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ABSTRACT. The matrix exponential method as implemented in MATLAB is demonstrated as a

facile tool for solving the time-dependent concentrations of an arbitrary chemically reactive network

modelled as a coupled linear system of first-order differential equations. The method is used to verify

a 10 species network incorporating experimentally supplied forward rate constants; and a random 11

species network incorporating both forward and backward rate constants as modelled by semiclassical

electron transfer theory. Also demonstrated is the matrix exponential solution in exact arithmetic (via

Putzer’s algorithm and verified by Laplace transforms) for a chain of three species coupled reversibly.
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1 Introduction

Huang [3] solved via computer simulation the time-dependent concentration curves for a dechlo-
rination and elimination reaction involving 10 species. The technique involved transformation
of a coupled linear system of first-order differential equations into an uncoupled system via
diagonalization of the reaction rate constant matrix, a technique admitted to suffer the short-
coming of the necessity of a full set of eigenvectors. In contrast, matrix exponential does not
suffer from this restriction [5], [7]. Moreover, it is easy to implement in MATLAB as eAt can
be calculated by the command expm(At) and postmultiplication by a column vector of initial
concentrations produces the concentration vector at time t for the network (assuming the pro-
cess starts at t = 0). As pointed out by Huang [3], the existing literature (e.g., [1], [4], [6])
provides theoretical treatments of matrix methods for chemical systems but lacks concrete
computer implementations and sample concentration-time curves, which can be beneficial to
both chemical engineers and chemists who desire simple and efficient programs dedicated to
first-order kinetic analysis. This paper employs the matrix exponential technique, which can be
compared to the diagonalization method [3]. Before providing a general network description,
we begin with kinetic equations for a system of three species and provide its solution in exact
arithmetic.

2 Reversibly coupled kinetic equations

Consider the following reversibly coupled chain of three species

A
k1−−⇀↽−−
k2

B
k3−−⇀↽−−
k4

C

If we let x, y, and z denote the time-dependent concentrations of A, B, and C, the differential
equations for first-order kinetics are

ẋ = -k1x+ k2y ẏ = k1x− (k2 + k3)y + k4z ż = k3y − k4z
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In matrix format this reads ẋẏ
ż

 =

-k1 k2 0
k1 -k2 − k3 k4
0 k3 -k4

xy
z

 (1)

We pursue an exact solution for the situation when only A (no B or C) is present initially (for
comparison, see [8]). Note that ẋ+ ẏ + ż = 0 and so by linearity

d

dt
(x+ y + z) = 0 =⇒ x+ y + z = constant

Since our initial value problem has a unique solution the constant is the initial amount of A.
Using a unit amount and choosing x and z as independent variables we obtain y = 1−x− z so
we only need to solve for x and z. The equivalent linear system for two concentration variables
becomes [

ẋ
ż

]
=

[
-k1 − k2 -k2

-k3 -k3 − k4

] [
x
z

]
+

[
k2
k3

]
(2)

x⃗(t = 0) = [1 0]T y = 1− x− z

3 Matrix exponential

The matrix exponential eAt is a matrix function defined on square matrix A multiplied by
indeterminate parameter t, which represents time in our application; it is suited to solve both
the homogeneous (1) and inhomogeneous (2) linear systems presented in section 2. Specifically,
eAt is defined by the following power series

eAt =

∞∑
n=0

tn

n!
An A0 ≡ I

where I is the identity matrix. Fundamental to vector space theory is that eAt solves (1) and
(2) as follows. The homogeneous system (1) using 3× 3 matrix A and its solution are given by

˙⃗x = Ax⃗ x⃗0 ≡ x⃗(t = t0) =⇒ x⃗(t) = eA(t−t0)x⃗0

For the inhomogeneous system (2) we must solve ˙⃗x = Ax⃗ + f⃗(t) subject to x⃗0 ≡ x⃗(t0) where
⃗f(t) is a column vector function of the same dimension as ⃗x(t) and A now represents the

associated 2× 2 matrix. The unique solution is

x⃗(t) = eA(t−t0)x⃗0 +

∫ t

t0

eA(t−s)f⃗(s)ds (3)

Note that for system (2) we have chosen t0 = 0 and ⃗f(t) is a constant vector (the variable t
does not even appear).

4 Putzer’s algorithm

Although it is not evident from the power series definition, any matrix exponential function
can be computed in exact arithmetic as a time-weighted linear combination of finitely many
matrices [7]. Putzer’s algorithm proves this claim. A description of the method follows (proof
is straightfoward but omitted):

Let λ1, . . . , λn be the eigenvalues, possibly complex or repeated, of n × n matrix A. Then
Putzer’s algorithm states that

eAt =

n−1∑
k=0

pk+1Mk Mk ≡
k∏

i=1

(A− λiI) M0 ≡ I

where p⃗(t) ≡ [p1(t) · · · pn(t)] is a vector function whose components satisfy the following
initial value problem:

ṗ1 = λ1p1 ṗk+1 = pk + λk+1pk+1 p⃗(0) = [1 0 · · · 0]
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5 Exact solution of 2× 2 inhomogeneous system

It will be a bit too tedious to deal with the 2 × 2 matrix of constants from (2) directly so

instead we solve the system ˙⃗x = Ax⃗+ f⃗ x⃗0 = [1 0]T where

A ≡
[
a b
c d

]
f⃗ ≡

[
F
G

]
(4)

where a, b, c, d, F, and G are real-valued constants and x⃗ = [x(t) z(t)]T .

The first step is to calculate the eigenvalues of 2×2 matrix A, which is done with the well-known
formula

λ =
a+ d±

√
(a+ d)2 − 4(ad− bc)

2
(5)

We have two cases to consider depending on whether the eigenvalues are distinct or repeated.
We begin with the former case.

Theorem 1. The solution to ˙⃗x = Ax⃗+ f⃗ x⃗0 = [1 0]T where A and f⃗ are given by (4) and
λ1 ̸= λ2 is given by

x(t) =
(a1 + α)eλ1t + (a2 + β)eλ2t − α− β

λ2 − λ1
(6)

z(t) =
(-c+ γ)eλ1t + (c+ δ)eλ2t − γ − δ

λ2 − λ1
(7)

where
a1 ≡ λ2 − a a2 ≡ a− λ1 d1 ≡ λ2 − d d2 ≡ d− λ1

α ≡ Fa1 −Gb

λ1
β ≡ Fa2 +Gb

λ2
γ ≡ -Fc+Gd1

λ1
δ ≡ Fc+Gd2

λ2

Proof. From Putzer’s algorithm we have p1 = eλ1t p2 = eλ2t−eλ1t

λ2−λ1
and for 2× 2 matrix A

we compute eAt = p1I + p2M where M ≡ A− λ1I. Then

eAt =
1

λ2 − λ1

[
a1e

λ1t + a2e
λ2t -beλ1t + beλ2t

-ceλ1t + ceλ2t d1e
λ1t + d2e

λ2t

]
∫ t

0

eA(t−s)

[
F
G

]
ds =

1

λ2 − λ1

[
α β
γ δ

] [
eλ1t − 1
eλ2t − 1

]
By using (3) we see that formulas (6) and (7) follow at once.

In the case that (a+d)2 = 4(ad−bc) equation (5) produces two repeated eigenvalues. Removing
the subscript and calling this eigenvalue λ, Putzer’s algorithm now gives p1 = eλt p2 = teλt

and by working through similar steps one can verify the following:

Theorem 2. The solution to ˙⃗x = Ax⃗+ f⃗ x⃗0 = [1 0]T where A and f⃗ are given by (4) and
λ1 = λ2 ≡ λ is given by

x(t) = (1 +
F

λ
− α

λ2
)eλt + (a− λ+

α

λ
)teλt − F

λ
+

α

λ2
(8)

z(t) = (
G

λ
− β

λ2
)eλt + (c+

β

λ
)teλt − G

λ
+

β

λ2
(9)

where
α ≡ F (a− λ) +Gb β ≡ Fc+G(d− λ)
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For computation of the exact solution it is perhaps easiest to implement a function (in say
MATLAB or EXCEL) that takes parameters a, b, c, d, F,G and time t as inputs and produces
the concentration vector as the output by substituting the appropriate combination of rate
constants for the inputs according to kinetic system (2).

The Laplace transform method can be used to obtain the exact solution of (4) and verify
the results (6), (7), (8), (9) from Putzer’s method. We outline how this is done for z(t) when
λ1 ̸= λ2; the remaining cases for x(t) and λ1 = λ2 are similar. The first step involves taking
the Laplace transform of the inhomogeneous system (4). Letting x(t) ↔ X(s) and z(t) ↔ Z(s)
be Laplace transform pairs we find[

s− a -b
-c s− d

] [
X(s)
Z(s)

]
=

[
1 + F/s
G/s

]
By Cramer’s rule we can solve for X(s) and Z(s). The result for Z(s) is

Z =
(s− a)(G/s) + c(1 + F/s)

(s− λ1)(s− λ2)
λ1, λ2 =

a+ d±
√
(a+ d)2 − 4(ad− bc)

2

Let K ≡ Fc−Ga H ≡ G+ c. Partial fractions and inversion give

z(t) =
K

λ1λ2
+ (

H

λ1 − λ2
+

K

λ1(λ1 − λ2)
)eλ1t + (

H

λ2 − λ1
+

K

λ2(λ2 − λ1)
)eλ2t

Using the identity λ1 + λ2 = a + d we can show that z(t) matches (7), so the methods of
Laplace and Putzer agree, as required.

6 Network modelling

For purpose of solving a general first-order network via matrix exponential it is straightforward
to handle the homogeneous system ˙⃗x = Ax⃗ directly and compute x⃗(t) = eA(t−t0)x⃗0. The
reaction rate constant matrix A can be found as follows. For a network consisting of only

species i and j are coupled reversibly i
kij−−⇀↽−−
kji

j we have

ẋi = -kijxi + kjixj ẋj = -kjixj + kijxi

For a general network species i may be coupled to other species thus Aii = -
∑

j kij where the
summation is over all species j coupled to species i. The constant kji stands alone at row i
column j so that Aij = kji. Likewise Ajj = -

∑
i kji and Aji = kij . If we model i and j as

irreversibly coupled i
kij−−→ j the above considerations apply using kji = 0. Construction of A

in MATLAB can be performed by preconstructing a matrix {kij} of rate constants. When kij
is encountered in a traversal make the assignments

Aii = Aii − kij Ajj = Ajj − kji Aij = kji Aji = kij

where A is initialized to zero.

7 Solution curves for a 10 species network [3]

In this network the species are irreversibly coupled with arrows indicating the reaction direction
according to the diagram (Figure 1).
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Figure 1: Diagram of 10 species network [3]. Rate constants in units h-1. Species 1 is assigned
1M initial concentration, the other species zero.

Figure 2: Concentration-time curves for network from Figure 1.

8 11 species network modelled with semiclassical electron
transfer theory

In this theory we view the network as an electric circuit in which free energies assigned to
the species act as electric potentials and distances assigned to coupled pairs (i.e., straight-line
distances between connected species) act as resistances. The semiclassical formula [9] for the

rate constants of reversible connection i
kij−−⇀↽−−
kji

j is given by (swap i and j to obtain formula for

kji)

(∗) kij = Hexp[-1.1rij ]exp[
-(∆G◦

ij + λ)2

4λkBT
]

where H is constant (s-1), rij = rji is the Angstrom distance, ∆G◦
ij = G◦

j −G◦
i is the difference

in absolute standard potentials (measured in volts), λ is constant (called the reorganization
energy, measured in volts), and kBT is the Boltzmann factor. For this study was used H =
1.5e14s-1, λ = 0.7V , and T = 300K.
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For our purpose we read (*) as saying that the passage of current is reduced exponentially as
rij is increased; and that there is Gaussian dependence of rate on potential difference, with
the maximum driving force occuring at ∆G◦

ij = -λ = -0.7V , below which remarkably the rate
begins to slow down rather than speed up (this is the Marcus inverted region effect; see [2]).
For this study was chosen an 11 species network whose graph is seen here:

Nonzero potentials of 0.1V are as-
signed to sources 1, 2, and 3 at initial
concentrations 0.2, 0.4, and 0.6M, re-
spectively (other species assigned zero
initial concentration). Lower poten-
tials -0.3, -0.2, and -0.2V are assigned
to 9, 10, and 11. All other species are
assigned zero potential (labels omit-
ted). All distances are 8Å except for
the four terminal branches at 15Å.

Figure 3: Concentration-time curves for the network seen above.
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Electron hopping through proteins. Coordination chemistry reviews, 256(21-22):2478–2487,
2012.

7


