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ABSTRACT  
Multi-parameter optimization, the heart of drug design, is still an open challenge. Thus, improved methods for automated compounds 
design with multiple controlled properties are desired. Here, we present a significant extension to our previously described fragment-
based reinforcement learning method (DeepFMPO) for the generation of novel molecules with optimal properties. As before, the 
generative process outputs optimized molecules similar to the input structures, now with the improved feature of replacing parts of 
these molecules with fragments of similar 3D-shape and electrostatics. We developed and benchmarked a new python package, ESP-
Sim, for the comparison of electrostatic potential and molecular shape, allowing the calculation of high-quality partial charges (e.g., 
RESP with B3LYP/6-31G**) obtained using the quantum chemistry program Psi4. By performing comparisons of 3D-fragments, we 
can simulate 3D properties while overcoming the notoriously difficult step of accurately describing bioactive conformations. The new 
improved generative (DeepFMPO v3D) method is demonstrated with a scaffold-hopping exercise identifying CDK2 bioisosteres. All 
code is open-source and freely available.  

 
 

INTRODUCTION  

A crucial task in all drug discovery projects is designing molecules 
against multiple, often contradictory objectives.1 Much of today’s 
drug hunters’ time is therefore spent on attempting to find an 
optimal compromise where all desirable properties are satisfied 
in a single molecule. The use of sophisticated computational 
methods, leveraging high-quality datasets to help solve this task, 
is thus conceptually very attractive.   

Recent advances in artificial intelligence (AI) and 
machine learning (ML) have given rise to an immense popularity 
of inverse design,2 and the field shows little signs of slowing 
down.3 In inverse design, desired properties are specified a priori, 
and such methods generate compounds fitting that description.4 
Significant progress has been made in this area and a plethora of 
approaches for deep learning in molecular design has been 
published the last few years.2 Many methods include 
reinforcement learning5-7 to generate molecules, most often in 
the form of SMILES strings.8 Other popular methods include 
generative methods such as recursive neural networks, generative 
adversarial networks or variational autoencoders, which are 
sometimes steered with reinforcement learning to control the 
molecular properties. The SMILES format in itself is nothing but 
amazing.9 Using SMILES is also convenient for the AI algorithm, 
since a string is trivial to manipulate and transform. In addition, 
there are success stories of using SMILES in the area of generative 
design.10 However, all molecules are 3D objects and a 

conservative modification to a SMILES string may cause a large 
effect in their 3D structure. Examples include the removal of 
brackets denoting substitution, such that a Y-shaped compound 
becomes linear, or the removal or changing of ring-closing 
locants. Therefore, optimization of molecular structures cannot 
be smooth in the space of 3D properties even though the 
SMILES strings change by only small amounts from iteration to 
iteration of the AI algorithm. We have previously presented a 
fragment-based generative approach (DeepFMPO) that addressed 
these modifications to the structure issue, albeit as 2D 
descriptions.11 Here, we introduce a significant extension to 
DeepFMPO, using detailed descriptions of 3D-properties to 
represent molecules more accurately.  

Shape and electrostatic properties of molecules are 
primary determinants of molecular recognition and should 
consequently be the method of choice when comparing the 
similarity of molecules encountered at various stages in drug 
design. Even though these methods have been used to achieve 
major impacts in related areas (e.g., virtual screening leading to 
the discovery of novel and unexpected chemotypes12-14), they have 
been largely unexplored in the context of de novo generative 
methods, although promising attempts have been made.15,16 One 
reason for the reluctance of using 3D methods is the challenge of 
obtaining accurate descriptions of molecules bioactive 
conformations. In this work, we reduce this notoriously difficult 
step by using 3D-fragments of the complete target compounds. 

Moreover, much of the work in the generative de novo 
design area has been focused on the development of maximally 
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expressive methods whose purpose is to explore the entire 
chemical space. Our approach is different in this regard, since it 
specifically rewards the generation of molecules that are similar 
to known lead compounds. Another such method is the recently 
published MolDQN method, which maximizes a “drug-likeness” 
(QED) score while also maintaining similarity to the original 
molecule.17 Virtual screening is related approach to generative 
methods,18 and can also be a powerful method for finding hits 
and lead compounds with desired properties. However, a virtual 
screen is limited in regard to what is in the queried databases (i.e. 
it is not possible to find something that is not there).  

Here, we describe a new open-source python package, 
ESP-Sim, for calculating shape and electrostatic similarities, and 
its implementation in DeepFMPO.11 We highlight its usefulness 
with a scaffold-hopping study that identifies bioisosteres for a set 
of CDK2 kinase inhibitors.20  

 

 

 METHODS  

The DeepFMPO method is based on an actor−critic model for 
reinforcement learning.11 It is a fragment-based generative 
method that learns how to modify compounds and improve 
them. That is, molecules are split into fragments, and these 
fragments are replaced with other similar fragments in the (deep) 
learning process of generating novel molecules with optimal 
properties. Technically, the fragments are encoded into binary 
strings, and similar fragments are assigned similar encodings. This 
is achieved by constructing a balanced binary tree. In the process 
of assembling the tree, similarities between all fragments are 
calculated. Fragments are paired in a greedy bottom-up manner, 
where the two most similar fragments are paired first. The joining 
procedure is repeated until all fragments are put together in a 
single tree. Subsequently this information is used to generate 
encodings for all fragments. The paths from the root to the leaves 
defines the encoding for each fragment. For every branch in the 
tree a one (“1”) is added to the encoding when going to the left 
and a zero (“0”) is added when going to the right, see Figure 1. 
The rightmost character in the encoding corresponds to the 
branching closest to the fragment. In this process, the pairwise 
similarity between all fragments is calculated. There are many 
ways to calculate chemical similarities, and the most used 
approaches currently employ 2D fingerprints.  

Here we present a new implementation of DeepFMPO 
utilizing a 3D-based molecular alignment method, where the 
ElectroStatic Potential (ESP) similarity between pairs of fragments 
is calculated. To this aim, we developed an open-source python 
package, ESP-Sim, which calculates the overlap integrals of the 
electrostatic potentials (generated from Coulomb potentials) of 
two molecules or fragments. Within DeepFMPO, the 
computation of ESP similarities can be broken down into six 
steps for each fragment pair (see Figure 2a) and is described in 
more detail below. Steps 2, 3 and 6 correspond to function calls 
of the ESP-Sim package, whereas steps 1 and 5 are innate to 
DeepFMPO. It is worth noting that this fragment alignment 

approach eliminates the challenging step of generating bioactive 
conformations for complete molecules, as well as alleviates the 
issue of aligning them correctly. 

 

 

 
Figure 1. A snippet of the balance binary tree used in DeepFMPO. Fragments 
that are similar are placed close to each other. The encoding of a fragment is 
determined by the path from the root to the leaf. Every branching to the left 
adds a “1” to the end of the encoding and a branching to the right adds a “0”.

  

  

The Molecular Alignment of Fragments 

All single bonds in a molecule that extend from a ring atom are 
broken in the DeepFMPO process, creating the molecular 
fragments. The attachment atoms (previously connected with a 
single bond) are labeled in this step. To calculate ESP similarities 
the fragments must be aligned in 3D. Here, a conformational 
search is conducted generating an ensemble of low-energy 
conformers for all fragments containing rotatable bonds, using 
the ETKDG method21 as implemented in RDKit.22 As default a 
maximum of ten conformations of each fragment is generated. 
An anchor group is connected to the fragments’ attachment atom 
and serves as a template in the alignment procedure. The 
coordinates of the anchor group are fixed in 3D space. The 
rationale for this step is that ligands containing related fragments 
typically bind in a similar orientation,23,24 and these fragments will 
frequently make similar ligand-protein interactions. 
Consequently, to ensure that the fragments are aligned as 
accurately as possible, an anchor group is attached to the 
fragments and used in the molecular alignment step. The anchor 
group was arbitrarily chosen to be a hexazine ring with a 
methylene linker subunit. This group is of reasonable size for a 
template and highly unique (i.e., hexazines are never present in 
drug-like molecules) for easy identification and removal 
downstream in the process. A few experiments were conducted 
with other types of structural fragments as anchors to gauge 
possible conformational effects (vide infra). For each pair of 
fragments, the pair of conformations with the best shape overlay 
in terms of the highest shape Tanimoto value are stored. The 
anchor is then replaced with a hydrogen (see Figure 2). In cases 
where fragments include several labeled atoms, these are replaced 
with a methyl group. In this manner, all labelled atoms are 
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replaced by a methyl which may be considered neutral in terms 
of electrostatic similarities. Finally, the ESP Tanimoto value is 
calculated between the pair of conformers with the best shape 
alignment (see the “Electrostatic Similarity Calculations” section 
below).  

 

Electrostatic Similarity Calculations 

The presented ESP-Sim method uses the cheminformatics toolkit 
RDKit22 to generate different conformations of a molecule with 
(or without) a constrained anchor or core group, and computes 
shape and electrostatic potential similarities between pairs of 
conformers. Alternatively, ESP similarities can be computed on 
pre-aligned molecules. The electrostatic potential similarity is 
computed via the overlap integral of the Coulomb potentials of 
two molecules, as well as their respective self-overlap integrals as 
either Tanimoto25,26 or Carbo similarity.27,28 The Coulomb 
potential 𝑉(𝒓) describes the electric potential at a point 𝒓 as a 
sum of potentials of point charges 𝑞𝑖 at points 𝒓𝑖  as 

 

𝑉(𝒓) =  
1

4𝜋𝜖0

∑
𝑞𝑖

|𝒓 − 𝒓𝑖|
𝑖

 

 

where 𝜖0 is the vacuum permittivity. Since analytic integration of 
the Coulomb potential at 𝒓 = 0  is not possible, we provide 
options to either approximate each potential with a sum of three 
Gaussian functions and integrate the fit function analytically 
analogous to Good et al.29 or to perform a Monte-Carlo 
integration over the space outside of the van-der-Waals radii of 
each atom, and inside a user-defined margin. Partial charges can 
either be supplied by the user, calculated via RDKit (Gasteiger or 
MMFF94 charges), predicted via a recent machine-learning (ML) 
model,30 or computed using the open-source quantum chemistry 
program Psi4,31 with the option of using Restrained Electrostatic 
Potential (RESP) charges.32 There are a range of different 
methods and basis sets available in Psi4. For example, the often-
recommended combination of using the B3LYP method and the 
6-31G** basis set, although using those can be computational 
demanding. Within DeepFMPO, Dask,33 a library for parallel 
computing in Python, is used to speed up the process. It should 
be noted that the RESP/Psi4 method is not parametrized for 
atoms beyond the atomic number of Argon. To allow for larger 
atoms (e.g., bromine), their van der Waals (vdW) radius needs to 
be specified separately. In this code version, we set the vdW radii 
for bromo to 1.8 (file: resp/vdw_surface.py), following the 
GAMESS scheme34 derived from the Merz-Kollman-Singh 
publication.35 In addition to electrostatic similarities, ESP-Sim 
can furthermore output the shape Tanimoto similarity of 
molecules, describing the volume overlap. For DeepFMPO, we 
used the Tanimoto similarity of electrostatic potentials obtained 
via fitting to Gaussian functions (ESP-Tanimoto). We 
furthermore provide an option to add the volumetric shape score 
resulting in an ESP-TanimotoCombo score. 

 

 

 
Figure 2. a) The stepwise procedure to obtain the electrostatic shape potential 
similarity values for pairs of fragments. b) An example of the corresponding 
procedure in graphics.  
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RESULTS 

In the following, we showcase the performance of ESP-Sim on a 
variety of benchmark tasks. We then perform a retrospective case 
study, where we aim to demonstrate the value of using shape and 
electrostatic similarities in scaffold-hopping exercises. Scaffold 
hopping is a method for identifying bioisosteric replacements36,37 
with the intention of retaining biological activity of analog 
compounds but also improving other relevant molecular 
properties. It can also be used as a design strategy for intellectual 
property (IP) reasons.  

 

ESP-Sim Benchmark studies 

To evaluate the influence of the employed partial charge 
distribution on the observed scores within ESP-Sim, ESP 
similarities were computed for the same molecule at the same 
geometry but with different partial charges. As ground truth, 
quantum-mechanically (QM) obtained RESP charges at a high 
level of theory (MP2 with a polarizable PVTZ basis set) were used 
[30], on a selection of about 3000 neutral molecules. RESP 
charges are specifically designed to reproduce the electrostatic 
potential of a molecule, so that a comparison of electrostatic 
potentials obtained from different charge distributions to the QM 
RESP charges allows for a detailed assessment of the quality of 
each approach for similarity comparisons. We evaluated 
Gasteiger38 (default in RDKit), MMFF94,39 and AM1-BCC40,41 
partial charges, as well as a machine learning model (ML).42 The 
ML partial charge model is provided with the ESP-Sim package 
on Github. Table 1 provides an overview of the observed mean 
absolute deviations of the respective partial charges from the 
RESP charges, as well as the ESP similarities evaluated via Carbo 
or Tanimoto similarities. We find that AM1-BCC charges 
reproduce the QM electrostatic potentials best, followed by the 
deep learning model, MMFF, and Gasteiger. 

 

Table 1. Mean absolute deviations between Gasteiger, MMFF, ML or AM1-
BCC partial charges q compared to RESP charges, as well as similarities of 
electrostatic potentials compared to RESP evaluated either via Carbo or 
Tanimoto similarity 

Partial charges MAE q [e] ESP-Sim (Carbo) ESP-Sim (Tanimoto) 

Gasteiger 0.16 0.78 0.60 

MMFF 0.17 0.80 0.64 

ML 0.17 0.85 0.61 

AM1-BCC 0.12 0.88 0.78 

 

 

 
Figure 3. Heatmap of quantum mechanical RESP partial charges compared 
to Gasteiger, MMFF, ML or AM1-BCC partial charges. 

 

 

 

Figure 4. Electrostatic potential similarities between molecules with RESP 
partial charges to molecules with Gasteiger, MMFF, ML or AM1-BCC partial 
charges (at the exact same geometries evaluated via Tanimoto similarity. An 
analogous figure for Carbo similarity is given in the Supporting Information. 

 

Figure 3 depicts a heatmap of the QM atomic charges compared 
to Gasteiger, MMFF, ML and AM1-BCC charges. Although there 
is no perfect correspondence of QM charges to any of the 
evaluated charges, we find highest agreements for AM1-BCC 
charges. Notably, Gasteiger and ML charges lead to narrower 
ranges than MMFF and AM1-BCC charges. This is also reflected 
in the Carbo and Tanimoto ESP similarities in Table 1. The 
Carbo metric, which is largely insensitive toward the magnitude 
of a function,43 yields more favorable scores for ML and AM1-
BCC, in contrast to the Tanimoto metric, which is more sensitive 
to the absolute magnitudes, thus ranking MMFF better than ML. 
These differences are small, though, and a comparison of 
observed similarities via different charge distribution in reference 
to QM RESP shows similar trends between all options, Figure 4. 
We can therefore assume that even Gasteiger charges lead to a 
fair depiction of the electrostatic potential for most molecules. In 
fact, benchmarking of ESP-Sim on protein-docking databases 
shows little dependence of ranking metrics on the employed 
partial charge distribution, as detailed in the following. 

We furthermore compared ESP-Sim scores to 
similarities obtained via the state-of-the-art tool EON44 for about 
450 fragments generated by DeepFMPO for various partial charge 
distributions. We find a strong correlation, with Spearman 
correlation coefficient of about 0.8. A detailed analysis is given in 
the Supporting Information. In addition, we assessed the ability 
of ESP-Sim scores to identify potential ligands to protein targets. 
We compared the performance of ESP-Sim electrostatic and 
shape similarities to a set of re-scoring functions45-51 on the 
dopamine D4 receptor, for which experimental data on active 
and inactive compounds is known.52 We furthermore 
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benchmarked ESP-Sim on the 102 DUD-E targets53 and compare 
its performance against a variety of ligand-based approaches.54-59 
For both comparisons, we find that ESP-Sim electrostatic and 
shape similarities perform very well. Details on these benchmarks 
are given in the Supporting Information. 

 

Assessing Various Molecular Similarity Measures 

A frequently occurring scenario is that a drug hunting team has 
identified a promising compound, from an internal lead 
generation effort or from the literature, that needs optimization. 
For the sake of argument, compound 120 in Figure 5 is such a 
compound.  

 
Figure 5. Two equipotent CDK2 kinase inhibitors. CDK2 inhibitors 
containing the related bicyclic heterocycles imidazopyridine (1) and 
pyrazolopyridine (2) were discovered through high-throughput screening by 

Fischmann et al.
20

 and here used as a scaffold-hopping example. 

 

With compound 1 at hand, the design question is then "which 
compound should we make next?". The optimization task usually 
includes improving molecular properties (e.g., permeability, 
solubility, clearance, selectivity, etc.) and perhaps also IP related 
issues. A common scenario then is for the project team, to try to 
come up with ideas of novel central rings to be introduced as 
scaffold replacements. In this context, it should be noted that 
heterocyclic rings are often considered special and typically end 
up in different patent applications.60 Also, with regards to 
calculating molecular properties (e.g. lipophilicity), many 2D-
based methods are not adequately parametrized and have 
difficulties in assessing heterocyclic compounds accurately.61 So, 
how can break-through ideas for novel central rings be generated 
and which methods can be used to do it? Here, compound 2 
(Figure 5) is one answer to the question “what to make next?”. It is 
equipotent to compound 1 and importantly, contains a different 
but related central scaffold. That is, the bicyclic heterocycle in 
compound 1 (imidazo(1,2-a)pyridine) and compound 2 
(pyrazolo(1,5-a)pyridine) are both 9-membered ring-systems with 
identical substituents.  

To investigate how different methods predict the 
similarity of these kind of central bicyclic heterocyclic scaffolds we 
first generate a dataset of fragments containing the same 
framework and similar substitution pattern. Thus, the ChEMBL 
v28 database62 was queried for compounds including a 9-
membered bicyclic ring system, with three substituents, using 
SMARTS matching.22 For comparison reasons, the substituents 
were subsequently removed providing 30 different scaffolds, see 
Figure 6. In this manner we identified an extensive list of 9-
membered bicyclic heterocyclic scaffolds present in drug-like 

molecules that potentially could act as replacements for the 
pyrazolopyrimidine in compound 1.  

All 30 bicyclic systems were subsequently subjected to 
pair-wise comparisons using a range of standard 2D similarity 
measures, together with the 3D-based ESP-Sim measure. A 
summary of the results obtained from each method is reported in 
Table 2. For completeness, the results using four different anchor 
fragments (hexazine, carboxylic acid, piperidine and iodine) are 
shown in Figure 7. The heat-maps are essentially the same 
indicating that the method is not dependent on the choice of 
anchor fragment.  

 

Table 2. Rankings for the 1 vs 2 fragment pair, among pair-wise comparison 
of 30 different heterocyclic rings. The rankings, and Tanimoto value, using a 
range of different 2D similarity methods available through RDKit and the new 
ESP-Sim measure are reported. Hexazine was used as anchor fragment. 

Method Rank (max = 30) 

ESP-Sim (B3LYP/6-31G**) 1 

Morgan fingerprint (radius 2) 5 

Morgan fingerprint (radius 3) 5 

MACCS keys fingerprints 17 

MCS  Tanimoto 21 

Topological fingerprints 22 

 

The 1 vs 2 fragment pair is top-ranked when using the 
ESP-Sim (B3LYP/6-31G**) metric, but not by the 2D-based 
methods. The Morgan fingerprints rank the 1 vs 2 pair among the 
top five (Table 2), which is reasonably high. However, given the 
challenges and resource investments required to establish new 
synthetic routes, our experience is that very few alternative ring 
analogs are explored in real-life projects. Typically, only a couple 
of ring replacements are made and tested, essentially enforcing 
that only top-ranked scaffolds would be followed-up. Two other 
observations provide further support for the use of the ESP-Sim 
method. First, the MACCS keys fingerprint resulted in very 
similar values for many scaffolds (e.g., the Tanimoto similarity 
value for five scaffolds against scaffold of compound 1 show 
identical values – 0.87), suggesting that the MACCS keys 
similarity metric is not sufficient for capturing such subtle 
differences. Second, there are a couple of clearly structurally 
dissimilar fragments in Figure 6 (e.g. 1,4,6-trimethylpyrazolo[5,4-
b]pyridine vs 2,4,7-trimethylimidazo[2,1-f][1,2,4]triazine) that are 
ranked low when using ESP-Sim (as they most probably should), 
but top-ranked when using Morgan 2D-fingerprints.  

As a final observation, deriving ESP-similarities with 
methods of lower theory for calculating the underlying partial 
charges (Gasteiger, MMFF and HF/3-21G, data not shown) also 
yielded the 1 vs 2 pair as top-ranked, suggesting that such partial 
charges may be sufficient and a cost-effective alternative for this 
data set. We recommend using a higher level of theory, although 
computationally more demanding. For example, RESP partial 
charges derived using the B3LYP method and the 6-31G** basis 
set or AM1-BCC partial charges, which were found to reproduce 
the QM electrostatic potentials best in our benchmark. 
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Figure 6. Bicyclic heterocyclic scaffolds in ChEMBL compounds matching 
the SMARTS pattern “[A][cH0]1[c,n][c,n]([A])[c,n]2[c,n][c,n][c,n]([A])[c,n]2[c,n]1". 

 

 

Figure 7. All-against-all comparison experiments were conducted with four 
structurally different anchor fragments (top-left: hexazine, top-right: carboxylic 
acid, bottom-left: piperidine, bottom-right: iodine). The different anchors give 
essentially the same results. 

 

Generating “Sweet Spot” Molecules 

Having established the value of using the ESP-Sim measure, the 
next step was to include it in the generative (DeepFMPO) method. 
An experiment was set-up to mimic a real-world scenario, where 
a set of lead compounds is optimized toward sweet spot criteria 
through a multi-parameter optimization process. Three different 
calculated properties (Molecular Weight, Polar Surface Area22 
and clogP63), commonly used in the optimization of leads to 
candidate drugs, were selected for this purpose. It should be 
noted that the choice of molecular properties was also selected for 
practical reasons facilitating reproducibility. Namely, there are 
methods to calculate them using RDKit.22 The aim of the set-up 
was to bias the generation of compounds to fulfill the criteria for 
the three calculated properties, while also maintaining their 
similarity in shape and electrostatics towards a known set of lead 
compounds. The agent in the reinforcement learning method was 
rewarded for producing valid molecules and got a higher reward 
when generating molecules with properties in the targeted ranges. 
Since this was a scaffold-hopping exercise, with the goal of 
identifying a new bioisosteric scaffold, the minimum and 
maximum target values for the three properties were centered 

around the corresponding values for compound 1 (i.e., 
320<MW<420, 2.3<clogP<4.3 and 45<PSA<65).   

 The library of input fragments was generated from a set 
of structurally diverse compounds known to exhibit inhibitory 
effects against kinase targets, including compounds that have 
shown activity against the specific biological target of interest 
(CDK2). The data set was extracted from the ChEMBL database 
(version 28) using simple text searches, resulting in a set of 557 
fragments (including the ones in Figure 6), as obtained from 1059 
compounds. The lead series compounds were obtained by a 
substructure search using the (imidazo(1,2-a)pyridine) central 
scaffold of compound 1 on the surechembl website 
(https://www.surechembl.org/search) and yielded 138 close 
analogs, which is a typical number to what a drug hunting 
program would have access to. The data sets are available online 
(https://github.com/giovanni-bolcato/deepFMPOv3D). The 
calculation for this dataset requires 8h on a i9-9820x CPU, using 
the 20 cores. 

 

Figure 8a-c. Graphs showing how molecular weight, logP and TPSA values 
change during the epochs, as the mean value of all the compounds for each 
epoch. 

https://www.surechembl.org/search
https://github.com/giovanni-bolcato/deepFMPOv3D
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DeepFMPO with the ESP-Sim measure generated a total of 6359 
unique molecules, when terminated at 1000 epochs. About two-
thirds of those were sweet spot compounds. Hence, the agent 
generated compounds that have all three properties within the 
desired ranges. This number (ca 4000) is lower than when using 
a standard generative method facilitating the selection process, 
and a result of intentionally biasing using 3D-similarity. The 
evolution of the percentage of generated molecules that 
demonstrate properties within the target ranges during the 
training process is shown in Figure 8a-c, displaying evidence of 
learning. A significant number of the generated compounds 
include the central scaffold of compound 2, and a number of 
those show near identical substitution pattern to compound 1. 
These bioisosteric compounds were observed in early epochs. 
One other nine-membered scaffold (3) was also represented 
among the generated, see Figure 9. When performing the same 
experiment but with simpler standard similarity measures 
(Morgan fingerprints, MACCS keys and Topological 
fingerprints), no compounds with the central scaffold of 
compound 2 (or 3) were generated. This provides an incentive 
for the use of DeepFMPO with ESP-Sim in scaffold-hopping 
exercises. 

 

Figure 9. A graph showing the frequency of occurrence of compounds 
including the central fragment of compound 1, 2 and 3. The y-axis represents 
the total number of compounds each epoch (percentage).  

 

DISCUSSION 

In the current work we set out to explore the use of a 
sophisticated similarity metric in generative methods. The power 
of rewarding compounds that are similar in 3D aspects, in 
addition to other molecular property constraints, is often 
underappreciated. It is a challenging task, due to the issues 
involved with conformer generation and molecular alignments. 
Nonetheless, this is a design strategy that we believe should be 
given more attention and we discuss why below. 

 

Molecular representations in deep generative methods 

Deep generative models typically use non-3D methods to 
represent molecules. Text-based methods and the use of SMILES 

strings is still the most prevalent representation. The reason for 
this is probably because SMILES can be massively expressive, and 
that it is trivial to manipulate and transform strings. However, 
there are some drawbacks with using SMILES strings.11,64 A 
significant problem is that a conservative change can have a huge 
change in the 3D structure of a molecule. This is important since 
all molecules are 3D objects. Here, we have addressed this issue 
by extending the fragment based DeepFMPO method, where 
molecules are built from similar fragments, instead of sequences 
of letters (as is the case for SMILES based methods). Fragment-
based methods are considered intuitive and often mimic the way 
medicinal chemists think and design. The approach was recently 
described by Meyers et al. as a method “offer an appealing 
compromise between molecular expressivity and practicality” [64]. 
Hence, a common medicinal chemistry design strategy is to work 
on molecular series, swapping fragments and substituents in one 
part of the molecule, while keeping other parts of the compounds 
unaltered. This is often a challenge for generative methods 
working on SMILES strings,64,65 leading us to the next topic of 
discussion.  

   

Deep generative methods can generate many compounds 

Most generative AI methods produce tens of thousands of 
unique and diverse high-scoring compounds when used without 
stringent filters. This is related to Brenner’s underdetermined 
inverse problem stating that available data does not uniquely 
specify systems.66 Also, although there may be nothing chemically 
wrong with AI generated molecules (i.e., all atoms in common 
valences and charge states), some can be exotic,67 and an 
experienced medicinal chemist would reject them upfront. The 
issue of such unwanted molecules is manageable from a technical 
perspective. For example, one can enforce substructure rules and 
penalize the existence of undesired moieties (e.g., radicals, 
peroxides, anhydrides, strained and chemically unstable systems) 
in the reward functions, or as post-filters.  

A more difficult problem to address is how to prune 
down the very many generated compounds to the few worth 
making. In reinforcement learning, a scoring function is used for 
this purpose. A complicating factor here is that drug discovery is 
complex and not all factors used in decision-making are easy to 
capture and thus not readily converted into rules that the AI 
methods can use in their rewards system. For example, a 
compound with several stereocenters is usually difficult to make 
(and resolve) and should consequently get a low reward score 
unless its building blocks are already available on the shelf. Also, 
absorption is a critical parameter for the optimization of oral 
drugs. Permeability over Caco-2 cells is often used as a surrogate 
when assessing absorption. A complicating factor here is that the 
uptake over the Caco-2 cells can be hampered by efflux, and in 
the case of high cell permeation the efflux is less relevant. A 
reward function handling such scenarios would require several 
“if-then-else” statements. These can be included in reward scores 
but are not always trivial to define and set-up for edge cases. In 
addition, multiparameter optimization becomes increasingly 
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challenging when there are many constraints to fulfill.68 In brief, 
the biggest challenge of deep generative methods is to define 
relevant reward scores, and this is unfortunately less studied. 

Simple drug-likeness rules, multivariate methods for 
DMPK properties (solubility, permeability, clearance, etc.) and 
safety, as well as docking scores are typically included in reward 
scores as filters. However, several thousands of compounds will 
inevitably still pass those filters. This is related to the common 
lack of sufficient high-quality data, and the fact that we still often 
struggle with making predictions to the required accuracy. 
Prediction of biological activity is an extremely hard problem 
since many phenomena involved are difficult to quantify 
precisely. Standard docking scores are most often not sufficient. 
Although, at times, methods such as Free Energy Perturbation 
(FEP) can improve the scoring accuracy for small perturbations 
of one structure into another, but not for major structural 
changes.69 The use of FEP combined with active learning is 
gaining traction and is showing promise.70,71 Nonetheless, when 
the output contains many structurally diverse molecules, as 
frequently is the case for expressive SMILES-based generative 
methods, current methods’ accuracies are not sufficient to filter 
down many compounds to a selected few. Despite the increasing 
prevalence of physics-based models in generative modelling, 
bioaffinity prediction remains very challenging.  

Here, we propose shape and electrostatic potential 
matching as a strategy to bias generative models to propose 
compounds with different fragments (that are likely bioisosteres) 
of known lead compounds. The tool is designed to generate 
novel molecules with optimized properties. One example usage is 
scaffold hopping. Here it should be noted that there are many 
other scaffold hopping tools available72 – ranging from 
CAVEAT,73 which is one of the early 3D database searching 
programs, to the more recent BROOD.74 In the context of 
generative methods, Langevin et al. recently described a new 
RNN-based algorithm, named SAMOA (Scaffold Constrained 
Molecular Generation), to perform scaffold-constrained 
molecular design.65 Generative methods benefit from the 
associated reinforcement learning methods, allowing multi-
objective molecular design optimization, while only exploring the 
relevant chemical space. 

 

Using similarity as a design strategy   

As mentioned above, current generative AI methods generally 
suffer from the lack of prediction accuracy. Thus, learning from 
past drug hunting experiences, we deliberately bias the AI 
method to generate compounds that are similar to active 
molecules already discovered. We approach this problem by 
relying on the similarity principle,75 which states that similar 
molecules tend to have similar properties.76 Some advantages to 
this approach are discussed below. First, by generating molecules 
similar to the initial set available in the project, confidence in the 
predictions can be high because they remain in the applicability 
domain of the model. This is contrary to expressive methods that 
are designed to fully explore chemical space and generate 

structurally diverse compounds, which are consequently also the 
most uncertain to predict. Second, for similar compounds, the 
same chemical intermediates and established synthetic routes can 
often be re-used, facilitating speedy progress. Third, sometimes 
certain structural fragments (e.g., “privileged structures”77) are 
difficult to replace without severe drops in potency due to specific 
ligand-protein interactions.  

As a related example, the strategy of molecular 
optimization using similarity was recently applied by 
Zhavoronkov and coworkers. They reported that deep learning 
enabled rapid identification of potent DDR1 kinase inhibitors.78 
Walters and Murcko analyzed the Zhavoronkov et al. study and 
reported that the AI-generated compound B (Figure 9) shared a 
common substructure with an already marketed multi-kinase 
inhibitor (Ponatinib, Figure 9), which was indeed included in the 
training set.79 In some more detail, they ring-closed a benzamide 
carbonyl into an isoxazole moiety to yield an equipotent and 
unique compound.78 These two compounds are very similar with 
regards to shape and electrostatics, see Figure 10. Thus, 
Zhavoronkov’s AI method successfully mimicked typical 
medicinal chemistry behavior, keeping certain parts fixed and 
making minor modifications to other.  

 

  
Figure 10. Designing similar compounds can be a good tactic in drug 
discovery. Here illustrated with two potent DDR1 kinase inhibitors. The AI-
generated compound B by Zhavoronkov et al. and ponatinib, a marketed 
multi-kinase inhibitor.78 The compounds share a rather large common 
substructure. The hydrogen-bond acceptor and donor functionalities are 
visualized with electrostatic contours (red: negative, blue: positive). The ESP-
Sim Tanimoto value is 0.81 for this pair. 

 

It is sometimes believed that computer-aided design 
(CAD) methods need to provide radically “non-intuitive” 
different compounds to merit its use. However, believing that 
CAD approaches should surprise us and produce results that we 
would not have expected is a tall order. In this context, the 
scoring functions used in generative methods for reinforcement 
learning are not designed to extrapolate, and do not account for 
all aspects involved in designing drugs process. Thus, the power 
of current AI’s lies more in pattern recognition than in creative 
discovery.  

Palazzesi and Pozzan recently reported a list of over 100 
deep generative methods published in the literature between 
2017–2020.80 The methods are innovative and perform well in 
benchmark studies that measure models’ ability to, for example, 



9  
  

reproduce property distributions, and generate valid, diverse, and 
novel molecules.81 One may thus conclude that generative 
modelling is essentially a solved problem – given a reward 
function, we now have the methods to generate molecules that 
satisfy it. Despite this success, biology and drug discovery remain 
immensely complex, and it is our viewpoint that current 
generative methods best serve to augment drug design. To take 
the next step (full autonomy), calculated predictions need ultra-
high accuracy and for that we need to develop a broader 
understanding of human biology. The state of AI in drug design 
may be seen as analogous to the automotive industry. While the 
future of autonomous vehicles is promising and exciting, we are 
not near fully autonomous cars yet. Candidate drugs, as well as 
cars, still require human attention, given the complexity involved 
and the vast amount of edge cases that are non-trivial to code up 
efficiently. Thus, humans (with domain knowledge) are still very 
much needed in the process: to steer the tools and triage the 
output. In this context, we would like to highlight the Gruenif.ai 
tool where the user can provide feedback interactively while 
molecules are generated.82 Such “human-in-the-loop” methods 
can be very effective. Future versions of DeepFMPO will include 
such functionalities.  

 

CONCLUSIONS 

The use of sophisticated computational methods for de novo 
design is attractive and deep generative methods have gained a 
lot of attention. Significant progress has been made when it 
comes to generating molecules. However, scoring them accurately 
remains a major challenge. Real-life project experience informs 
us that in silico predictions (e.g., synthesis, potency, properties) 
are constantly improving, but they are generally not accurate 
enough to prioritize a handful compounds for synthesis from a 
long list of high-scoring AI generated molecules. Thus, what 
really needs solving is being able to do ultra-accurate predictions 
to advance the field to the next level. Until then, the approach 
of biasing molecular design towards compounds similar to 
known actives will remain as one pragmatic and fruitful way to 
success.  

Here we present a 3D fragment-based reinforcement 
learning approach for the generation of novel molecules with 
optimized properties, called “DeepFMPO v3D”. We furthermore 
developed a python package, ESP-Sim, for calculating molecular 
shape and electrostatic similarities. We benchmarked ESP-Sim 
on a variety of tasks including the evaluation of detailed 3D 
similarities, protein-ligand docking and re-scoring of docked 
ligands and report competitive performances. The inclusion of 
ESP scores into DeepFMPO promotes the generation of 
compounds similar to existing lead molecules, towards desirable 
sweet spot properties. The proposed method allows the 
calculation of high-quality partial charges (e.g., RESP with 
B3LYP/6-31G**) obtained using the quantum chemistry 
program Psi4. In a scaffold-hopping case-study we show that our 
approach of using shape and electrostatics similarities performs 
well. DeepFMPO v3D ranks known equipotent scaffolds higher 

and generates them earlier (i.e., speedier). The way the 3D 
method is implemented makes the approach essentially 
alignment-independent (on a molecular level) and does not 
require knowing the bioactive conformation. Both DeepFMPO 
v3D and ESP-Sim are freely available online. 
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