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A novel application to determine stability constants from supramolecular titration experiments is presented. The focus lies on NMR
titration and ITC experiments for pure 1:1 systems, as well as mixed 2:1/1:1, 1:1/1:2 and 2:1/1:1/1:2 systems. SupraFit provides global
and local fitting and a global search tool. Statistical methods are implemented and can be applied to analyse the results of nonlinear
regression. Monte Carlo simulations, combined with the percentile methods and F-Test approaches to calculate confidence intervals are
supported. The implemented statistical approaches are illustrated and discussed on model functions. All methods are accessible through
an intuitive user interface, providing charts for all (kind of) data produced. SupraFit is written in C++, using the Qt Toolkit for the
Graphical User Interface (GUI) and the Eigen library for nonlinear regression and is released under the GNU Public License (GPL).

1 Introduction
After the work of Pederson, Lehn and Cram in the second half of
the 20th century (nobel prize in 1987 “for their development and
use of molecules with structure-specific interactions of high se-
lectivity”), supramolecular chemistry has become a popular field
of research. The experimental determination of association con-
stants utilising supramolecular titration experiments plays a big
role in the analytical zoo of this research area. Several software
packages have been written in the last three decades, each having
its own strength and weaknesses. In times of open science, open
data and open source software, some of these older software solu-
tions might be considered as not state-of-the-art. The most recent
tool for supramolecular titration experiments has been developed
by the group of Thordarson and is available via www.supramolec-
ular.org (last checked 17.01.2022) as online service. As a matter
of taste, someone could prefer online tools to offline applications
and vice verse. As an alternative to the older offline applications
and as well as to the online tools, a newly written software pack-
age for supramolecular titration experiments called SupraFit is
reported.

SupraFit is written in C++ utilising the Qt Software Develop-
ment Toolkit1 and the Eigen Library.2 SupraFit is mainly devel-
oped for NMR titration and ITC experiments, providing methods
to globally and locally analyse 1:1, 2:1/1:1 and 1:1/1:2 com-
plexes out of the box. Fully statistical analysis based on Monte
Carlo simulation and F-Test approaches with a good scaling on
multicore systems are implemented as well as an intuitive user
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interface to deal with several models on single data sets. Due to
being open source, own models can be implemented in the source
code, with all functionality eg. statistical analysis being provided
for the new models.

2 Software
Several packages already exist for the analysis of NMR titrations
or ITC data, some of them did not receive updates or improve-
ments recently. Additionally, these programs may provide sta-
tistical analysis, which are not always comparable to each other
as they are based on different theories. A third point is the ad-
vantage of software to run on different operating systems (OS)
or even being independent of an OS, although Windows systems
dominate the PC market.

In the last decade, the idea of open source software, as well as
open data has evolved, and more scientific software is not only
freely usable but the source code is published under the terms
of an open source licences, such as GPL or3 MIT.4 In contrast to
SupraFit, the available open source programs are mainly focused
on computational chemistry and chemoinformatics.5–8

Some common tools used to analyse supramolecular titration
experiments will be listed in the next section, however without
any claim to completeness.

2.1 NMR Titration

WinEQNMR, initially a DOS program called EQNMR, has
been written by M. J. Hynes9 and is available for Win-
dows systems. WinEQNMR provides methods for pro-
tonation equilibria, hydrolysis of metal ions or stabil-
ity of metal complexes. An archive containing the bi-
naries was freely downloadable at http://www.nuigal-
way.ie/chem/Mike/wineqnmr.htm. However the website is
not available any more, but can be accessed via the wayback
machine (https://web.archive.org/web/20210518005317-
/http://www.nuigalway.ie/chem/Mike/wineqnmr.htm). The
password protected archive containing the program is not
available via the wayback machine service.

HypNMR10 is part of the Hyperquad software package devel-
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oped Sabatini, Vacca and coworkers, providing tools for different
methods such as NMR titration, ITC and spectrophotometry. Hyp-
NMR runs on Windows system and information on how to obtain
the software are available upon request.‡ The most recent version
according to their website (http://www.hyperquad.co.uk/hyp-
nmr.htm, last checked 17.01.2022) is HypNMR2018, without
pointing out the differences to the older versions.

M. Maeder and P. King founded Jplus Consulting in 2009 and
provide a software packages called ReactLab to analyse and simu-
late for example equilibrium titrations and kinetics. The software
is based on a combination of MatLab and Excel and is available
for purchase. More information can be found on their official web
site: (https://jplusconsulting.com (last checked 17.01.2022).

Open Data Fit11 is a collection of online services provided by P.
Thordarson, where titration data can be analysed. The service can
be accessed at http://opendatafit.org (last checked 17.01.2022).
For now, supramolecular experiments12 and a demo version for
cell viability13 are available. The kinetics service is under con-
struction.14 BindFit, the part focusing on supramolecular titra-
tion, was initially provided as free MatLab scripts included in the
tutorial review by Thordarson 2011.15 The latest version sup-
ports analysis of NMR and UV/VIS titration of typical 1:1, 2:1
and 1:2 systems, with the python source code being available
at https://github.com/echus/supramolecular-apps (last checked
17.01.2022). New features such as Monte Carlo simulation based
statistics are announced for future versions.

2.2 ITC
NanoAnalyze is available from TA Instruments, that assem-
ble and sell instruments for several analysis (thermal, mi-
crocalorimetric and rheologic analysis). NanoAnalyze is freely
available for Windows systems, provides several binding mod-
els, analysis of thermograms and statistics based on Monte
Carlo simulations. It can be obtained from their web-
site https://www.tainstruments.com/itcrun-dscrun-nanoanalyze-
software (last checked 17.01.2022).

Harms et al.16 released pytc (python itc) as open source
software, built on top of python3 to analyse ITC data, having
the most important binding models already implemented. The
project is hosted on GitHub: https://github.com/harmslab/pytc
(last checked 17.01.2022). Since it is written in python3, other
models can easily be added. Statistical methods like F-Test or
Information Criterion17–20 methods are implemented and can
be used to determine the performance of the models. An
graphical user interface using PyQt5 can be downloaded sep-
arately at https://github.com/harmslab/pytc-gui (last checked
17.01.2022).

SEDFIT and SEDPHAT form a program package to
globally analyse ITC data (gITC), with powerful statis-
tical analysis based on Monte Carlo simulations or the
F-Test approach.21 It is freely available at https://sed-
fitsedphat.nibib.nih.gov/software/default.aspx (last checked

‡ See http://www.hyperquad.co.uk/index.htm for more information on how to obtain
parts of the Hyperquad software products.

17.01.2022), however other systems apart from windows are not
supported. Thermogram analysis can be performed with NITPIC
(http://biophysics.swmed.edu/MBR/software.html last checked
17.01.2022) from Keller et al.22 and then imported into SEDFIT.

3 Supramolecular Titrations
The theory of complexation and supramolecular titration is al-
ready reviewed in articles by Thordarson,15,23 as well as in text
books like Analytical Methods in Supramolecular Chemistry24 but
the main aspects will be summarised here:

3.1 General Approach

Starting from the general mass balance equations (eq. 1 and
2) for a two-component system, the relationship between the
concentration of two components [A] and [B] can be described
through the cumulative stability constants (eq. 3). For exam-
ple individual stability constants for a system with two complex
species AaBb defined with a = b = 1 and a = 2,b = 1 read as in
equation 4.

[A]0 =
l,m

∑
a=0
b=0

aβab[A]
a[B]b (1)

[B]0 =
l,m

∑
a=0
b=0

bβab[A]
a[B]b (2)

βab =
l,m

∏
a=0
b=0

Kab (3)

K11 =
[AB]
[A][B]

K21 =
[A2B]
[A][AB]

(4)

Depending on the values for l and m, e.g. the stoichiometry of
molecules of A and B that are involved in forming the complex,
different systems can be described. SupraFit reports all stability
constants as individual logarithmic constants lgK, in contrast to
other software that may report them as plain stability constants
K in M−1 or as cumulative constants β .

3.2 Determining stability constants

The determination of association constants with titration exper-
iments is based on the idea, that each component influences
the response signal: Assuming a linear relationship between the
amount of species and the response signal, equation 5 can be
formed, where each component Xi contributes to the overall sig-
nal y by a factor Yi.

y = ∑
i

Yi[X ]i (5)

3.2.1 NMR Titration

Upon performing 1H-NMR titration, the chemical shift of specific
protons bound to X (eg. receptor) changes during complexation
due to non-covalent interactions with another component. De-
pending on the kinetics of the complex formation, fast and slow
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exchange can be observed. SupraFit, as most of the other applica-
tions, can only handle fast exchange, where the observed signal
is the weighted average of all signals of the specific proton in the
components, e.g. the shift of a proton assigned to the isolated
receptor and one to the complex.

Since the relative change of the chemical shifts is of interest, it
is defined as the ratio of each component to the reference com-
ponent: in following case using the first component. Equation 5
reads for NMR titration as follows:

∆δ = ∑
i

δi
[X ]i
[X ]0

(6)

On the other hand, for the slow exchange, for each component
a signal for the specific proton can be observed, where the inten-
sity is related to the amount of the species.25

3.2.2 UV/VIS Titration

In the UV/VIS titration, the overall absorbance is the sum of the
individual extinction coefficient εi multiplied by concentration of
each component. The equation holds true for low concentrations
that fulfill Lambert-Beers Law.

Aabs = ∑
i

Aabs,i = ∑
i

εi[X ]i (7)

3.2.3 ITC

General aspects

The basic part of isothermal titration calorimetry is the observa-
tion of the change of heat due to a complex formation in a re-
action cell while keeping the temperature constant. The guest
component B is sequentially added to a solution of the host com-
ponent A. Details on that method can be found in literature
of Freire,26,27 in Analytical Methods of Supramolecular Chem-
istry28 by Schmidtchen, as well as in reviews by Thordarson.15,29

The basic ITC equation 8 describes a sum over all formed com-
plex species multiplied with corresponding heat of formation. In
contrast to NMR and UV/VIS titrations, the pure host signal does
not contribute to the observed heat. At the current state, SupraFit
only makes use of models, that are of fixed stoichiometry and
equal to the well known NMR titration models, that are sum-
marised in section 3.3. Furthermore, SupraFit handles titration
experiments with both, a fixed-volume set up as well as a set up
with variable volume.

Q =V ∑
i

∆Hi[X ]i (8)

Handling dilution effects

Since upon each injection of B the concentration of B itself
changes, an amount of signal can be lead back to a heat of di-
lution (Qd), that cannot be neglected. Assuming a linear relation-
ship between the concentration of B and the response heat signal,
one can use equation 9 to add blank effects to the experiment (eq.

10), as done for example in pytc.16

Qd,i = mδ [Bi]+nδ (9)

Q =V ∑
i

∆Hi[X ]i +mδ [Bi]+nδ (10)

As a consequence, different approaches to deal with the dilu-
tion can be realised using SupraFit:

1. Using equation 10, two parameters are introduced (mδ and
nδ ) and fitted alongside with the stability constants and the
heat of formation to the experimental titration curve. An
additional blank experiment does not have to be performed.

2. The two blank parameters (mδ and nδ ) are obtained from
an independent dilution experiment and are added as fixed
terms to equation 10.

3. The result of the independent dilution experiment is sub-
tracted from the titration experiment and which is used to
fit the parameters in equation 8 afterwards.

4. The blank parameters are fitted to a blank experiment and
the titration simulaneously, while the stability constants and
the heat of formation are fitted to the titration experiment
only (eq. 10).

Thermogram handling

SupraFit provides ready-to-use thermogram integration functions
with elementary baseline corrections for *.itc and plain thermo-
gram files consisting of columns with time and heat per time, re-
spectively. The baseline is separately calculated for each peak as a
linear function, where the integration range can be adjusted man-
ually. In case of very unregular baselines, different software pack-
ages may be more sufficient, such as NITPIC or software provided
by the hardware supplier. After integration using third party soft-
ware, the plain data can be processed with SupraFit.

3.3 1:1 Model
The simplest form of complexes with two components are the 1:1
complexes (a = 1, b = 1), which are formed according to equation
11. K11 denotes the step-wise complex formation constant. The
approach is sketched in Appendix B, resulting in equation 12.

A+B −−⇀↽−− AB K11 =
[AB]
[A][B]

(11)

0 = K11[AB]2 − [AB](K11[A]0+

+K11[B]0 +1)+K11[A]0[B]0 (12)

Using the solution of [AB] from the quadratic equation 12 all re-
maining concentrations can be calculated according to the mass-
balance equation. The resulting equations for 1:1 models used in
SupraFit are summarised in Table 1 with only the shifts of the host
and the complex are taken into account. Signals of component B
are ignored. For UV/VIS this holds true if the component is not
UV/VIS active at the selected wave length.
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Table 1 Equations used in 1:1 models

Method Equation

NMR δcalc = δA
[A]
[A]0

+δAB
[AB]
[A]0

UV/VIS AAbs,calc = εA[A]+ εAB[AB]

ITC Qi =V
(
[AB]i − [AB]i−1 · (1−

v
V
)

)
·∆HAB

Table 2 Equations used in 2:1/1:1 models

Method Equation

NMR δcalc = δA
[A]
[A]0

+δAB
[AB]
[A]0

+2δA2B
[A2B]
[A]0

UV/VIS Aabs,calc = εA[A]+ εAB[AB]+2εA2B[A2B]

ITC
Qi =V (

(
[AB]i − [AB]i−1 · (1−

v
V
)

)
·∆HAB+

+

(
[A2B]i − [A2B]i−1 · (1−

v
V
)

)
·∆HA2B)

3.4 2:1/1:1 Model
A model of 2:1/1:1 stoichiometry is defined through the following
relationship:

A+B −−⇀↽−− AB K11 =
[AB]
[A][B]

(13)

A+AB −−⇀↽−− A2B K21 =
[A2B]
[A][AB]

(14)

The stepwise stability constants K11 and K21 combine to the cu-
mulative association constants as follows:

K11K21 =
[AB]
[A][B]

[A2B]
[A][AB]

=
[A2B]
[A]2[A]

= β21 (15)

The solution for the concentration of A is given in equation
47 in the appendix.15 The corresponding equations to describe a
2:1/1:1 model used within SupraFit are summarised in Table 2,
with the guest molecule being silent. In case of ITC experiments,
2:1/1:1 are not used regularly, but have already been reported.30

3.5 1:1/1:2 Model
The 1:1/1:2 system is defined through following law of mass ac-
tion:

A+B −−⇀↽−− AB K11 =
[AB]
[A][B]

(16)

AB+B −−⇀↽−− AB2 K12 =
[AB2]

[AB][B]
(17)

The concentration of unbound guest can be calculated anal-
ogously to the 2:1/1:1 systems using equation 50,15 where the
free host concentration can be determined using the mass-balance
equations for 1:1/1:2 system.

Having the free and complexed host concentrations, the signals
are calculated in SupraFit using the equations in Table 3, with the

guest molecule being silent.

Table 3 Equations used in 1:1/1:2 models

Method Equation

NMR δcalc = δA
[A]
[A]0

+δAB
[AB]
[A]0

+δAB2
[AB2]

[A]0
UV/VIS Aabs,calc = εA[A]+ εAB[AB]+ εAB2 [AB2]

ITC
Qi =V (

(
[AB]i − [AB]i−1 · (1−

v
V
)

)
·∆HAB+

+

(
[AB2]i − [AB2]i−1 · (1−

v
V
)

)
·∆HAB2 )

3.6 2:1/1:1/1:2 Model

The last titration model implemented in SupraFit is the mixed
model with 2:1, 1:1 and 1:2 species.

A+B −−⇀↽−− AB K11 =
[AB]
[A][B]

(18)

AB+B −−⇀↽−− AB2 K12 =
[AB2]

[AB][B]
(19)

AB+A −−⇀↽−− A2B K21 =
[A2B]
[AB][A]

(20)

The solution of this system is defined by the mass-balance equa-
tion

[A]0 = [A]+β11[A][B]+β12[A][B]2 +2β21[A]2[B] (21)

[B]0 = [B]+β11[A][B]+2β12[A][B]2 +β21[A]2[B] (22)

The mass balance equation can be simplified and reads as:

[A]([B]) = (2β21[B]) · [A]2 +(β12[B]2 +K11[B]+1) · [A]− [A]0 (23)

[B]([A]) = (2β12[A]) · [B]2 +(β21[A]2 +K11[A]+1) · [B]− [B]0 (24)

The solution to this equilibrium system is obtained using an
iterative procedure: The initial concentrations are guessed as

[A] = min([A]0, [B]0)/10

[B] = B([A]) (according to eq. 24)

followed by the calculation of [A] and [B] with then equation 23
and 24. The calculations are repeated until the change in the
equilibrium concentrations reaches a threshold. Alternatively to
this algorithm, methods to solve any equilibria system based on a
Gauss-Newton optimisation have been published.31 A Levenberg-
Marquardt optimisation has been tested in SupraFit, but was dis-
abled.§

§ During Monte Carlo simulations the Levenberg-Marquardt optimisation was not as
efficient as the approach described above. However, a detailed benchmark was not
prepared.
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Table 4 Equations used in 2:1/1:1/1:2 models

Method Equation

NMR δcalc = δA
[A]
[A]0

+δAB
[AB]
[A]0

+2δA2B
[A2B]
[A]0

+δAB2
[AB2]

[A]0
UV/VIS Aabs,calc = εA[A]+ εAB[AB]+2εA2B[A2B]+ εAB2 [AB2]

Qi =V (

(
[AB]i − [AB]i−1 · (1−

v
V
)

)
·∆HAB+

ITC +

(
[A2B]i − [A2B]i−1 · (1−

v
V
)

)
·∆HA2B)

+

(
[AB2]i − [AB2]i−1 · (1−

v
V
)

)
·∆HAB2 )

Cooperativity

Cooperative effects describe increasing or decreasing step-wise
bindings constants in multi-step systems and have been dis-
cussed in the literature.29,32,33 Following the notation of Thordar-
son,11,15,29 four different types can be distinguished: full, nonco-
operative, additive and statistical. These models can be applied
to 2:1 and 1:2 complex species in the mixed models in SupraFit.
The different kinds of relationship that can be set up in the model
options are summarised in Table 5.

Table 5 Different cooperative binding models define the relationship of
the estimated model parameters. The relationships are taken from Hib-
bert and Thordarson, 2016. 11 K2 refers to either K12 or K21, depending
on the stoichiometry of the complex. Similar, δ∆2 refers to the signal of
either the 2:1 or 1:2 species, whereas δ∆1 denotes the 1:1 species

model K δ

full K1 6= 4K2 δ∆2 6= δ∆1

noncooperative K1 = 4K2 δ∆2 6= δ∆1

additive K1 6= 4K2 δ∆2 = δ∆1

statistical K1 = 4K2 δ∆2 = δ∆1

3.7 Michaelis-Menten Theory

Michaelis-Menten theory is usually used to describe how the rate
r of an enzymatic reaction, that transforms a substrate S to a
product P (eq. 25), depends on the amount of substrate S0.34

E+S
k1−−⇀↽−−

k−1
ES

ES
k2−−⇀↽−−

k−2
E+P (25)

The rate is defined as

r =
vmax ·S
KM +S

(26)

At high concentrations of S, the rate r tends towards vmax. A lin-
earised form of the Michaelis-Menten equations, the Lineweaver-
Burke form (eq. 27), is usually used to determine KM and vmax.

1
r
=

KM

vmax

1
S
+

1
vmax

(27)

SupraFit provides a model to determine KM and vmax using non-
linear regression. The starting guess is calculated using eq. 27.

3.8 Nonlinear least-squares regression

The set of unknown parameters θ , that are used to describe the
relation of the independent data x and the experimental data yexp

(eq. 28), have to be adjusted to minimise the sum of squared
errors (SSE, eq. 29). In case of NMR titrations θ corresponds
to the stability constants and chemical shifts each component, x
to the concentrations and y to the observed chemical shifts. In
connection with ITC experiments θ refers again to the the stabil-
ity constants as well as the heat of formation and optional to the
dilution parameters. The integrated peaks of the a thermogram
form y and the concentrations remain to be the independent pa-
rameters x.

For the nonlinear problem, the Levenberg-Marquardt Algo-
rithm35,36 as implemented in Eigen, is used.

ycalc,i = f (θ ,xi)+ ei (28)

SSE = ∑
i
(yexp,i − ycalc,i)

2 = ∑
i

e2
i → 0 (29)

yexp,i denotes the experimentally observed value at i, ycalc,i the
estimation of the observed value according to the model parame-
ter and ei the residual at each data point. The parameters θ are
henceforth referred as to θ̂ in case they are the best-fit param-
eters after least-squares optimisation. Characterisation of the fit
can be realised using the standard deviation of the residuals σ f it

(eq. 30), SEy (eq. 31) and χ2 (eq. 32):15

σ f it =
∑i e2

i
N −1

(30)

SEy =
∑i e2

i
N − k

(31)

χ
2 =

∑i e2
i

N − k−1
(32)

SEy is the corrected standard deviation with respect to the num-
ber of parameters (k) in the applied model.

4 Features
4.1 General

An introduction to SupraFit is not reported in that article, it can
be found in the SupraFit Quickstart,37 however the main aspects
will be summarised: The SupraFit package contains two bina-
ries, the suprafit.exe binary providing the graphical user interface
(GUI) and suprafit_cli.exe providing command line interface. The
GUI comes with all basic functionalities for loading and saving
data sets as well as thermogram integration in case of ITC experi-
ments. Most of the results obtained with SupraFit are provided as
adjustable charts and text information, where the diagrams can
be exported to *.png files. Many charts presented in this arti-
cle were exported directly from SupraFit, the remaining charts,
mainly the boxplots, are LATEX and TikZ based. A screenshot of
the main window can be found in Fig. 1.

SupraFit reads simple Table files as well as *.itc files. For the
later, the thermogram import is straight forward. Additionally,
data simulation and basic experimental planning are available
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Fig. 1 Screenshot of the main window with the dialog box to import thermograms open.

with the current functions. More details on the usage of SupraFit
are available in the quickstart, that can be downloaded on the
GitHub webpage at https://github.com/conradhuebler/SupraFit.

4.2 Technical aspects and implementation

SupraFit is written in C++ relying on the C++14 standard and
should be compilable on every platform, that is supported by
Qt and Eigen. The model implementation makes use of object-
oriented programming to easily implement new models. It is out
of the scope of this article to deal with the detailed implementa-
tion, but a short summary will be given:

The source code is separated into four parts: (1) the core com-
ponents containing the models, source code for optimisation and
collected mathematical tools. Statistical analysis is implemented
in the second part (2). Both parts, (1) and (2), are independent
of any user interface and provide the functionalities for the pure
command line application suprafit_cli.exe (3) and the graphical
user interface suprafit.exe (4).

The core part holds the functionality to store the experimen-
tal data (DataClass), that is realised using a shared data pointer.
Model preparation is done in the abstract class AbstractModel, that
is based on that DataClass. Therefore, each implemented model
inherits from AbstractModel and DataClass, respectively (Fig. 2).
In the specific model implementation, the equations of the model
and the number of input parameters have to be defined, as well
as the names of each parameter. More details can be found in the
source code documentation for the AbstractModel, AbstractTitra-
tionModel and Michaelis-Menten-Model.37

Parallelisation is mostly done using the threads concept util-
ising QThreadPool and QRunnable, but individual parts use
openMP. Data storage is done using the JSON Format (*.json) or
Zip compressed JSON (*.suprafit).

4.3 Statistical tools and further analysis

4.3.1 Confidence Intervals

Parameter (θ) estimation is the main question in regression, as
it allows the rational analysis and comparison of data sets and
experiments. Yet the knowledge of θ is often not sufficient for
rational analysis,38 as the best fit values may differ for several
performed experiments. The confidence interval of a parameter
θi estimates the range [θi,−,θi,+], within which the true param-
eter θ̃i can be expected. However, the standard approach used
in (multiple) linear regression cannot be applied for non-linear
problems. SupraFit provides two basic routes to approximate the
confidence interval, both being described in the literature before.
Explicit references will be given in each section. One of the goals
of this article and SupraFit regarding the statistical tools is not to
have one correct way to calculate confidence intervals, but rather
present the already known techniques, provide an easy way to
access those and show some examples on how these methods can
be applied to parameter estimation problems.

4.3.2 Confidence Intervals by Monte Carlo simulations and
percentile method

A powerful tool, that is used in many fields of science is the
Monte Carlo simulation.39 It has already been applied to both
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QObject

DataClass
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AbstractTitrationModel AbstractItcModel Michaelis-Menten-Model
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Blank Model Monomolecular Kinetics

legend

green box: Qt class
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red box :
abstract class with
pure virtual func-
tions

Fig. 2 Inheritance relationship in SupraFits model implementation. To implement a new model, a C++ class has to be derived from AbstractModel
class and the most important virtual functions have to be implemented.

ITC and NMR titration apart from confidence calculation.40–42

The application to calculate confidence intervals has been re-
ported for titration experiments by Thordarson15 and in gen-
eral by Motulsky and Christopoulos.43 The confidence intervals
from Monte Carlo simulations are obtained using the percentile
method, which has been discussed alongside with resampling
methods by Efron.38 Efron noted, that the section dealing with
confidence intervals ”is highly speculative in content.”38

The basic idea of the Monte Carlo approach is to theoretically
repeat the performed experiment several times (T ). A single the-
oretic step is being realised by adding a random error εi to ycalc,i

and then obtain a new set of data mimicking the original experi-
mental data including realistic errors. These data can be used to
estimate a new set θ . Performing these steps T times is denoted
as Monte Carlo (MC) simulation within this context.

Two main approaches to define the errors ε are implemented in
SupraFit, (a) they are calculated from the standard normal distri-
bution ε ∈ N(µ = 0,σ2) or (b) randomly chosen from the absolute
errors obtained after the successful fit (ε ∈ e). The later will be
called bootstrapping (BS) in SupraFit and may be interpreted as a
mixture of a typical Monte Carlo simulation and resampling tech-
nique. Bootstrapping is one of the resampling plans discussed by
Efron.38,44 More recent discussions and problems using the boot-
strapping method can be found in Canty et al.45 and in Efron and
Hastie.46

The applied standard deviation σMC in approach (a) can be
taken from the SEy, σ f it or as manually defined value, where SEy

is the default choice as proposed by Motulsky and Christopoulos
since it is the corrected standard deviation (eq. 31). The 1− 2α

confidence interval for each model parameter is then calculated
using the percentile method:

θi,− = ˆCDF−1
(α) θi,+ = ˆCDF−1

(1−α) (33)

which results in the 95% confidence interval if α = 0.025. In
SupraFit, this is realised by collecting all model parameters for
each Monte Carlo step and then take α · T and (1−α) · T entry

of the ordered list of the corresponding parameter. More ad-
vanced percentile methods, which are available in octave or R,
are not implemented, so for a smaller number of T the results
differ from those obtained with the standard approach using the
quantile function in octave or R.¶ More robust methods will be im-
plemented in future releases. Efron proposed 2000 steps as min-
imum for bootstrapping methods,46 which is taken as standard
for all Monte Carlo simulations in conjunction with the percentile
method. Since Monte Carlo simulations are parallelised,|| it bene-
fits from the multicore architecture of modern desktop computers.
Monte Carlo results are then reported as histogram-like charts as
printed in Fig. 3. The box represents the 95% confidence interval,
the dash-dotted line the estimated parameter. The individual bins
are not plotted as typical bars but rather as a line-plot.

Fig. 3 Standard representation of a histogram-like chart obtained after
performing a Monte Carlo simulation.

Alternatively to the variation of ycalc, Thordarson proposed the
variation of input data, which are the initial concentrations of
host and guest molecules in case of NMR titration.15 This deriva-
tion can be performed alongside with standard Monte Carlo simu-

¶ See https://octave.org/doc/v4.0.1/Descriptive-Statistics.html. Last visit
17.01.2022.

|| Monte Carlo simulation are spawned across the threads, that roughly each thread
performs T/NT hreads optimisation.
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lations. To the best of the authors knowledge confidence interval
calculations have not been reported for this derivation, however
percentiles can be calculated in the same way.

4.3.3 Confidence Intervals using the F-Test approach

The F-Test approach to confidence intervals has first been pro-
posed by Box47 and Beale,48 and further outlined by Beechem49

as well as Bates and Watts.50 Taking the least-squares estimated
set of parameters θ̂ , the confidence interval then includes all val-
ues θ that are equal to the best-fit estimation θ̂ . This can be
formulated as following hypotheses H0 : θ = θ̂ and the alternative
HA : θ 6= θ̂ . The decision is based on the F-Test (eq. 34), where
the ratio of SSE(θ) and SSE(θ̂) has to be smaller than the value,
that defines the (1−α)·100% confidence interval.51

SSE(θ)−SSE(θ̂)
SSE(θ̂)

≤ K
N −K

Fα
N,N−K (34)

SSEmax = SSE(θ)≤ SSE(θ̂) ·
(

1+Fα
N,N−K

K
N −K

)
(35)

In equation 34, K refers to the number of parameters, N to the
number of data points and Fα

N,N−K to the critical value in the F-
distribution for the given degrees of freedom and desired confi-
dence interval. A graphical interpretation is given in Fig. 4. The
sum of squares has a minimum at SSE(θ̂) and can be decreased
to θi,− or increased to θi,+ while the error is smaller than SSEmax.

θ̂i

SSE(θ̂)

SSE

SSEmax

θi,− θi,+

parameter value θ

Fig. 4 Graphical interpretation of the F-Test approach. The confidence
interval [θi,−,θi,+] is not necessarily symmetric.

At least two different approaches to the F-Test are mentioned
in the literature (a) the Weakened Grid Search15,49 (WGS) and
(b) Model Comparison (MOC).11,43 Keller at al.52 published
an Excel-Guide to apply the F-Test to Michaelis-Menten Kinet-
ics using the Weakened Grid Search. SupraFit provides both ap-
proaches to the F-Test, that will now be introduced:

Weakened Grid Search

Having K parameters to be analysed, the first θi is changed by
small δθ

** and then fixed, while the remaining θ j 6=i are optimised.
The parameter θi is changed again by δθ and the θi 6= j parameters
are estimated anew. This is to be repeated as long as SSE(θ) is
smaller than SSEmax and therefore H0 is not rejected. This pro-
cedure is performed for all parameters in the same manner and
all θ that satisfy equation 35 define the confidence region.15 In
SupraFit some additional parameters are introduced to control
the procedure, like the maximum number of steps, the step size
and the convergence threshold for the sum of squares. A com-
prehensive list is given in the manual of SupraFit and a short de-
scription of each parameter is shown as tooltip in the SupraFit
program. Obtained results are graphically presented as shown in
Fig. 5, where one parameter was analysed. The dash-dotted line
indicates the estimated value θ̂i and the solid line indicates the
obtained sum of squares for each variation of θi while θi 6= j are
being optimised. Only values where the error is smaller than the
threshold are plotted. The Grid Search is parallelised, so that for
each parameter θi two processes independently evaluate either
θi,− or θi,+.

Fig. 5 Sample representation of the Weakened Grid Search result.

Model Comparison

An alternative way to the F-Test approach is denoted as Model
Comparison. During MOC calculations θi is varied by an amount
of δθ while the remaining θi6= j are not optimised, but system-
atically varied to fullfill equation 35. The parameter θi is then
again changed by δθ and the remaining θi 6= j are varied to meet
the condition in equation 35. This is repeated until the change
of θi disobeys equation 35. After performing this approach for
all K parameters, the limits of the confidence region can be
extracted from all obtained values of θi as θi,− = min(θi) and
θi,+ = max(θi).43 Assuming that there is only one parameter to
be optimised, applying WGS and MOC as described in Motul-
sky and Christopoulos,43 both methods perform similarly: θk will
be varied by ±δθ until SSE(θk) reaches the maximum possible
SSE and the tuple (θk,+,θk,−) correspondence to the confidence
interval. This approach of continuously varying one parame-
ter is implemented in SupraFit as Simplified Model Comparison

** δθ is both, positive and negative so that θi is tested for values smaller and greater
than θ̂i.
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(SMOC). Like WGS, the Simplified Model Comparison benefits
from multiple processes, since each parameter is evaluated in a
single thread.

Instead of systematic variation, SupraFit provides the Model
Comparison as Monte Carlo experiment just like the calculation of
an arbitrary area: Uniform random numbers are generated within
defined boundaries for every θi, where these random parameters
are stored if SSE(θ) meets equation 35. The confidence inter-
val is then defined by the minimum and maximum values for all
θ . The implementation works as follows: Simplified Model Com-
parison is applied to each parameter and the confidence interval
[θ SMOC

i,− ,θ SMOC
i,+ ] is obtained. The intervals are scaled by variable

parameters, which define a rectangular box in case of two vari-
ables, a cuboid for three parameters etc. (dash-dotted box in Fig.
6). Uniform random numbers are generated within the interval
defined by the box and checked if they obey equation 35. If they
do, the parameters are kept, otherwise they are discarded. An
ideal confidence interval is represented in Fig. 6 as red ellipsoid,
with the maximum values for θ1 and θ2 form the limits of the
confidence interval. Similar to previous methods, Model Compar-

(θ̂1, θ̂2)

θ2

θSMOC
2,+

θSMOC
2,−

θSMOC
1,− θSMOC

1,+

θ1

θ2,+

θ2,−

θ1,− θ1,+

Fig. 6 Calculation of the confidence interval using the Model Comparison
and the Monte Carlo approach. Random values of θ1 and θ2 are generated
within the dash-dotted boundaries. If SSE(θ1,θ2) meet equation 35, the
parameters are kept.

ison is parallelised, where amount of Monte Carlo steps is equally
divided across the threads.

4.3.4 Resampling Methods

Cross Validation (CV) is a powerful tool, applied for example in
QSAR in conjunction with principal component selection.53 In
SupraFit, CV will be applied to determine the sufficiency of the
used model. Another method, not yet described and applied to
supramolecular titration experiments is called ”Reduction Analy-
sis.” Both methods will be introduced in a subsequent article, that
focuses on a statistical approach to analyse binding stoichiometry.

4.4 Linear Regression Tool
SupraFit provides a linear regression tool for experimental data,
that can be used to fit several linear functions to experimental

data. The data points are continuously divided: In case of three
functions, the first function is fitted using the first n1...ni data
points, the next functions uses the next ni+1...n j data points and
the last functions uses the remaining n j+1...nN data points. The
maximal number of functions is N/2, where each function is de-
scribed by two points. The currently implemented method tests
all available combinations and returns an ordered list. One field
of use will be shown for NMR titration, to create Mole Ratio plots.
Another application will be shown within the ITC examples.

4.5 Global fitting

Programs like pytc or SEDFIT provide methods to perform a global
fit,16,21 that is to fit a single set of parameters to more than one
experiment. In that fashion, analysing several signals in NMR
titrations is already a global fit,15 since one formation constant
is connected to two or more signals. While a global fit for NMR
titration is straightforward, combining several ITC experiments is
performed with MetaModels in SupraFit. MetaModels are empty
container models, that can hold and manage real models. Model
parameters can be handled individually or any in combination
thereof. However, the first approach is identical to a local fit. Sta-
tistical analysis or global search can be performed on MetaModels
in the same way as on simple models. An example of MetaModels
will be discussed in the ITC section.

5 Examples
5.1 Model function with uncorrelated and correlated param-

eters

Uncorrelated parameters

An example using a function with two uncorrelated parameters θ1

and θ2 is used to illustrate the preceding aspects of the statistical
analysis. The function in equation 36 acts on the element m of
the vector having M elements:

f (θ1,θ2) =

{
θ1x2 ∨

m < M/2

θ2x2 ∨
m ≥ M/2

(36)

Thus, θ1 acts on the first half of the interval while θ2 acts on the
second half. Depending on the values for θ , the function is dis-
continuous at m=M/2. In the range of {0.05,0.05+0.05, ...,1.95−
0.05,1.95} with θ1 = 1.8801 and θ2 = 7.4043, after adding a ran-
dom error (ε ∈ N(0,0.25)), the function (eq. 36) is drawn in Fig.
7.

The 95% confidence intervals using F-Test based methods ap-
plying the (Simplified) Model Comparison and Weakened Grid
Search approach are given in Table 6. Both have been applied to
either parameters individually (MOCa, WGSa) or to both (MOCb,
WGSb)) together. The F-Test confidence intervals are effectively
the same, independent of the approach, with some numerical dif-
ferences due to step size during the evaluation. Using Monte
Carlo simulation (ε = SEy) with the percentile method, the con-
fidence interval is much narrower than these obtained with the
F-Test approach. Those differences were already pointed out by
Motulsky and Christopoulos.43

The variation of the individual parameters θi by ±δθ ,i and the
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(a) (b) (c) (d)

Fig. 7 Representation of (a) a sample function with two uncorrelated parameters and (b) the added normal distributed error as well as the variation
of θ and the corresponding SSE during the (c) Simplified Model Comparison and (d) Weakened Grid Search.

Table 6 95% Confidence Intervals obtained after Simplified Model Com-
parison (SMOC), Weakened Grid Search (WGS), Model Comparison
(MOC) and Monte Carlo simulation (MC). aBoth parameters are anal-
ysed individually. bBoth parameters are analysed at the same time.

[θ1,−,θ1,+] [θ2,−,θ2,+]

SMOC 1.3674 - 1.9157 7.3429 - 7.4381

MOCa 1.3680 - 1.9151 7.3429 - 7.4381

MOCb 1.3680 - 1.9151 7.3430 - 7.4380

WGSa 1.3676 - 1.9156 7.3435 - 7.4375

WGSb 1.3675 - 1.9157 7.3429 - 7.4381

MC 1.4217 - 1.8433 7.3543 - 7.4230

corresponding SSE for SMOC and WGS are shown in Fig. 7(c)
and 7(d). In both charts, the series show a parabolic trend, indi-
cating that the SSEmax can be reached during variation.

The correlation coefficient for θ1 and θ2 and the scatter plots
(Fig. 8) after MOC, WGS and MC clearly indicate that there is
no dependency between both parameters, which is in agreement
with the given function. The obtained correlation coefficient for
θ1 and θ2 is 3.6 ·10−5 after Model Comparison. Using WGS the ac-
cepted values for θ1 and θ2 show a correlation coefficient of zero.
The lines display two sets of accepted values for θ1 and θ2, where
one parameter is not affected by changing the other. The model
parameters after Monte Carlo simulation indicate no correlation
(R2 = 1.9 ·10−4) as well, but the pairs of θ1 and θ2 do not form a
complete ellipse as obtained after Model Comparison. However,
in case of functions or models with uncorrelated parameters the
implemented F-test based approaches lead to practically identi-
cal results, which differ from the Monte Carlo simulation based
results.

Correlated parameters

A function where θ1 and θ2 are not independent is given in equa-
tion 37. The same input data are used as in previous example,
where θ1 = 4.8321 and θ2 = 8.5912. Random error (ε ∈ N(0,0.25))
is added to simulate experimental noise.

f (θ1,θ2) = ld(θ1) · ld(θ2) · x2 +
ld(θ1)

x
+ ld(θ2) · x (37)

The corresponding diagrams are plotted in Fig. 9, including the
graphical interpretation of the SMOC and WGS approaches.

The confidence intervals, that are calculated similarly to the
previous example, are summarised in Table 7: SMOC and MOCa

result in the same confidence interval, and MOCb and both WGSa

and WGSb result in the same confidence intervals, however dif-
ferent from the first one. This is expected, since SMOC and MOCa

take only one parameter into account and fix the remaining, while
MOCb and WGS take both parameters into account. The con-
fidence intervals after Monte Carlo simulation are narrower than
the WGS/MOCb confidence intervals, but broader than the SMOC
and MOCa intervals.

Table 7 95% Confidence intervals obtained after Simplified Model Com-
parison (SMOC), Weakened Grid Search (WGS), Model Comparison
(MOC) and Monte Carlo simulation (MC). aBoth parameters are anal-
ysed individually. bBoth parameters are analysed at the same time.

[θ1,−,θ1,+] [θ2,−,θ2,+]

SMOC 4.7583 - 4.8601 8.5829 - 8.8463

MOCa 4.7583 - 4.8601 8.5830 - 8.8463

MOCb 4.7164 - 4.9037 8.4773 - 8.9618

WGSa 4.7160 - 4.9038 8.4760 - 8.9620

WGSb 4.7160 - 4.9030 8.4766 - 8.9616

MC 4.7381 - 4.8816 8.5294 - 8.9031

The graphical interpretation of SMOC and WGS are shown in
Fig. 9(c) and 9(d). While all series again show a parabolic trend,
the series for θ1 or θ2 differ slightly for both methods. The cor-
relation between θ1 and θ2 can be analysed using the correlation
coefficient and the scatter plots as shown in Fig. 10. Apart from
the different confidence intervals, the ellipsoid after MOC is ro-
tated with respect to the ellipsoid in Fig. 8a and correlation can
be observed (R2 = 0.70). The scatter plot after WGS shows two
lines again, where each line is assigned to the variation of one
parameter. The correlation coefficient indicates a strong corre-
lation (R2 = 0.98), which however is an artefact since only the
best-fit values are included but not all possible values that obey
equation 35. Monte Carlo simulation on the other hand leads to a
similar scattering of the parameters and a very similar correlation
coefficient (R2 = 0.70).

Having two parameters (θk and θl) and performing WGS for
only one parameter θk, the F-Test confidence interval for the cor-
responding parameter is obtained since θ j is always adjusted.
However, performing the MOC and limiting it to one parameter
θk, the confidence interval will always be smaller or equal to the
correct F-Test confidence interval, since at SSE(θ MOC

k ) = SSEmax

there is still the other parameter θl to be adjusted. If there is no
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(a) MOC, R2 = 3.62 ·10−5 (b) WGS, R2 = 2.77 ·10−51 (c) MC, R2 = 1.88 ·10−4

Fig. 8 Scatter plots after confidence calculation using (a) Model Comparison, (b) Weakened Grid Search and (c) Monte Carlo simulation for the
model with uncorrelated parameters.

(a) (b) (c) (d)

Fig. 9 Representation of (a) a sample function with two correlated parameters and (b) the added normal distributed error as well as the variation of
θ and the corresponding SSE during the (c) Simplified Model Comparison and (d) Weakened Grid Search.

(a) MOC, R2 = 0.70 (b) WGS, R2 = 0.98 (c) MC, R2 = 0.70

Fig. 10 Scatter plots after confidence calculation using (a) Model Comparison, (b) Weakened Grid Search and (c) Monte Carlo simulation for the
model with correlated parameters.
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correlation between θk and θl , both parameters can be varied in-
dependently of each other and the F-Test confidence interval of
the Simplified Model Comparison and WGS are equal.

5.2 Linear Regression

In case of linear models, the (1-α) confidence intervals can be
calculated with standard software like Excel or similar spread-
sheet programs as well as statistical software like R. In Table 8,
we report the confidence intervals for a linear model using the
t-distribution approach calculated using Gnumeric54 as well as
the approaches for non-linear models implemented in SupraFit.
The data used were obtained adding ε ∈ N(µ = 0,0.01) to a lin-
ear model y = θ1x+θ2 with θ1 =−820.000 and θ2 =−0.333 (Fig.
11). The least-squares estimated parameters are θ1 = −787.551
and θ2 =−0.334.

(a)

(b)

Fig. 11 Representation of (a) a linear function and (b) the added normal
distributed error.

The non-linear F-Test based confidence interval differs much
from the smaller linear t-distribution bases interval. Monte Carlo
simulation with T = 50000 steps was performed as bootstrapping
and using SEy and σ f it as input standard deviation. The BS con-
fidence interval is the smallest and the interval using SEy is the
widest, since SEy > σ f it . However, the obtained confidence inter-
vals after Monte Carlo simulations are very close to the one calcu-
lated with the linear approach, being only slightly smaller. Using
SEy as ε for Monte Carlo simulation recovers the linear approach
best.

5.3 NMR Titration

To demonstrate the application of SupraFit in case of NMR titra-
tion, example calculation on an artificial NMR titration with a

Table 8 95% Confidence Intervals obtained after Linear Regression,
Weakened Grid Search and Monte Carlo simulation (T = 50000).

[θ1,−,θ1,+] [θ2,−,θ2,+]

linear [ -846.7845 , -728.3161 ] [ -0.3408 , -0.3280 ]
WGS [ -861.9370 , -713.1640 ] [ -0.3424 , -0.3264 ]

Monte Carlo simulations
SEy [ -845.0710 , -729.5970 ] [ -0.3406 , -0.3282 ]
σ [ -844.3855 , -730.3190 ] [ -0.3406 , -0.3282 ]
BS [ -843.3700 , -732.0910 ] [ -0.3404 , -0.3283 ]

1:1/1:2 binding stoichiometry were performed. The stability
constants to set up the experimental data were chosen to be
lgK11 = 3.81 and lgK12 = 2.14 The chemical shifts can be found in
the supporting information. The individual shifts are not meant
to represent a realistic example. A random error obtained from
a normal distribution with ε ∈ N(µ = 0,0.001) was added after-
wards, where every single signal has the same σ , therefore e.g.
signal 6 (∆δ = 2.3038 ppm) and signal 7 (∆δ = 0.2441 ppm) have
both the same random error. The “experimental” titration curve
can be found in Fig. 12(a). The four possible models (1:1,
2:1/1:1, 1:1/1:2 and 2:1/1:1/1:2) were tested without cooper-
ative relationships.

Mole Ratio Plot

Using SupraFits linear regression method with two functions,
Mole Ratio plots can easily be generated. Since the typical plots
exhibit the chemical shift on the x axis and the ratio on the y
axis, the plots obtained using SupraFit differ from the “standard”
plots. However, as the chemical shifts depends on the ratio and
not vice versa, SupraFit provides only the “non-standard” way.
The plot can be found in Fig. 12(b). For each series, all possible
intersections of adjacent linear functions are calculated. The re-
sult for the best fit, that fit minimising the sum over all SSE, is
listed in the supporting information. The intersections of the two
functions per signal ranges between 1.13 and 1.27, indicating a
system that exhibits 1:2 species. This is in accordance with the
stoichiometry of the original model.

Fitted parameter

The resulting stability constants (lg K) after optimisation are
printed in Table 9, statistical judgements using SSE and SEy can
be found in Table 10. The titration curve as well as the remaining
absolute errors can be found in Fig. 13. The complex formation
constants for the correct model differ only slightly from the initial
ones. The easier 1:1 model estimates a lgK11 that is too small,
as happens upon fitting the 2:1/1:1 model. The most complex
model resamples lgK11 and lgK12, but the incorrect model param-
eter lgK21 is realistic. Some of the chemical shifts in the 2:1/1:1
are smaller than zero (δA2B,1 =−6.6334 ppm), indicating a change
in the chemical shift up to 13 ppm (δAB,1 = 6.5565 ppm). A full list
of all parameters can be found in the example file in the SupraFit
repository at GitHub.

The “visual inspection” as described by Hynes,9 can be per-
formed using the charts in Fig. 13(c) and 13(d), where all ab-
solute errors are plotted in Fig. 13(c) and the errors only from
the 1:1/1:2 model and 2:1/1:1/1:2 model are plotted in Fig.
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(a)

(b)

Fig. 12 (a) Simulated titration curves with lgK11 = 3.81 and lgK12 =

2.14 and seven observed signals. (b) The Mole Ratio plots show an
intersection of two linear functions at a molar ration between 1.0 and
1.5.

Table 9 Estimated lg K values for the applied 1:1, 2:1/1:1, 1:1/1:2 and
2:1/1:1/1:2 models

model lgK21 lgK11 lgK12

true model 3.8100 2.1400

1:1 3.0991

2:1/1:1 1.7448 2.6694

1:1/1:2 3.8092 2.1090

2:1/1:1/1:2 1.9893 3.8063 2.0429

13(d). Clearly the 1:1 model perform worst, followed by the
2:1/1:1 model, with both having heteroscedastic errors. The re-
maining two models are optically indistinguishable with both er-
rors being homoscedastic.†† Considering the resulting SSE, the
decision towards the correct model can already be made, since
SSE1:1/1:2 ≈ SSE2:1/1:1/1:2 and 3 ·SSE1:1/1:2 < SSE1:1.15 Comparing
SSE of the fitted 1:1/1:2 model and the correct model show the
slightly smaller error for the optimised model.

Table 10 The sum of squared errors (SSE) as well as σ and SEy after
testing four models on the simulated data set. aNot calculated, since
this model is not fitted to the data

model parameter SSE SEy σ

fitted

1:1 15 0.036459 0.017078 0.016196

2:1/1:1 23 0.001761 0.003878 0.003560

1:1/1:2 23 0.000132 0.001062 0.000975

2:1/1:1/1:2 31 0.000127 0.001077 0.000954

fitted 1:1/1:2 23 0.000132 0.000983 0.000975

correct 1:1/1:2 - 0.000165 -a 0.001088

5.3.1 Monte Carlo Confidence Intervals

Following the strategy of the Monte Carlo simulation, the intro-
duced error can be calculated from the standard normal distribu-
tion with (a) a defined variance or (b) via bootstrapping. To test
the influence of different approaches on the confidence interval,
a set of simulations were performed on the given dataset with
the optimised 1:1/1:2 model. The standard normal distributed
errors were generated with σMC = SEy, σMC = σFit , σMC = 1e−3,
σMC = 2e−3, σMC = 3e−3 and σMC = 5e−3. Monte Carlo simula-
tion with T = 100, 200, 300, 500, 700, 1000, 1500, 2000, 2500,
3000 and 5000 steps were performed, where each simulation was
repeated 300 times. The 95% confidence interval was then char-
acterised by the median and standard deviation of the 0.95 inter-
percentile ranges (IPR) for these 300 Monte Carlo simulations.

The boxplots and the standard deviation of the 0.95 IPR val-
ues for the stability constants lgK11 and lgK12 after the Monte
Carlo simulation are reported in Fig. 14 and show expected be-
haviour: With increasing steps T, the observed standard deviation
of the IPR decreases. The same trend is visible for the other Monte
Carlo simulations including BS (see Fig. S7 - S13). With increas-
ing step count the IPR converges to the ideal IPR that could be
obtained after an infinite number of steps. As Efron stated,46 at
least 2000 steps are required for the bootstrap method to obtain
reliable results. However, since every Monte Carlo step requires
the least-squares estimation of θ , this approach is demanding. As
shown in Fig. 15, Monte Carlo simulation scales well with the
number of threads used and benefits from Hyperthreading tech-
nology.‡‡ Therefore, accurate Monte Carlo simulation with 2000

†† This is expected as they resample the original normal distributed random numbers.
‡‡ The benchmark was obtained on a i9-7920X CPU with 12 cores overlocked to

4.00GHz, using openSUSE 15.0 Leap. SupraFit was compiled using gcc 7.4.1.
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(a) (b) (c) (d)

Fig. 13 (a) Chemical shifts and fitted curves using an 1:1/1:2 model (lgK11 = 3.81 and lgK12 = 2.11) and (b) the resulting absolute errors. (c)
The absolute errors for all four models are plotted in one chart, showing that the 1:1 model and 2:1/1:1 performe worse than the 1:1/1:2 and the
2:1/1:1/1:2 model. (d) Both models, 1:1/1:2 and 2:1/1:1/1:2, show similar residuals.

steps can easily be obtained within minutes even on a desktop
computer with fewer cores.

As shown in Fig. 16 the confidence intervals obtained from 300
Monte Carlo simulations with each simulation performed with
5000 steps using BS or random errors and different σMC differ. As
σMC increases, the confidence interval gets broader and standard
deviation of the IPR increases. However, the differences between
bootstrapping and random error with σMC = σ f it are very small
but since the Kruskal-Wallis-test results in a p-value = 0.002 <
0.05 for lgK11 and p = 0.023 < 0.05 for lgK12, the differences
are significant for the given example. The corresponding plots for
lgK12 are presented in Fig. S14.

5.3.2 Correlation of lgK11 and lgK12

Since the current NMR titration model has more than two param-
eters, the correlation of lgK11 and lgK12 will be analysed either
neglecting or taking the parameters, e.g. the chemical shifts, into
account. Therefore, a Monte Carlo simulation with σMC = SEy

and T = 10000, two runs of Weakened Grid Search, the first only
for lgK11 and lgK12 and the second for all parameters and Model
Comparison for lgK11 and lgK12 were performed. The scatter
plots for lgK11 vs lgK12 are shown in Fig. 17 and the confidence
intervals are given in Table 11.

Table 11 95% Confidence Intervals obtained after Weakened Grid Search
(WGS), Model Comparison (MOC) and Monte Carlo simulation (MC).
aOnly lgK11 and lgK12 where analysed and ball parameter were analysed.

[lgK11,−, lgK11,+] [lgK12,−, lgK12,+]

WGSa 3.698 - 3.926 1.935 - 2.242
WGSb 3.697 - 3.927 1.934 - 2.243
MC 3.773 - 3.846 2.059 - 2.155
MOC 3.801 - 3.818 2.104 - 2.114

The first two charts show the scattering of the complex forma-
tion constants after applying the Weakened Grid Search, where
Fig. 17(a) contains only two series, since only two parameters
were tested. However, the chart in Fig. 17(b) shows more than
two series, as all parameters were taken into account. Incorporat-
ing more parameters, the correlation coefficient drops from 0.80
to 0.74 since more points from the original series are available.
However, the high correlation is an artefact as already pointed
out in the example of the function with correlated parameters in
the previous section. The scatter plot after Monte Carlo simula-
tion in Fig. 17(c) shows an ellipsoid, with the parameters having

a correlation coefficient of 0.37. On the other hand, using Model
Comparison with only taking two parameters into account, one
obtains a complete ellipsoid, which however is rotated with re-
spected to the Monte Carlo ellipsoid and to the series obtained
after Weakened Grid Search (Fig. 17(d)). Therefore, naive Model
Comparison leads to wrong results regarding confidence intervals
and the ellipsoid, if correlated parameters are ignored.

5.4 Isothermal titration calorimetry

The ITC data used in the following section are taken
from the pytc-demo. The complex formation of Calcium
with EDTA (see https://github.com/harmslab/pytc-demos, last
checked 17.01.2022) where reported by Harms et al.16 to demon-
strate the pytc tool. The heat is given in cal and cal/mol. In the
first part, the initial guess of the parameters in case of a 1:1 model
are described, since a good starting point for the non-linear re-
gression is essential.

The f x value, the inflection point of the titration curve,55 is
guessed by fitting three non-overlapping linear functions to the
isotherm. The guessed f x value is then obtained as mean of the
intersection of first with the second function and the second with
the third function (Fig. 18). The heat of formation is calculated
using the heat of the third injection Q2,3 divided by the change in
concentration of the added guest [B] component. It is assumed,
that at the start of the titration the concentration of the formed
complex is nearly the same as the added guest concentration since
[B] � [A]. The stability constant is then calculated using the bi-
section method within the limits of 1 ≤ lgK11 ≤ 10. The initial
guessed parameters of the 1:1 model are applied to the models of
mixed stoichiometries as well. See Table S2 for the comparison
of the initial guessed and fitted parameters for the hepes data.

Global Fit

MetaModels were used to globally fit lgK11 and δHAB to the data
of hepes-01, hepes-02 and hepes-03 from the pytc-demo that are
followed by Monte Carlo simulation to estimate the confidence
intervals. These results were then compared to the confidence in-
tervals obtained from Monte Carlo simulations for the individual
experiments. The obtained parameters and the confidence inter-
vals using Monte Carlo simulation (σMC = SEy, 5000 steps) are
listed in Table 12. While the globally estimated lgK11 is nearly the
mean of the individual models (7.595), the IPR for lgK11 can not
be approximated by the mean of the individual IPR (0.065). The
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Fig. 14 Variation and standard deviation of the IPR for lgK11 and lgK12 after several Monte Carlo simulations with σMC = SEy = 1.062 ·10−3.
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4.00GHz (12 physical cores, overclocked) with and without Hyperthread-
ing (HT).
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Fig. 16 IPR of lgK11 for several Monte Carlo simulations (300 runs, each
run with T = 5000 steps) with different approaches to define the value
of ε.

same holds true for the enthalpy of complexation, where the av-
erage parameter is −4.621 kcal/mol and the average IPR is 0.057.
The estimated parameters from pytc and SupraFit are the same.

Table 12 Estimated parameters with pytc and SupraFit for hepes-01,
hepes-02 and hepes-03 and the global models with the 95% confidence
intervals. In SupraFit, MC derived confidence intervals were obtained
using σMC = SEy and 5000 steps. The IPR is given in round brackets.

lgK11 [lgK11,−, lgK11,+] ∆HAB [∆HAB,−,∆HAB,+]

kcal
mol

pytc 7.594 [ 7.580 , 7.607] -4.621 [-4.633 , -4.610]
MM 7.594 [7.573 , 7.614] (0.041) -4.621 [-4.640 , -4.603] (0.037)

01 7.567 [7.546 , 7.587] (0.040) -4.613 [-4.630 , -4.595] (0.035)
02 7.604 [7.562 , 7.646] (0.084) -4.668 [-4.706 , -4.630] (0.076)
03 7.614 [7.579 , 7.651] (0.072) -4.582 [-4.612 , -4.553] (0.059)

Dilution

The same example data set from pytc was used to analyse the ef-
fect of the dilution experiments on the parameter estimation. The
four approaches, described in section 3.2.3, were applied: As first
approach (1) the titration was analysed with dilution correction,
included according to equation 10 but without referring to any
external blank titration. Including dilution using another experi-
ment was realised as follows: (2) An external blank titration was
used to estimate the two dilution parameters mδ and nδ in equa-
tion 10, which were included and kept constants while lgK11, ∆H
and f x were obtained. The third parameter estimation (3) was
performed using equation 8 after the blank experiment was sub-
tracted from the complexation experiment. In the last experiment
(4) the dilution and the complexation experiment were combined
as MetaModel. Therefore mδ and nδ were estimated using the di-
lution and the titration experiment globally, while lgK11, ∆H and
f x were estimated locally, using only the data from the titration
experiment. The corresponding isotherm and blank experiment
are shown in Fig. 19, the estimated parameter for hepes-01 are
listed in Table 13. The heat observed from the dilution exper-
iment is very small, compared to the heat from binding experi-
ment. Fig. S15 contains the three isotherms and dilution experi-
ments for the hepes-01, imid-01 and tris-01 data sets. See Tables
S3 - S5 for all best fit values as well as the confidence intervals of
the parameters lgK11 and ∆HAB.

Monte Carlo simulation with 20000 steps and σMC = SEy were
performed, the corresponding boxplots for lgK11 and ∆HAB in case
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(a) Weakened Grid Search with only
lgK11 and lgK12 included, R2 = 0.80

(b) Weakened Grid Search with all pa-
rameters included, R2 = 0.74

(c) Monte Carlo simulation, R2 = 0.37 (d) Model Comparison with only lgK11

and lgK12 included, R2 = 0.24

Fig. 17 The resulting scatter plots for lgK11 and lgK12 differ for various statistical approaches.

Fig. 18 The initial value for fx is guessed using three linear functions.

(a) Titration and dilution experiment

(b) Linear fit for the dilution experiment, R2 = 2.88 ·10−4

Fig. 19 Isotherms for the complexation experiments and the dilution.
Data are taken from hepes-01 of the pytc-demo. 16

Table 13 Estimated parameters lgK11 and ∆H with the IPR and standard
deviation of the confidence intervals calculated via Monte Carlo simula-
tion using hepes-01 data set and different dilution strategies

lgK11 ∆H [kcal/mol]
IPR σ IPR σ ·10−3

none 7.565 0.054 0.014 -4.608 0.016 3.939
(1) 7.567 0.039 0.010 -4.613 0.035 9.037
(2) 7.625 0.110 0.028 -4.529 0.029 7.593
(3) 7.599 0.180 0.046 -4.532 0.051 12.822
(4) 7.619 0.108 0.027 -4.534 0.039 10.110

of hepes-01 are shown in Fig. 20. Boxplots including all param-
eters and the data sets imid-01 and tris-01 can be found in the
supplementary information in Fig. S16 - S20.

In the hepes-01 data set, the differences between neglecting the
dilution and strategy (1) are very small in case of the estimated
values for lgK11 and ∆HAB. However, Monte Carlo simulations
reveal, that there is an influence on the confidence intervals. For
both, imid and tris data, the differences between the estimated
parameters (lgK11 and ∆H) and the corresponding confidence
intervals comparing the neglected dilution and strategy (1) are
much more intense (see Fig. S16 and S17). The results after
explicitly including the dilution experiment in the parameter es-
timation following the three remaining approaches show that all
three methods result in different best-fit parameters as compared
to none dilution and strategy (1). However, the Monte Carlo sim-
ulations indicate, that the subtraction of the results of the hepes
blank experiment deteriorates the statistical parameters of the ob-
tained values for lgK11 and ∆H compared to strategy (2) and (4).
In the imid and tris data sets, similar broadened confidence in-
tervals as indicated by IPR and σ were not observed (see Table
S16 and Fig. S17). This can be explained by using the correlation
coefficient for the linear fit of the dilution experiment (Fig. 19(b)
and Fig. S15), where R2 is worst for hepes (R2 = 2.88 ·10−4) and
better for imid (R2 = 1.58 ·10−3) and tris (R2 = 6.52 ·10−3) dilution
data.

It was demonstrated, how the influence of various approaches
to include blank experiments can be analysed using Monte Carlo
simulation. In the present example, the obtained parameters only
change on a very small scale, e.g. the heat of complexation varies
in scales of less than 0.5 kcal/mol due to the small heat of di-
lution. This may however not be true in general and statistical
post-processing can help to understand the obtained results more
deeply.
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Fig. 20 Boxplot of (a) lgK11 and (b) ∆H values obtained from Monte
Carlo simulations performed on the hepes-01 data sets with different
dilution strategies tested.

6 Conclusion
A new graphical program to perform non-linear regression with
focus on the calculation of stability constants by means of NMR
titration and ITC experiments has been presented. The software
is written in C++, using the Qt Toolkit and the Eigen library and

is fully open source and therefore transparent regarding the un-
derlying mathematics and algorithms. Additionally to the pure
estimation of the various physical parameters, that are used to
describe the complexation process, statistical analysis can be per-
formed to obtain confidence intervals for each single parameter
and to gain a deeper insight in the performed experiments. The
adoption of several techniques are reported, which are already
described in the literature (Monte Carlo simulation and F-Test ap-
proaches), however the routinely usage of these approaches has
not been reported yet. We hope, that SupraFit provides a good ba-
sis to analyse titration experiments with respect to the statistical
judgement and to further improve the insight in the supramolec-
ular systems. We additionally aim to provide SupraFit as easy-
as-necessary and as powerfull-as-possible regarding the usability
of the user interface, that all the tools brought by SupraFit are
straightforwardly accessible. Contributions like new models or
statistical post-processing are welcome.

The source code and binaries of SupraFit can be obtained free
of charge from the GitHub repository at https://github.com/con-
radhuebler/SupraFit.
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Appendix
Appendix A: abbreviation and symbols

[A] concentration of component A
[A]0 initial concentration of component A
[B] concentration of component B
[B]0 initial concentration of component B
[X ] concentration of any component
K11 step-wise stability constant for a 1:1 complex
K21 step-wise stability constant for a 2:1 complex
K12 step-wise stability constant for a 1:2 complex
β21 stability constant for a 2:1 system
β12 stability constant for a 1:2 system
y observed signal or physical property, dependent data
Y proportionality factor linking concentration with y
δ observed chemical shift
Aabs observed absorbance
εi extinction coefficient
V cell volume
v inject volume
Q observed heat
∆H heat of formation
mδ , nδ linear coefficients in blank experiments
E enzyme
S substrate
P product
KM Michaelis-Menten constant
vmax maximum reaction rate
r reaction rate
θ parameter in general
θ̂ estimated parameter / best-fit parameter
θ̃ true value
[θ−,θ+] confidence interval, range within θ̃ is expected to be
IPR inter-percentile range
x independent data
yexp experimental data
ycalc (re)calculated experimental data using θ̂

SSE sum of squared errors
e residual, error: (yexp − ycalc)
ε random error
σ f it standard deviation of the residuals
SEy standard error
χ2 chi-squared error
T number of Monte Carlo steps
σMC standard deviation used to set up Monte Carlo simulations
N(µ,σ2) normal distribution with mean µ and standard deviation σ

µ mean of normal distribution
σ standard deviation of normal distribution
α probability
K number of parameters
N number of data points
FN,N−K critical value in the F-distribution
δθ increment to change θ during WGS and MOC
WGS Weakened Grid Search
MOC Model Comparison
MC Monte Carlo simulation
BS Bootstrapping

Appendix B: Equilibrium equations
Systems of 1:1 stoichiometry

A+B −−⇀↽−− AB (38)

K11 = β11 =
[AB]
[A][B]

(39)

[A]0 = [A]+β11[A][B] = [A]+ [AB] (40)

[B]0 = [B]+β11[A][B] = [B]+ [AB] (41)

K11 =
[AB]

([A]0 − [AB]) · ([B]0 − [AB])
(42)

0 = K11([A]0 − [AB]) · ([B]0 − [AB]))− [AB] (43)

0 = K11[AB]2 − [AB](K11[A]0 +K11[B]0 +1)+K11[A]0[B]0 (44)

Systems of 2:1/1:1 stoichiometry

With the mass balance equations

[A]0 = [A]+ [AB]+2[A2B] (45)

= [A]+β11[A][B]+2β21[A]2[B]

[B]0 = [B]+ [AB]+ [A2B] (46)

= [B]+β11[A][B]+β21[A]2[B]

follows the concentration of unbound host:15

0 = [A]3A+[A]2B+[A]C− [A]0 (47)

A = K11K21

B = K11(2K21[B]0 −K21[A]0 +1)

C = K11([B]0 − [A]0)+1
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Systems of 1:1/1:2 stoichiometry

The mass balance equations are formed similarly to the other sys-
tems, with β12 = K11K12

[A]0 = [A]+ [AB]+ [AB2] (48)

= [A]+K11[A][B]+K11K12[A][B]2

= [A]+β11[A][B]+β12[A][B]2

[B]0 = [B]+ [AB]+2[AB2] (49)

= [B]+K11[A][B]+2K11K12[A][B]2

= [B]+β11[A][B]+2β12[A][B]2

0 = [B]3A+[B]2B+[B]C− [B]0 (50)

A = K11K12

B = K11(2K12[A]0 −K12[B]0 +1)

C = K11([A]0 − [B]0)+1

Systems of 2:1/1:1/1:2 stoichiometry

The solution of that system is defined by the mass-balance equa-
tion

[A]0 = [A]+ [AB]+ [AB2]+2[A2B] (51)

= [A]+K11[A][B]+K11K12[A][B]2 +2K21K11[A]2[B]

= [A]+β11[A][B]+β12[A][B]2 +2β21[A]2[B]

[B]0 = [B]+ [AB]+2[AB2]+ [A2B] (52)

= [B]+K11[A][B]+2K11K12[A][B]2 +K21K11[A]2[B]

= [B]+β11[A][B]+2β12[A][B]2 +β21[A]2[B]

References
1 Qt-Toolkit: https://www.qt.io/ 17.01.2022.
2 Guennebaud, Gaël and Jacob, Benoît and others, Eigen v3,

http://eigen.tuxfamily.org, 2010.
3 GNU General Public License: http://www.gnu.org/li-

censes/gpl.html 17.01.2022.
4 The MIT License: https://opensource.org/licenses/mit-

license.php 17.01.2022.
5 M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch,

E. Zurek and G. R. Hutchison, J. Cheminf., 2012, 4, 17.
6 M. Brehm and B. Kirchner, J Chem Inf Model, 2011, 51,

2007–2023.
7 M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P.

Straatsma, H. J. Van Dam, D. Wang, J. Nieplocha, E. Apra,
T. L. Windus et al., Comput. Phys. Comm., 2010, 181,
14771489.

8 N. M. OBoyle, M. Banck, C. A. James, C. Morley, T. Vander-
meersch and G. R. Hutchison, J. Cheminf., 2011, 3, 114.

9 M. J. Hynes, J. Chem. Soc., Dalton Trans., 1993, 311–312.
10 C. Frassineti, S. Ghelli, P. Gans, A. Sabatini, M. S. Moruzzi

and A. Vacca, Anal. Biochem., 1995, 231, 374–382.
11 D. B. Hibbert and P. Thordarson, Chem. Commun., 2016, 52,

12792–12805.
12 P. Thordarson, supramolecular.org, http://supramolecu-

lar.org, 2019.
13 P. Thordarson, opennanomed, http://opennanomed.org/,

2017.
14 P. Thordarson, OpenKinetics, http://openkinetics.org/, 2017.
15 P. Thordarson, Chem. Soc. Rev., 2011, 40, 13051323.
16 H. Duvvuri, L. C. Wheeler and M. J. Harms, Biochemistry,

2018, 57, 2578–2583.
17 H. Akaike, Trans. Autom. Control, 1974, 19, 716–723.
18 N. Sugiura, Commun. Stat. - Theory Methods, 1978, 7, 13–26.
19 C. M. HURVICH and C.-L. TSAI, Biometrika, 1989, 76,

297–307.
20 G. Schwarz, Ann. Stat., 1978, 6, 461–464.
21 H. Zhao, G. Piszczek and P. Schuck, Methods, 2015, 76, 137 –

148.
22 S. Keller, C. Vargas, H. Zhao, G. Piszczek, C. A. Brautigam and

P. Schuck, Anal. Chem, 2012, 84, 5066–5073.
23 P. Thordarson, Techniques in Supramolecular Chemistry : From

Molecules to Nanomaterials, WILEY-VCH Verlag GmbH & Co.
KGaA, 2012, vol. 2.

24 B. Valeur, M. N. Berberan-Santos and M. M. Martin, in Pho-
tophysics and Photochemistry of Supramolecular Systems, John
Wiley & Sons, Ltd, 2006, ch. 7, pp. 220–264.

25 K. Hirose, in Quantitative Analysis of Binding Properties, Wiley-
VCH Verlag GmbH & Co. KGaA, Weinheim, 2012, ch. 2, p.
2766.

26 E. Freire, O. L. Mayorga and M. Straume, Anal. Chem, 1990,
62, 950A–959A.

27 E. Freire, A. Schön and A. Velazquez-Campoy, Meth. Enzymol.,
2009, 455, 127–155.

28 F. P. Schmidtchen, in Isothermal Titration Calorimetry in
Supramolecular Chemistry, Wiley-VCH Verlag GmbH & Co.
KGaA, Weinheim, 2012, ch. 3, p. 67103.

29 L. K. von Krbek, C. A. Schalley and P. Thordarson, Chem. Soc.
Rev., 2017, 46, 2622–2637.

30 O. Francesconi, M. Martinucci, L. Badii, C. Nativi and S. Roe-
lens, Chem. Eur. J., 2018, 24, 6828–6836.

31 L. Alderighi, P. Gans, A. Ienco, D. Peters, A. Sabatini and
A. Vacca, Coord. Chem. Rev., 1999, 184, 311–318.

32 A. S. Mahadevi and G. N. Sastry, Chem. Rev., 2016, 116,
2775–2825.

33 L. Tebben, C. Mück-Lichtenfeld, G. Fernández, S. Grimme and
A. Studer, Chem. Eur. J., 2017, 23, 5864 – 5873.

1–20 | 19



34 J. F. Rusling and T. F. Kumosinski, Nonlinear computer model-
ing of chemical and biochemical data, Academic Press, 1996.

35 K. Levenberg, Quarterly of applied mathematics, 1944, 2,
164168.

36 D. W. Marquardt, SIAM Journal on Applied Mathematics, 1963,
11, 431441.

37 C. Hübler, conradhuebler/SupraFit, 2019, https://doi.org/
10.5281/zenodo.3364569.

38 B. Efron, The jackknife, the bootstrap, and other resampling
plans, Siam, 1982, vol. 38.

39 P. Bevington, Data Reduction and Error Analysis for Physicists,
1969.

40 R. E. Barrans Jr and D. A. Dougherty, Supramol Chem, 1994,
4, 121–130.

41 J. Tellinghuisen, Anal. Biochem., 2003, 321, 79–88.
42 J. Tellinghuisen, J. Phys. Chem. B, 2005, 109, 20027–20035.
43 H. Motulsky and A. Christopoulos, Fitting Models to Biological

Data using Linear and Nonlinear Regression. A practical guide
to curve fitting., GraphPad Software Inc., www.graphpad.com,
2003.

44 B. Efron, Ann. Statist., 1979, 7, 1–26.

45 A. J. Canty, A. C. Davison, D. V. Hinkley and V. Ventura, Can
J Stat, 2006, 34, 5–27.

46 B. Efron and T. Hastie, Computer age statistical inference, Cam-
bridge University Press, 2016, vol. 5.

47 G. E. P. Box, Ann. N. Y. Acad. Sci., 1960, 86, 792–816.
48 E. M. L. Beale, J. R. Stat. Soc. Series. B Stat. Methodol., 1960,

22, 41–76.
49 J. M. Beechem, Numerical Computer Methods, Academic Press,

1992, vol. 210, pp. 37 – 54.
50 D. Bates and D. Watts, Nonlinear Regression Analysis and Its

Applications, Wiley, 1988.
51 K. Vugrin, L. Swiler, R. Roberts, N. Stucky-Mack and S. Sulli-

van, Water Resour. Res., 2007, 43, year.
52 G. Kemmer and S. Keller, Nat. Protoc., 2010, 5, 267281.
53 P. Gramatica, QSAR Comb Sci, 2007, 26, 694–701.
54 The Gnome Project, The Gnumeric Spreadsheet: Free, Fast,

Accurate — pick any three v.1.12.41, http://www.gnu-
meric.org/, 2018.

55 A. Velazquez-Campoy, J Therm. Anal. Calorim., 2015, 122,
1477–1483.

20 | 1–20

https://doi.org/10.5281/zenodo.3364569
https://doi.org/10.5281/zenodo.3364569

	Introduction
	Software
	NMR Titration
	ITC

	Supramolecular Titrations
	General Approach
	Determining stability constants
	NMR Titration
	UV/VIS Titration
	ITC

	1:1 Model
	2:1/1:1 Model
	1:1/1:2 Model
	2:1/1:1/1:2 Model
	Michaelis-Menten Theory
	Nonlinear least-squares regression

	Features
	General
	Technical aspects and implementation
	Statistical tools and further analysis
	Confidence Intervals
	Confidence Intervals by Monte Carlo simulations and percentile method
	Confidence Intervals using the F-Test approach
	Resampling Methods

	Linear Regression Tool
	Global fitting

	Examples
	Model function with uncorrelated and correlated parameters
	Linear Regression
	NMR Titration
	Monte Carlo Confidence Intervals
	Correlation of lg K11 and lg K12

	Isothermal titration calorimetry

	Conclusion

