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Abstract 
The recent advances in deep learning, generative modeling, and statistical learning have ushered in a 

renewed interest in traditional cheminformatics tools and methods. Quantifying molecular similarity is 

essential in molecular generative modeling, exploratory molecular synthesis campaigns, and drug-

discovery applications to assess how new molecules differ from existing ones. Most tools target 

advanced users and lack general implementations accessible to the larger community. In this work, we 

introduce Artificial Intelligence Molecular Similarity (AIMSim), an accessible cheminformatics platform 

for performing similarity operations on collections of molecules (molecular datasets). AIMSim provides a 

unified platform to perform similarity-based tasks on molecular datasets, such as diversity 

quantification, outlier and novelty analysis, clustering, and inter-molecular comparisons. AIMSim 

implements all major binary similarity metrics and molecular fingerprints and is provided as a Python 

package that includes support for command-line use as well as a fully functional Graphical User Interface 

for code-free utilization. 
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Introduction 
Quantifying molecular similarity in datasets of molecules is a subject of immense importance in machine 

learning [1-5], synthetic chemistry [6], and cheminformatics [7-11] at large. Decades of research in 

developing suitable approaches have yielded various descriptors for molecules, particularly fingerprints, 

and dozens of metrics for comparisons. Molecular representations and similarity metrics are covered at 

length below with case studies in the fields mentioned above. 

Tools to implement molecular descriptors and similarity measures exist but are fragmented, difficult to 

use, often accessible only from the command line, and require substantial coding by the end-user. For 

example, RDKit [12], the ubiquitous Python cheminformatics package, makes many tools available 

through the Boost library, requiring the end-user to work with C data types at intermediate stages. 

mordred, a cheminformatics tool with more than 1,000 molecular descriptors in a single package, has a 

separate command line or scripting interface [13]. ccbmlib [14] implements several common molecular 

fingerprints but is quite limited regarding implemented descriptors and broader functionalities. chemfp 

performs similarity searching remarkably fast on user-specified fingerprints but is command-line only 

and not fully open-source [15]. Similarity metrics are available throughout numerous Python packages, 

some in cheminformatics and others in statistics or machine learning packages. 

Here we introduce AIMSim to make common cheminformatics tools available to end-users with no code 

required. Morgan [16], Daylight [17], and RDKit’s [12] topological fingerprints are implemented. 

Additionally, we provide support for all molecular descriptors implemented in the mordred [13], PaDEL-

Descriptor [18], and ccbmlib [14] software packages, including hashed fingerprints and simple scalar 

descriptors. We implement 47 similarity measures, including all standard metrics used in 

cheminformatics, such as the Tanimoto similarity [19, 20]. Finally, we explore applications of AIMSim to 

homogeneous catalysis, organic chemistry, and machine learning with case studies. 

Background and Theory 

Molecular Fingerprints 
Molecular fingerprints are an essential tool in cheminformatics for representing molecules in various 

fields, from virtual high throughput experimentation [8] to drug discovery [9]. They have been the go-to 

for decades, known for their ease of use thanks to minimal setup yet broad flexibility [3]. Since their 

inception with the Daylight fingerprint in the mid-20th century [17], many molecular fingerprints have 

been created and refined into substructure-based and atom-pair fingerprints. This division results 

primarily from the performance of the former on large molecules. Atom-pair fingerprints are far more 

effective on large molecules, such as peptides, but ineffective on small molecules common in 

pharmaceutical development. Capecchi et al. [9] have recently defined a universal fingerprint; yet, many 

workflows depend on a specific fingerprint, and systems are built around the existing technology. For 

this reason, AIMSim allows the user to select from any of the commonly known molecular fingerprints 

through a single interface. For further specialized use cases, AIMSim also implements all molecular 

descriptors available through the mordred [13], PaDEL-Descriptor [18], and ccbmlib [14] software 

packages. These are considered “experimental descriptors” since their implementation and 

maintenance are not part of AIMSim. 



Similarity and Distance Metrics 
Similarity measures have been used widely to quantify the structural similarity of molecules [21-23]. The 

importance stems from the Similar Property Principle [24], which states that structurally similar 

molecules are likely to have similar properties or quantities of interest (QoI). As a result, a wide range of 

similarity measures is used for virtual screening, diversity quantification, and clustering [7, 25-33]. 

Formally, a similarity measure between two vectors is a function:  

𝑅𝑛  ×  𝑅𝑛  → 𝑅  

Additionally, we constrain the similarity measures in the range [0, 1] by a linear transformation, if 
necessary. 0 denotes minimum similarity and 1 identity.  

Distances 

Unlike similarity, distance quantifies dissimilarity. A distance metric is helpful for clustering data, 

diversity quantification, etc. All AIMSim similarities are scaled to [0, 1] and are converted to a distance 

metric using the linear transformation (the only exceptions being cosine and dice distances that are 

converted to their analogous metric distances. The formulae can be found in the SI, Table S1): 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1 − 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦.  𝐸𝑞. 3 

For a true distance metric, a mapping 𝑑(𝒙, 𝒚): 

𝑅𝑛  ×  𝑅𝑛  → 𝑅.  𝐸𝑞. 4  

must satisfy the following criteria: 

1. 𝑑(𝒙, 𝒚) =  0 ⇔ 𝒙 = 𝒚    (Identity of indiscernibles) 
2. 𝑑(𝒙, 𝒚) = 𝑑(𝒚, 𝒙)    (Symmetry) 
3. 𝑑(𝒙, 𝒛) ≤  𝑑(𝒙, 𝒚) +  𝑑(𝒚, 𝒛)    (Triangle inequality) 

Generally, distances derived from asymmetric similarity measures do not satisfy criteria 1 and 2 [30] and 
are non-metric or semi-metric. Clustering can only be carried out using metric similarity measures. This 
is enforced in AIMSim. The non-metric cosine similarity measure is an exception, which is converted to a 
metric angular distance using a linear transformation (vide infra). 

Choosing the Appropriate Metrics 
Different features may be generated for a molecule based on the descriptors or fingerprinting 

algorithms and weighting schemes. Pairing the correct fingerprint or molecular descriptor with a 

similarity measure is essential. For a given QoI, some featurization and similarity measures are more 

appropriate [34-36]. We propose a simple algorithm to accomplish this for a QoI. 

Step 1: Select an arbitrary featurization scheme (fingerprint). 

Step 2: Featurize the molecule set using the selected scheme. 

Step 3: Choose an arbitrary similarity measure. 



Step 4: Select each molecule’s nearest and furthest neighbors in the set using the similarity measure. 

Step 5: Measure the correlation between a molecule’s QoI and its nearest neighbor’s QoI. 

Step 6: Measure the correlation between a molecule’s QoI and its further neighbor’s QoI. 

Step 7: Define a score that maximizes the value in Step 5 and minimizes the value in Step 6. 

Step 8: Iterate Steps 1 – 7 to select the featurization scheme and similarity measure to maximize the 

result of Step 7. 

The chemical intuition behind this algorithm is straightforward. It is desirable to choose a featurization 

scheme and a similarity measure such that a pair of “similar” molecules have “similar” (correlated) QoIs. 

Mathematically, a featurization scheme and similarity measure implicitly define a feature space to 

embed molecules. Thus, we convert chemical entities into mathematical objects. The QoI should ideally 

be a function of the molecule’s coordinates and a smooth and continuous function to make it amenable 

to machine learning methods or optimization. The algorithm proposed above empirically enforces the 

smoothness criteria: 

𝑓(𝑥 +  𝜖) → 𝑓(𝑥)    𝑎𝑠  𝜖 → 0.  𝐸𝑞. 5  

Here, 𝑓()  is the QoI function, 𝑥 is the feature space embedding of a molecule, and 𝑥 +  𝜖 becomes the 

feature space embedding of its neighbor as 𝜖 → 0. AIMSim selects the most appropriate fingerprint and 

similarity measure. This, and other functionalities, are discussed in the next section. 

Overview of AIMSim Software Design 
AIMSim is written in the widely used Python programming language. The implementation is modularized 

and written strictly in an Object-Oriented fashion. The software design is divided orthogonally into 

backend and frontend segments. The backend includes all the computational functionalities and data 

structures of the software. The functionalities themselves are arranged into abstractions called Tasks, 

which are discussed later. The backend also exposes several API (Application Programming Interface) 

methods to utilize the functionalities of AIMSim programmatically in the same way as a Python package. 

The primary focus of AIMSim is making cheminformatics tools accessible. Therefore, the software has 

been designed as a stand-alone application with code-free design in mind. This is achieved by the 

frontend of the software that provides an intuitive Graphical User Interface (GUI) for launching any of 

the complex functionalities of AIMSim without a single line of code. A Task Manager module manages 

the connection between the front end and backend of AIMSim and abstracts away any low-level details 

from the user. The frontend design elements are described in this section and the backend 

functionalities in a later section. 

Task Manager 
All tasks are accessible as classes with modules accessible to perform subtasks and are available on the 

documentation page. However, for the stand-alone version of AIMSim (with GUI), a Task Manager class 

is provided for scheduling tasks and pre-verifying configuration settings before launching any intensive 

computations (Figure 1). This prevents the user from wasting time waiting for a set of data to run which 

would otherwise never complete. 



 

Figure 1. Flowchart of AIMSim’s input verification and execution. 

 

Graphical User Interface (GUI)  
We provide a full-featured, easily installed, and launched GUI interface with key internal functions 

(Figure 2). Similarity measures and molecular descriptors are available in dropdown menus with 

commonly accessed configuration options accessible from toggles. This interface automatically 

generates configuration files for use by AIMSim. It allows the user to execute the files directly from the 

interface or open them in an external text editor for fine-grain changes and subsequent execution from 

the command line. The GUI can be run from a local installation of AIMSim using a single command to 

configure all dependencies automatically. The layout of AIMSim, including brief descriptions of the 

functionalities explored in the case studies, is shown in Figure 3. 



 

Figure 2. AIMSim Graphical User Interface (GUI). a) AIMSim implements almost 50 common similarity measures selected via a 
drop-down menu. b) AIMSim implements the Morgan, Daylight, and topological fingerprints. c) The “Show experimental 
descriptors” checkbox enables the user to select from a range of third-party fingerprints provided in the mordred [13], PaDEL-
Descriptor [18],  and ccbmlib [14] libraries. d) The complete GUI with all components labeled. A full walkthrough of all 
components is included in the SI. 



 

Figure 3. a) Main classes and methods of AIMSim. B) Core structure of AIMSim with brief description of the classes. 

Overview of Functionalities 
AIMSim implements many functionalities and can generate similarity density distributions and pairwise 

heatmaps simply using a list of SMILES strings. One can use the forty-plus distance metrics and common 

molecular fingerprints, including the Morgan [16] and Daylight specifications [17]. Dimensionality 

reduction can be performed to visualize high dimensional fingerprints in 2 dimensions. At the 

implementation level, multithreading and configurable output levels facilitate the analysis of large 

datasets, as discussed at length in the Use Case #3. The rest of this section is an overview of the various 

capabilities of AIMSim. 

Accepted Input Formats 
AIMSim can ingest many common cheminformatics file types. Protein Data Bank (.pdb), SMILES strings 

(.txt, .SMILES, or .smi), Excel workbooks (.xlsx), and Comma Separated Values (.csv) are all directly 

supported. Directories containing a collection of these datatypes can also be parsed directly in AIMSim 

without the need for file aggregation or repeat execution. 



Tasks 
At the core of AIMSim‘s functionalities are Task objects to encapsulate the operations run over chemical 

datasets. They are described below, along with references to case studies for illustration. 

Task: Measure Search 
Virtual screening or exploratory synthesis campaigns may not have a rich body of heuristics or 

benchmark studies for new applications. Then, it becomes necessary to pair a fingerprint to a similarity 

measure (this choice is called “a measure” here for brevity). AIMSim implements the algorithm 

discussed above for measure search via the MeasureSearch Task class. Using a user-specified random 

subsample of the data (due to the computational load of this task), MeasureSearch scores the measures 

based on the degree of correlation in the QoI properties between molecules and their nearest and 

furthest neighbors in the space defined by the measure. The scoring is done using a user-specified 

strategy to maximize correlation in QoI properties between nearest neighbors (max strategy), minimize 

absolute correlation in QoI properties between furthest neighbors (min strategy) or place an equal 

weight combination of the two strategies (max-min strategy). In the min strategy, we reduce the 

absolute value of the correlation and not the correlation itself (the property of a molecule should be 

uncorrelated from its furthest neighbor; minimizing the correlation drives the search towards anti-

correlation (-1) instead of 0. A bar graph enumerating the score and neighbor correlations for the top n 

(user-specified) measures can be displayed. Alternatively, the top measure can be programmatically 

extracted (for module-level usage). This Task is automatically launched when the measure is set to 

‘determine’ in the configuration file (when operating AIMSim as a stand-alone application). The user can 

constrain the optimization to specific fingerprints and similarity measures or to only metric distances 

(which can be used for clustering). Generally, we find that a combination of Morgan fingerprint and a 

Tanimoto similarity metric works reasonably well for a lot of use cases and is used for illustrative 

purposes in this work. It is recommended that measure search is used if this measure choice is not found 

to be satisfactory. 

Task: See Property Variation with Similarity 
Upon selecting a suitable measure, using the AIMSim Measure Search task or heuristics, one can verify 

the efficacy by quantifying the correlation with the nearest and furthest neighbors. The correlation with 

the nearest (furthest) neighbor properties should be close to 1 (0). AIMSim creates a parity plot with the 

Pearson correlation coefficient as a legend, as illustrated in Case Study #1. 

Task: Visualize Dataset 
At the beginning of machine learning or computational model-building, it is helpful to quantify the 

diversity in the training set or the outputs of a molecular generative model (Case Study #3) or for 

substrate scope verification (Case Study # 2). This task generates a heatmap and density plot of the 

pairwise similarity between molecules in a molecule set for exploratory analysis. 



Dimensionality Reduction for Visualizing Molecule Set 

After the clustering operation, AIMSim embeds the entire molecule set from the high dimensional space 

of fingerprints (typically ~1024 dimensions corresponding to the number of bits used for generating the 

fingerprint) to two dimensions. AIMSim currently implements multidimensional scaling [37-39], T-

distributed Stochastic Neighbor Embedding (t-SNE) [40] and Principal Component Analysis (PCA) [41] for 

dimensionality reduction.  Note that dimensionality reduction can only be done using similarity 

measures that yield a valid distance (metricity requirement). 

Task: Compare Target Molecules to Molecule Set 
Comparing a target molecule to a database is vital for locating molecules with similar or different 

properties and narrowing the candidates (leads or hits) to explore experimentally or computationally. 

For example, one may need to replace a top-performing but toxic solvent with a green one of similar 

properties. Conversely, it might be required to select the set of molecules most different from a query 

molecule. Such a use case is typical in designing a training set for a machine learning model, where one 

is interested in identifying molecules that enhance the diversity of the training set or making the model 

more robust and generalizable to unseen data. The task generates a pairwise similarity distribution 

quantifying the similarity between a target molecule and an entire molecule set, its most similar and 

dissimilar molecules, and the top “n” most similar and dissimilar molecules. Optionally, AIMSim also 

generates a structural representation of these molecules. An example is shown in Case Study #1. 

Task: Cluster Data 
Clustering is an unsupervised technique used to group similar molecules. Performing this analysis and 

visualizing the results yields deeper insight into patterns in the data and is often the first step. This task 

clusters a set of molecules based on structural similarities. 

Clustering Algorithms 

AIMSim implements two broad classes of clustering algorithms: 

Hierarchical Agglomerative clustering [42]: The data points are clustered by grouping similar points in a 

hierarchical fashion. This is done by constructing coarse grouping and then subdividing the groupings 

into smaller sizes until the required number of clusters is obtained. There are several implementations 

of hierarchical clustering. AIMSim implements complete linkage, single linkage, and average linkage 

algorithms for binary fingerprints and Ward’s algorithm for arbitrary vector descriptors using norm-

based similarity metrics. AIMSim uses Agglomerative Clustering implementation of the scikit-learn 

package. 

K-medoids [43]: The k-medoids is a partitioning algorithm that builds clusters of data points by 

minimizing the distance of each point to the median of their respective clusters. The k-medoids are 

implemented for arbitrary vector descriptors using norm-based similarity metrics. AIMSim uses the k-

medoids implementation of scikit-learn-extra package [44, 45]. 

Clustering algorithms typically require inter-sample distances. Calculating this distance is an expensive 

O(𝑛2) operation in terms of dataset size. The similarity matrix is internally converted to a distance matrix 

using linear operations for the molecule set to avoid this computational cost. This distance matrix is 

used by the clustering algorithm. AIMSim automatically detects the clustering algorithm (non-Euclidean 

vs. Euclidean) based on the descriptors (binary fingerprints vs. arbitrary vector values). This task 

generates a json file containing the names of molecules in the different clusters. Additionally, if the 



molecule set is initialized with molecular properties (QoI), it generates a plot of the distribution of 

molecular properties in the different clusters. This plot enables visual comparison of the efficacy of the 

clustering (ideally, a separation of the distributions in the molecular properties is desired).  

Dimensionality Reduction for Visualizing Clusters 
AIMSim generates another 2D embedding of the molecule set where the molecules are colored 

according to the cluster they belong to. This plot enables a visual inspection of the success of the 

clustering process. Clustering molecules based on structural similarity can be achieved if the similarity 

measure satisfies the metricity requirement (as discussed in the distance section above) and can yield a 

valid distance metric.  

This task is illustrated in Case Study # 1. 

Task: Outlier Detection 
This task implements an isolation forest to identify outliers. Every molecule in a dataset is assigned a 

dissimilarity score: a value of 0 or below implies an outlier. Accessible from the user interface via a 

simple toggle, this task can provide a “sanity check” to avoid erroneous data and verify molecule 

additions not already represented in the data. The results can be written to the command line as visual 

output or saved to a file. 

Automated Testing 
Since AIMSim is an Open-Source project, community participation and contributions are encouraged 

through the GitHub project page. However, it is necessary to maintain the integrity and correctness of 

the codebase for reliable utilization by the community. Therefore, we have made available an extensive 

suite of automated tests. Only changes that successfully pass all these tests are incorporated into the 

main codebase. This ensures the health of the project. The tests can be found on the GitHub page and 

additional test suggestions are accepted and encouraged. 

Case Study #1: Exploratory Solvent Search 
An essential use of AIMSim is for catalyst discovery and solvent search. The latter case is illustrated here. 

The data is taken from Wang et al. [46]. The authors screened 2214 organic solvents for reactive 

extraction of HMF (5-hydroxylmethylfurfural), a platform chemical produced in the acid-catalyzed 

dehydration of hexoses, in biphasic organic-water systems. The authors obtained the log (water- 

candidate molecule) partition coefficient of HMF from the ADFCRS-2018 database using the ADF 

COSMO-RS software package.  

It is essential to visualize the “information richness” of the dataset. A diverse set is preferred to 

maximize the information and avoid wasting time and resources investigating similar molecules of no 

practical interest. AIMSim provides a priori diversity identification. For this use case, we utilize the 

Morgan fingerprint (radius 3)[16] and the Tanimoto similarity measure. Figures 4a and 4b show the 

correlation in QoI (log(water-candidate molecule) partition coefficient of HMF). The high linear 

correlation in the responses of nearest neighbors (Pearson coefficient of 0.78, Figure 4a) and the low 

correlation of furthest neighbors (0.02, Figure 4b) illustrate that this measure works, i.e., molecules 

grouped as similar have correlated responses.  



Figure 4c shows the 2-dimensional embedding of the dataset visualized by AIMSim using the MDS 

algorithm. Figure 4d shows the results of clustering this dataset using AIMSim’s hierarchical clustering 

functionality. Two distinct clusters are identified and can be separating out in the lower dimensional 

embedding generated by AIMSim. While these clusters separate out in low dimensions, note that these 

clusters are not immediately apparent from a visual inspection of the low dimensional embedding in 

Figure 4c. This is due to the high dimensional nature of fingerprints and highlights the importance of 

clustering. Plots generated by AIMSim showing number of molecules in each cluster and distribution of 

QoI for molecules in each of the clusters are shown in Figure S1. 

Finally, we run a simulated example of a typical solvent search scenario. The authors of the work note 

that the phenolic group of the solvents lead to a higher HMF partition coefficient with water. Thus, 

solvents with phenolic groups should be better for reactive extraction of HMF. Thus, we run a target 

search of the simplest such solvent (phenol) against the dataset. In general, since the study was used for 

screening good solvents, we would expect that phenol to have a high degree of similarity with the 

dataset. In fact, phenol was studied by the authors. Using it as a query molecule is done for illustrative 

purposes to mimic the situation when a collection of molecules with favorable properties are known and 

a new molecule that resembles this molecule set is sought. In such a case, a high-throughput in-silico 

search over multiple candidates can be made using AIMSim. Only the SMILES string (or some other 

structural identifier) of the candidates is needed. As a control, we also run a target search using 

ammonia, a molecule which we expect to be very different from the solvents studied in the work. 

Figure 4e shows the results of running a target search using ammonia. The pairwise similarity density is 

strongly peaked around 0 indicating that the solvents are all very different from ammonia. Figure 4f 

shows the results of running a target search using phenol. The pairwise similarity distribution now has a 

heavy tail away from zero indicating that the solvents in general are similar to phenol (with those in the 

extremes of the tail being very similar to phenol). Thus qualitatively, we can conclude that phenol is 

similar to the collection of solvent molecules. AIMSim also displays the structures of molecules which 

are most similar and least similar to the query. In Figure 4g and h, the structures for the most and least 

similar molecule to the target molecule (phenol) as generated by AIMSim are shown. The most similar 

molecule (Figure 4g) to phenol is of course phenol itself (since the authors had included phenol in their 

dataset) and the least similar molecule (Figure 4h) is a branched saturated fluoroalkane which is clearly 

very different from a phenolic compound. 



 

Figure 4. AIMSim analysis of solvents for biphasic extraction of 5-hydroxymethylfurfural. Data from [38]. a-b) Parity between log 
partition coefficient of (a) nearest neighbor and (b) furthest neighbor solvents using the Morgan fingerprint and Tanimoto 

similarity measure. c) Low dimensional embedding of the dataset using the MDS algorithm. D) Low dimensional embedding 
generated after the clustering using the complete linkage agglomerative hierarchical clustering algorithm. Two distinct clusters 
of molecules are shown. e-f) Target analysis of the dataset using AIMSim using e) N (ammonia) target SMILES. and f) phenol. g-

h) Structure of the most similar (g) and most dissimilar (h) molecule to the target.  



Case Study #2: Substrate Scope Diversity Verification 
When proposing a novel reaction, it is essential to evaluate the transformation’s tolerance of diverse 

functional groups and substrates [6]. This collection of molecules is conventionally referred to as the 

substrate scope, or more often, simply the scope. Using AIMSim, one can evaluate the structural and 

chemical similarity across an entire scope to ensure that it avoids redundant examples and is sufficiently 

diverse prior to experimentation to avoid unnecessary and expensive work. Using existing literature data 

paired with AIMSim, one can evaluate if a novel substrate not included in a given scope is similar to any 

substrates assessed. 

Figure 5 is an example of a similarity heatmap and a distribution generated by AIMSim for published 

chemical data. The data is retrieved from Chen and coworkers’ copper-catalyzed three-component 

sulfonamide synthesis [47]. In their work, an aryl- or alkenyl-boronic acid and a substituted amine were 

simultaneously coupled to a sulfone to yield the sulfonamide, essential for pharmaceuticals and 

agrochemicals. To evaluate the functional group tolerance and overall applicability of the proposed 

transformation, they created 104 products, each composed of a unique combination of amine and 

boronic acid coupling partners. These products are compared using the Rogers-Tanimoto distance and 

the Morgan fingerprint, the default configuration for AIMSim. 

 

Figure 5. Similarity heatmap (a) and similarity distribution (b) for Chen’s three-component sulfonamide synthesis substrate 
scope. 

 

 

As shown in the heatmap, the prominent region of high similarity near the diagonal corresponds to 

substrates presented sequentially in the publication with only minor structural differences, such as a 

different aryl-methyl substitution pattern. In the bulk of the heatmap, and more obviously in the 

similarity distribution, most samples have a similarity of approximately 0.2-0.4. This matches 

expectations, as the substrate scope was constructed by allowing one partner in the coupling to vary at 

a time.  



AIMSim can verify that an additional sample for this dataset would be sufficiently diverse to make it 

worth investigating. Shown schematically in Figure 6 and Figure 7, AIMSim can quickly identify which 

members of a given dataset already evaluated are most similar, indicating if the new one is unexplored. 

For the examples, the proposed additions include a variation on the aryl-halide substituent and an 

increase in the amine ring size, extensions provided in the original scope. 

 

Figure 6. Proposed addition to the dataset and its most similar pre-existing example. 

 

Figure 7. Substantially different potential addition to the scope and the most similar substrate already evaluated. 

As shown above, AIMSim identifies another phenyl-halide functionalized substrate when queried with 

the bromide species. This is an obvious conclusion to a practicing chemist, though it can be supported 

with data and be tractable on too large datasets for human inspection. When presented with what 

seems to be a highly different species in Figure 7, AIMSim identifies a cluster of methoxy groups as the 

most similar. This unlikely pairing may stem from similar steric behavior by the two species. Still, given 

the low similarity score, it would be advisable to investigate it on the lab bench. The morpholine 

fragment, a common feature in the substrate scope, is identified as most similar to the 1,5-oxazocane, 

which matches expectations. 

Case Study #3: Generational Library Diversity Verification 
Generative Neural Networks (GNNs) have seen increasing use in virtual high throughput screening in the 

last few years for evaluating novel targets. Their general purpose is to ‘create’ new molecules digitally 

for subsequent evaluation via molecular docking or machine learning. For hypothetical molecules to be 

of any use, they must be sufficiently different from existing examples to explore unknown chemical 

space. Tools, such as MOSES, set out to quantify various performance metrics for generated molecule 

sets [1], including similarity score distributions. AIMSim extends this effort by providing a more readily 

accessible and human interpretable representation of molecular diversity, accessible through a GUI, 

while also including a richer feature set.  



One dataset analyzed by MOSES was generated using the Hidden Markov Model, referred to as the 

HMM dataset. This collection includes more than 10,000 individual molecules represented as SMILES 

strings. MOSES reports various scalar descriptors for this dataset, such as the Validity and Uniqueness, 

and while these are informative, they are inherently reductive. AIMSim instead provides a distribution of 

similarity density based on comprehensive pairwise comparisons, as illustrated in Figure 8. 

 

Figure 8. Similarity density for the HMM dataset provided by MOSES [1] and available in AIMSim. 

It is now clearly visible that this generative model created a diverse dataset. There is a substantial area 

of the distribution with similarity below 0.2, i.e., most of the species share only 20% similarity to other 

examples in the dataset. This representation also reveals a large spike in similarity around 0.35 and a   

similar spike at 1 (perfect similarity). The former may be attributed to cases as those presented in Use 

Case #2 above, where one component of a larger substrate is being altered at a time. The peak at 

perfect similarity indicates that the generative model returns a non-zero number of identical or nearly 

identical molecules. AIMSim provides numerous molecular descriptors and similarity metrics, creating 

further avenues to ensure proper performance. 

Multiprocessing 
Execution time becomes a concern on datasets of this order of magnitude due to the underlying 

algorithm for comparisons being of O(𝑛2) complexity. To handle the large size of generative data sets, 

AIMSim implements multiprocessing and sampling techniques to reduce execution time. Using the 

multiprocess Python library [48], any number of processes can be spawned to divide the task of 

comparing molecules. Because much of the execution time is spent on performing molecular 

comparisons, the continued addition of processes is highly efficient with speedup in excess of 90% on 

datasets of 500 or more molecules, as shown in Figure 9. Table S2 includes more extensive testing. All 

molecules are retrieved from the combinatorial dataset of similar size to generative datasets, provided 

as part of MOSES and reproduced in AIMSim. 



 

Figure 9. Speedup efficiency for molecular sets of different sizes. 

With sufficiently sized datasets, the costs associated with multiprocessing and performance gains 

become substantial. Minimal efficiency and speedup on small datasets are expected due to the 

computational expense of spawning and joining processes. Warnings are included in the documentation 

to prevent multiprocessing on unsuited datasets, and AIMSim includes an automatic configuration 

option which uses the heuristics above to estimate if multiprocessing will result in faster execution and 

then configure itself accordingly. 

Conclusions 
AIMSim is a completely open-source cheminformatics software designed for code-free utilization as well 

as a Python package for more specialized programmatic usage. From a user-friendly graphical user 

interface, AIMSim can calculate similarity density distributions, similarity heatmaps, single-molecule 

database comparisons, and dimensionality reductions to facilitate research in various fields. Nearly 50 

common distance metrics used in cheminformatics are available via AIMSim, as well as a host of 

molecular fingerprints and descriptors. AIMSim’s full parallelization, supporting multiprocessing 

capabilities, greatly boosts performance. Thus, AIMSim can tractably analyze large-scale datasets typical 

in machine learning applications. With speedups greater than 90% on datasets with 500 or more 

molecules, the diversity of generative models can be verified on a molecule-by-molecule basis. 

Code Availability 
AIMSim is freely available on its GitHub project page (https://github.com/VlachosGroup/AIMSim) along 

with detailed user documentation (https://vlachosgroup.github.io/AIMSim/). A limited version of 

AIMSim can also be run in a browser. Details can be found on the GitHub page. 
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