425.

11. Sliwoski, G., et al., Computational methods in drug discovery. Pharmacological reviews, 2013.
66(1): p. 334-395.

12. Landrum, G., RDKit: Open-source cheminformatics. 2011: http://www.rdkit.org.
13. Moriwaki, H., et al., Mordred: a molecular descriptor calculator. Journal of Cheminformatics,

2018. 10(1): p. 4.
14. Vogt, M. and J. Bajorath, ccbmlib – a Python package for modeling Tanimoto similarity value

distributions. F1000Research, 2020. 9: p. Chem Inf Sci-100.
15. Dalke, A., The chemfp project. Journal of Cheminformatics, 2019. 11(1): p. 76.
16. Rogers, M.H.D., Extended-connectivity fingerprints. J Chem Inf Model, 2010. 50(5): p. 742-54.
17. Daylight Theory: Fingerprints.
18. Yap, C.W., PaDEL-descriptor: An open source software to calculate molecular descriptors and

fingerprints. Journal of Computational Chemistry, 2011. 32(7): p. 1466-1474.
19. Jaccard, P., THE DISTRIBUTION OF THE FLORA IN THE ALPINE ZONE.1. New Phytologist, 1912.

11(2): p. 37-50.

http://www.rdkit.org/

20. Rogers, D.J. and T.T. Tanimoto, A Computer Program for Classifying Plants. Science, 1960.
132(3434): p. 1115-8.

21. Kubinyi, H., Similarity and dissimilarity: a medicinal chemist’s view. Perspect Drug Discov Des,
1998. 9-11: p. 225-52.

22. Bender, R.G.A., Molecular similarity: a key technique in molecular informatics. Org Biomol Chem,
2004. 2(22): p. 3204-18.

23. M Vogt, J.B.G.M., D Stumpfe, Molecular similarity in medicinal chemistry. J Med Chem, 2014.
57(8): p. 3186-204.

24. eds., M.A.J.a.G.M.M., Concepts and applications of molecular similarity. 1990, Nashville, TN:
John Wiley & Sons.

25. Chen, C.R.X., Performance of similarity measures in 2D fragment-based similarity searching:
comparison of structural descriptors and similarity coefficients. J Chem Inf Comput Sci, 2002.
42(6): p. 1407-14.

26. J Holliday, P.W.N.S., Combination of fingerprint-based similarity coefficients using data fusion. J
Chem Inf Comput Sci, 2003. 43(2): p. 435-42.

27. N Salim, P.W.J.H., M Whittle, Analysis and display of the size dependence of chemical similarity
coefficients. J Chem Inf Comput Sci, 2003. 43(3): p. 819-28.

28. VJ Gillet, J.L.M.W., P Willett, A Alex, Enhancing the effectiveness of virtual screening by fusing
nearest neighbor lists: a comparison of similarity coefficients. J Chem Inf Comput Sci, 2004.
44(5): p. 1840-8.

29. Willett, P., Similarity-based virtual screening using 2D fingerprints. Drug Discov Today, 2006.
11(23-24): p. 1046-53.

30. Todeschini, R., et al., Similarity Coefficients for Binary Chemoinformatics Data: Overview and
Extended Comparison Using Simulated and Real Data Sets. Journal of Chemical Information and
Modeling, 2012. 52(11): p. 2884-2901.

31. V Consonni, P.W.R.T., H Xiang, J Holliday, M Buscema, Similarity coefficients for binary
chemoinformatics data: overview and extended comparison using simulated and real data sets. J
Chem Inf Model, 2012. 52(11): p. 2884-901.

32. Willett, P., Combination of similarity rankings using data fusion. J Chem Inf Model, 2013. 53(1):
p. 1-10.

33. X Zhang, P.S.F.R., D Gabriel, Benchmarking of multivariate similarity measures for high-content
screening fingerprints in phenotypic drug discovery. J Biomol Screen, 2013. 18(10): p. 1284-97.

34. Chen, X. and C.H. Reynolds, Performance of Similarity Measures in 2D Fragment-Based Similarity
Searching:  Comparison of Structural Descriptors and Similarity Coefficients. Journal of Chemical
Information and Computer Sciences, 2002. 42(6): p. 1407-1414.

35. Bender, A. and R.C. Glen, Molecular similarity: a key technique in molecular informatics. Organic
& Biomolecular Chemistry, 2004. 2(22): p. 3204-3218.

36. Whittle, M., et al., Enhancing the Effectiveness of Virtual Screening by Fusing Nearest Neighbor
Lists:  A Comparison of Similarity Coefficients. Journal of Chemical Information and Computer
Sciences, 2004. 44(5): p. 1840-1848.

37. Borg, I. and P. Groenen, Modern Multidimensional Scaling: Theory and Applications (Springer
Series in Statistics). 2005.

38. Kruskal, J., Nonmetric multidimensional scaling: A numerical method. Psychometrika, 1964.
29(2): p. 115-129.

39. Kruskal, J., Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.
Psychometrika, 1964. 29: p. 1-27.

40. van der Maaten, L. and G. Hinton, Viualizing data using t-SNE. Journal of Machine Learning
Research, 2008. 9: p. 2579-2605.

41. Anzai, Y., Pattern recognition and machine learning. 2012: Elsevier.
42. Murtagh, F. and P. Contreras, Algorithms for hierarchical clustering: an overview. WIREs Data

Mining and Knowledge Discovery, 2012. 2(1): p. 86-97.
43. Lazic, S., The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn.

2008, Springer.
44. Maranzana, F.E., On the location of supply points to minimize transportation costs. IBM Syst. J.,

1963. 2(2): p. 129–135.
45. Park, H.-S. and C.-H. Jun, A simple and fast algorithm for K-medoids clustering. Expert Systems

with Applications, 2009. 36(2, Part 2): p. 3336-3341.
46. Lu, Y., et al., Identifying the Geometric Site Dependence of Spinel Oxides for the Electrooxidation

of 5-Hydroxymethylfurfural. Angewandte Chemie International Edition, 2020. 59(43): p. 19215-
19221.

47. Chen, Y., et al., Direct Copper-Catalyzed Three-Component Synthesis of Sulfonamides. Journal of
the American Chemical Society, 2018. 140(28): p. 8781-8787.

48. McKerns, M.M., et al., Building a framework for predictive science. arXiv preprint
arXiv:1202.1056, 2012.

