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An in-house, unique, custom-developed high-throughput experimentation facility, used for 

discovery of novel and optimization of existing electrolyte formulations for diverse cell 

chemistries and targeted applications, follows a high-throughput formulation-characterization-

performance-elucidation-optimization-evaluation chain based on a set of previously established 

requirements. Here, we propose a scalable data-driven workflow to predict ionic conductivities of 

non-aqueous battery electrolytes based on linear and Gaussian regression, considering a dataset 

acquired from one-of-a-kind high-throughput electrolyte formulation to high-throughput 

conductivity measurement sequence. Deeper insight into various compositional effects is gained 

from a generalized Arrhenius analysis, in which conductivities, activation energies and deviations 

from Arrhenius behavior are determined separately. Each observable displays a specific 

dependence on the electrolyte salt concentration. The conductivity is fully insensitive to the 

addition of electrolyte additives for otherwise constant molar composition. We also discuss and 

interpret qualitative trends predicted by the data-driven model in light of physical features such as 

viscosity or ion association effects. 
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HIGH-THROUGHPUT EXPERIMENTATION: ELECTROLYTE FORMULATION AND 

CONDUCTIVITY MODULES 

High-throughput (HT) strategies allow researchers to perform multiple experiments within a 

relatively short time in parallel rather than in sequence. Such strategies are generally achieved by 

using rapid automation tools including a large combination of material variables.1–6 High-

throughput experimentation (HTE) systems represent a highly valuable tool for accelerating the 

search towards advanced and optimized battery materials and with it, electrolyte formulations for 

given cell chemistry candidates, electrode-electrolyte interfaces, overall cell performance, safety 

and cost.2 Recently, computational screening methodologies have been used to effectively support 

the battery material discovery process and a combinatorial approach of experiments and 

computational approach has been discussed as a way forward in the battery material discovery 

process.7 Data driven models are predominantly used to extract knowledge and insights from 

noisy, structured and unstructured datasets.8–10 Optimization of datasets (features, number of 

samples) are necessary to increase the efficiency of such models.8,9,11,12 Currently artificial 

intelligence (AI) and machine learning algorithms are transforming material discovery processes, 

especially in battery science.13 
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Figure 1. A) Electrolyte module featuring a fully automated HT system for electrolyte formulation 

and conductivity cell assembly with bridging chamber used for storage and preparation activities. 

B) Conductivity module comprising: a) in-house developed impedance electrode and Eppendorf 

tube b) small rack containing 8 electrodes c) big rack with 24 conductivity cells and d) 

potentiostat/galvanostat with 8 x 12-channel multiplexer and temperature chamber. C) Flow chart 

of fully automated electrolyte formulation to conductivity determination and analysis sequence. 

D) Schematic overview of the LIMS-modules interaction workflow. 

The performance of all batteries (including Li-ion analogues) is governed by the nature of 

electrolytes used. The ionic conductivity in a liquid electrolyte, for instance co-determines the rate 

of the charging process. Organic solvent-based electrolyte formulations are of central relevance 

and still considered as state-of-the-art.14,15 Common electrolyte formulations consist of lithium 

conducting salt such as lithium hexafluorophosphate (LiPF6) and solvent mixtures comprising 

cyclic carbonates like ethylene carbonate (EC) and propylene carbonate (PC) with linear organic 
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carbonates like dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and diethyl carbonate 

(DEC) and provide desirable electrochemical properties for Li-ion batteries.16–21 

Here we perform HT impedance spectroscopic experiments on LiPF6-based electrolyte 

formulations containing EC and EMC as solvent mixture and vinylene carbonate (VC) as 

functional additive/co-solvent to determine ionic conductivities of resulting electrolyte 

formulations and develop a data driven model to predict ionic conductivities for variable 

electrolyte compositions. All data are extracted from HT experiments with conducting salt, 

solvent/co-solvent, additive compositions and temperature as features and ionic conductivity as 

target quantity. The electrolyte module of the HTE system, developed in-house, is composed of 

two independent, however well-connected units under a N2 atmosphere (Figure 1A). Fully 

automated in nature, this HTE unit with a complex, however, user friendly configuration, conducts 

fast and systematic formulation of up to 96 different liquid electrolytes per working day, 

comprising a wide variety of lithium conducting salts, solvents/co-solvents and (multi)-functional 

additives as electrolyte components that can be combined with respect to their presence and 

amount in a considered electrolyte formulation. The robotic platform, providing a true HT 

workflow, was developed by combining multiple functionalities to an integrated platform system. 

It is composed of 21 stations enabling required gravimetric solid and liquid dispensing of selected 

electrolyte components with high accuracy (0.026% for solids and 0.024% for liquids), vial 

closing, vial mixing and heating and vial barcode labeling steps within the electrolyte formulation 

workflow (Figure 1C). A data matrix barcode contains all relevant information regarding the 

electrolyte composition and components like their amount, supplier, date of formulation and is 

easily readable by a smartphone app. The end-product is a cyclic olefin polymer vial, crimped with 

electrolyte resistant needle piercing septum or a screw cap aluminum vial and contains a maximum 
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10 mL of electrolyte formulation. Within the HTE unit, an automated filling of conductivity cells 

with electrolyte is performed as well. The second unit of the electrolyte module is the bridging 

chamber, fused for preparation and storage purposes, positioned in the glovebox under N2 

atmosphere. 

For the electrolyte conductivity determination by means of electrochemical impedance 

spectroscopy (EIS), a conductivity module consisting of 96 measuring cells was developed. 

Considered electrolyte formulations were dispensed into disposable Eppendorf Safe-Lock Tubes 

in small sample quantities (750 µL) by the HTE robotic system in the glovebox under N2 

atmosphere. In-house developed electrodes were thereafter immersed in the electrolytes 

(Figure1B(a)). These electrodes as measuring probes deliver reproducible results regardless of the 

immersion depth in the electrolyte or the sample container geometry in the impedance 

measurements.22 Eight conductivity cells were placed on a small rack (Figure1B(b)) and three of 

the small racks were positioned on a big rack (Figure1B(c)) for a total of 24 conductivity cells per 

big rack. Four big racks resulted in a total of 96 conductivity cells. To obtain the data on the internal 

resistance and conductivity of the electrolyte formulations, a Metrohm Autolab 

potentiostat/galvanostat with 8 x 12-channel multiplexer was used. The multiplexer, based on a 

particularly powerful single-board micro-controller, is capable of multiplexing each of the 12 

potentiostat/galvanostat channels 8-fold, thus resulting in 96 controllable channels (Figure1B(d)). 

The assembled conductivity cells were placed in a temperature chamber with a 2 hour equilibration 

period for any given temperature prior to each measurement. Measurements were conducted  in 

the temperature range from 0 °C to 60 °C in 10 °C increments. Once programmed with a 

temperature sequence, the setup requires no further user input. 
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Both electrolyte formulation and conductivity modules of the HTE facility are operated 

independently by a customized instance of the Laboratory Information Management System 

(LIMS) adjusted to the specific system by the Quality Systems International (QSI) GmbH. The 

value chain, governed by the LIMS, is depicted in Figure1D. As the system’s central entity, this 

software, flexible in nature, also serves as a material and data archive that ensures data provenance 

and enables backtracking of experiments. Materials data include specific identifiers (supplier, 

batch number, purity etc.) whereas experimental data consists of test protocols and relevant 

experimental parameters such as temperature. Besides saving the raw experimental data, the 

system is capable of processing the raw results and bundling them with relevant metadata (relevant 

details on the used electrolyte) into a machine-readable output format in order to provide users 

with all available information on a given experiment. 

For the experiments reported in this work, the applied EC to EMC ratios were 3:7, 3:2 and 3:1 by 

weight with a VC content between 0 and 30 wt% with respect to EC and EMC. At the same time, 

the concentration of LiPF6 was varied between 0.2 and 2.3 mol/kg. Exact amounts of all 

components for each electrolyte formulation can be found in the supporting information (SI - Table 

S1 and Table S2). Considering 7 different temperatures and repetition of each measurement for at 

least 3 times in respect to reproducibility for each electrolyte formulation, the total number of 

experimentally obtained data points amounted to 1200.   

DATA DRIVEN ANALYSIS 

For data analysis, a molar description of the electrolyte via xLiPF6 LiPF6 
. (1 – xLiPF6)[xVC VC . (1 – 

xVC) [xEC EC . (1 – xEC) EMC]] was used. In this representation, the EC/EMC ratio does not change 

under variation of the VC content, xVC. The ranges were chosen to cover a broad section of the 
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composition space where feasible electrolyte formulations can be expected (i. e. homogeneous 

solutions). However, in some formulations with high EC and LiPF6 content, crystal formation 

occurred, rendering these formulations unusable (see Figures S1-S5). NMR analysis revealed that 

the crystals taken from one of the formulations only consisted of LiPF6 and EC, implying that the 

crystallizing compound is likely Li(EC)4PF6.
23 Some electrolyte formulations with low LiPF6 and 

high EC content showed anomalous conductivity values at low temperatures, indicating freezing 

of EC in these cases (see Figure S5). 

To provide a deeper understanding of HT datasets, conductivities are transformed according to the 

generalized Arrhenius fit (X = (xLiPF6, xVC, xEC)): 

 

              (1) 

 

with the inverse onset temperature 𝛽0. The surrogate models for the description of the 𝑆𝑖(𝑋) are 

formulated in terms of polynomials. The models as well as the choice of the order, also in the 

context of the available experimental data sets, is discussed in the methods section of SI. For the 

analysis we use dimensionless parameters. In particular, we choose 𝛽 = 1000/𝑇 where T is 

expressed in Kelvin [K]. These parameters have a direct interpretation: 𝑒𝑥𝑝[𝑆0(𝑋)] corresponds 

to the conductivity at the onset temperature. The activation energy, evaluated at the onset 

temperature, is proportional to 𝑆1(𝑋). Finally, 𝑆2(𝑋) reflects possible deviations from pure 

Arrhenius behavior, showing up as a curvature. This transformation with implicit temperature 

description reduces the number of datasets and the corresponding parameters to 3 and all of them 

have a direct physical interpretation, providing additional information as compared to a polynomial 

fit of ionic conductivity.24,25 
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The choice of the onset temperature is obtained from the correlation of conductivity and activation 

energy at a given temperature. At low temperatures both quantities are strongly correlated, since 

high activation energies show very low conductivities at low temperatures and for the present set 

of electrolyte compositions this correlation diminishes at approximately 40 °C, as shown in the SI-

Figure S7. 

 

Figure 2. I) Predictions for the generalized Arrhenius fitting parameters 𝑆𝑖(𝑋) (𝑆0, 𝑆1, 𝑆2) with 

respect to xLiPF6 (left) and xEC content (both for xVC=0.0) (right). II) The change of ionic 
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conductivity with LiPF6 content (A) for fixed [(xVC=0.0, xEC=0.336)] EC content (B) for fixed 

[(xVC=0.0, xLiPF6=0.086)] VC content (C) for fixed [(xEC=0.336, xLiPF6=0.087)] at different 

temperatures are shown below. All the results are shown for the LR model. 

 

Here we use linear regression (LR) and Gaussian process regression (GPR) models to analyze the 

HT electrolyte conductivity datasets. GPR directly provides confidence intervals for the 

predictions, whereas for LR, we use a bootstrapping process to account for uncertainties in 

predictions.8,26–30 The features are LiPF6, VC, and EC concentrations and the predicted quantity is 

the logarithm of the ionic conductivity of the resulting electrolyte. Both LR (R2 score - 0.986) and 

GPR (R2 score - 0.987) show similar prediction accuracy for experimental ionic conductivities 

which to a large extent are determined by the experimental errors (see SI V.1) 

The data driven workflow is independent of the nature of the dataset, thus can provide a leeway 

for larger dimensions of features like introduction of multiple co-solvent, additives or salt 

mixtures. This increased dimensionality of electrolyte formulations increases the complexity of 

empirical models which are generally used to interpret the relevance of electrolyte compositions 

on ionic conductivity.24,25,31 Furthermore, data driven models provide robust error estimates of the 

predicted data, which are not provided by empirical fits.8,24,25,32 Thus, these surrogate models 

provide an effective way to interpret acquired HT datasets independent of feature dimensions. 

Since both LR and GPR show similar results, we use LR to understand feature trends (xLiPF6, xVC, 

xEC) on ionic conductivity in this letter for convenience. The trends with GPR are shown in SI 

Figure S13.  
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The conductivity at onset temperature 𝑆0(𝑋) tends to increase with LiPF6 content with a peak 

close to ~(0.07-0.09) and then drops for higher LiPF6 content (Figure 2 I, left). A significant 

dependence on the EC content is observed. Starting from the low LiPF6 content, the initial rise in 

electrolyte conductivity is typically attributed to an increasing number of dissociated ions per unit 

volume whereas the subsequent reduction of conductivity reflects the increasing viscosity. The 

presence of maximum conductivity values upon variation of the salt content has been observed for 

other lithium-based electrolytes as well.24,25,31–35 In contrast, the activation energy term 𝑆1(𝑋) 

and the curvature term 𝑆2(𝑋) show a simple linear increase with increasing salt content. Higher 

values are observed for larger EC contents. Further, the resulting influence of temperature on the 

conductivity is shown in (Figure 2 II A). The peak of the conductivity shifts to higher LiPF6 

content with increasing temperature.  

When analyzing the dependence on EC content, the ionic conductivity at the onset temperature 

increases with increasing EC content for lower LiPF6 content (xLiPF6 = 0.05), whereas the trend 

reverses at higher salt content (xLiPF6 = 0.16). This directly shows the presence of significant LiPF6 

and EC content contributions to the conductivity at the onset temperature which furthermore are 

coupled (see SI Table S3). Thus, there is a strong impact of the LiPF6 content on the EC dependent 

activation energy and curvature (Figure 2 I, right). Since the activation energy is just shifted, the 

impact is not coupled. Also, the dependence on the LiPF6 concentration is more relevant for the 

transport properties than the replacement of EMC by EC and, e. g. the resulting variation of the 

dielectric constant.36,37 Consistent with the properties of the activation energy in Figure 2 I right, 

the small peak in conductivity shifts to smaller values of the EC content at lower temperatures.24 

Finally, the VC content does not play any role in bulk ionic conductivity for fixed EC/EMC ratio 

as shown in Figure 2 II C (see also SI Table S6). This is a remarkable result, given the similar 
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ring structure of EC and VC. However, VC is known to play a pivotal role in electrolyte|electrode 

interfacial interactions.38,39 

In Figure 3A, the HTE obtained ionic conductivities, log(𝜎 ), for fixed EC/EMC ratio are 

compared with other experimental values for the conductivity. The results are compatible within 

the fluctuations. Furthermore, in Figure 3B we show the logarithm of the molar conductivities and 

in Figure 3C the activation energies, incorporating data for the viscosity25,31 and binary 

diffusivity25. Remarkably, the logarithm of the molar conductivities (Figure 3B) as well as the 

activation energies (Figure 3C) basically display a linear behavior in the whole salt concentration 

regime which allows, e. g., a simple estimation of the maximum of the conductivity (estimations 

in Figure 3A, showing very good agreement), see SI V.6 for an explicit derivation. Thus, after 

removing the trivial impact of an increasing number of ions, there are no indications of changing 

mechanisms at the maximum. Furthermore, the salt dependence of the molar conductivity at fixed 

temperature as well as its activation energy is very similar to the respective observables, based on 

the viscosity. The remaining minor systematic deviations of the activation energies of the 

conductivity to the viscosity and diffusivity in Figure 3C indicate that the lowering of the 

conductivity as compared to the Nernst-Einstein prediction via pair formation is somewhat less 

pronounced for lower temperatures. The latter has been also reported for other systems.40 
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Figure 3. Comparison of different data for the 30:70 wt. EC:EMC system (no VC). (A) The LR 

conductivity in comparison to the data from Ref 31 (spheres) and Ref 25 (squares) at two different 

temperatures. The broken lines indicate the estimation of the maxima for both temperatures, based 

on the insight from (B) and (C). For details of the prediction process, see SI. (B) Comparison of 

the logarithm of different observables P as a function of salt content at T=25 °C. Specifically, we 

show the molar LR prediction of the molar conductivity σ/x, the viscosity [cP] from Ref 31 

(spheres) and the diffusivity [10-6cm2/s] from Ref 25 (squares). Also included is a linear fit of the 

logarithm of the molar LR conductivity: -0.56-5.21 xLiPF6 (black); as broken line. Due to the 

excellent agreement with the molar conductivity data, it is hardly visible. (C) Comparison of the 

activation energies of the LR-based conductivity, the viscosity from Ref 31 and the diffusivity from 

Ref 25 for T=25 °C. The activation energy of the conductivity has been fitted by 0.89 + 9.1 xLiPF6. 

The two latter activation energies have been estimated from the viscosity and diffusivity data at 

T=40 °C and T=10 °C from Ref 31, Ref 25, respectively. The diffusivity data points at T=10 °C are 

estimated from interpolation of data at 12 °C and 2.5 °C as provided in Ref 25. 
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SUMMARY and OUTLOOK 

The HT experimentation facility, in general, has the potential to predict a range of vital electrolyte 

properties and to establish a formulation-characterization-performance-elucidation-optimization 

evaluation chain. This involves the discovery of novel and the optimization of existing liquid 

electrolyte formulations for diverse cell chemistries by using a filtration effect based on the 

previously established set of requirements for a targeted application. From a first round of 

preselected, automated experiments3–5,41–43, lead/hit candidates can be selected and characterized 

further in subsequent steps. The resulting optimization process may involve the chosen 

concentrations or the use of different components. 

In summary, we propose an in-house developed HT approach to conduct automated impedance 

experiments in parallel for different electrolyte formulation to attain optimal ionic conductivities. 

This approach reduces considerably the amount of time required for performing experiments 

manually and enables accelerated electrolyte discovery process for battery applications. Data 

driven models, based, in this case, on 1200 experimentally acquired data points, are used to analyze 

and predict ionic conductivities and can further be used to automatically identify outliers and thus 

increase the robustness of HT experiments. It is shown that these surrogate models predict ionic 

conductivities close to experimental accuracies and provide reliable estimates at very low cost 

compared to actual experiments. Also the flexibility of the surrogate models with regard to 

statistical uncertainties provides an effective way to study feature trends on ionic conductivity 

compared to standard empirical models. The transformed data driven model provides a physical 

interpretation of trends of electrolyte compositions on ionic conductivity. Furthermore, via 

additional microscopic simulations, performed in parallel to the experiments, important physical 

and chemical additional insight can be gained. This may complement the results from experiments 
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and data driven model, thereby obtaining a holistic understanding of relevant electrolyte 

formulations. 
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