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Abstract 

Due to its advanced surface properties and many technologically important applications, cerium dioxide (CeO2, ceria) 

has become the focus of extensive research. This work presents a study of factors influencing the wetting properties 

of ceria. For this, CeO2 thin films were deposited on substrates with different morphologies and characterized by 

means of XRD, SEM, XPS and water contact angle (WCA) measurements. The obtained results on wetting behavior 

were expanded using different organic materials on top of the CeO2 thin films to enhance their hydrophobicity. The 

achieved WCAs were compared with those from samples without ceria to find the effect of the material on the water 

repelling properties. The results revealed that all factors – the surface material, adsorbed organic molecules and surface 

texturization – modify the wetting properties of CeO2 thin films independently. This indicates that to achieve a 

superhydrophobic condition it is necessary to assess all the parameters which may control water behavior on the 

surface. 
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1. Introduction 

In the current glass market, there is a great need for inorganic materials that are mechanically strong with respect to 

mechanical wearing, can withstand high temperature processing, and possess enhanced wettability with large water 

contact angles. Such materials are interesting for applications in photovoltaic panels installed in rainy or high humidity 

areas, windows of buildings, automobiles, etc.  

Rare-Earth metal oxides (REOs) possess hydrophobic properties [1]. Cerium dioxide (ceria), which cation is the most 

abundant lanthanide in the Earth’s crust [2], exhibits a large bandgap between 3.0–3.6 eV [3]–[5] which makes this 

material promising for the above-mentioned applications. The original explanation of the ceria wetting behavior was 

based on its electronic structure [1]. According to that explanation, valence electron orbitals of the cerium atoms in 

CeO2 are protected by the electron octet 2s22p6 of crystalline oxygen which makes it difficult for water molecules to 

build chemical bonds with the surface. Later studies found, however, that as-prepared REOs show intrinsic 

hydrophilicity, and attributed high water contact angles (WCA) to adsorption of hydrocarbons which often are present 

in indoor air and pump systems [6]–[10]. Surface cleaning with high temperature annealing or with plasma treatment 

[11] are able to switch the wetting behavior of REOs from hydrophobicity to hydrophilicity. The hydrocarbon 

adsorption usually occurs at surface defects such as oxygen vacancies and adsorbed -OH groups, or by physical 

adsorption on the locally ideal surface [11]. So, the nature of the hydrophobicity of CeO2 still remains unclear. 

The goal of the current study is to investigate which factors control the wetting behavior of CeO2. We report how to 

enhance hydrophobicity of CeO2 by texturizing the substrate surface and depositing hydrocarbons. The clear 

understanding of the parameters governing hydrophobicity and their relationship might accelerate research and 

implementation of the material in real-life applications. 

2. Experimental details 

The principal way to achieve the superhydrophobic state with WCA above 150° is through the creation of surface 

roughness by surface texturization [12]. It should be mentioned that besides helping to achieve the superhydrophobic 

condition, the advanced surface morphology reduces reflection from the material and therefore makes it advantageous 

for use in PV applications. For the bulk material, the surface texturization can be performed within two different 

paradigms or their combinations [13]. The first one, “Top-Bottom”, implies selective removal of material from the 

surface by etching or laser ablation [14]. The second approach called “bottom-up” consists of deposition of new 

material on the surface, creating a new geometric pattern on top of it. For the thin films produced by the sputter 

deposition technique, the surface roughness can be related to the substrate texturization if the typical size of the texture 

element is much more or comparable with the film thickness. In this case the deposited thin film inherits the 

texturization of the substrate which helps to modify wetting properties of the material. 

The procedure for producing CeO2-based superhydrophobic films utilized in this work consists of 3 consequent steps 

[Fig. 1]: 1) texturization of the substrate by chemical etching; 2) sputter deposition of the CeO2 thin film; 3) controlled 

adsorption of organic molecules by placing the CeO2-coating in a saturated environment of organic materials. 

The substates used to obtain the superhydrophobic condition for CeO2 were monocrystalline (100) n-type silicon 

wafers with initial thickness d=100 µm. In order to get even texturization of ceria thin films, the Si-wafers were 

chemically etched with a KOH wet process [15]. The KOH concentration was maintained at a level of 2 wt. % during 

etching. The etching was carried out at 80°C for 20 min. To terminate the etch and remove any etchant remaining on 

the Si-surface, the wafers were immersed in a 5% HCl solution for 120 seconds and subsequently rinsed and dried 

using N2 gas. The mass loss from the wafers was found to be roughly 6% of the initial value. Before deposition of 

ceria, Si-substrates were cleaned by ultrasonication in isopropanol for 10 minutes, rinsed with deionized water and 

dried in N2 gas at room temperature. For the reference samples, we utilized non-treated flat Si-wafers as substrates. 



 

 Fig. 1 – Production procedure for CeO2-based superhydrophobic coatings 

 

The cerium dioxide thin films were deposited by DC reactive magnetron sputtering (Leybold A550V7 industrial type 

unit). The base pressure in the process chamber was maintained at 3*10-6 mbar. A cerium metal target of purity 99.5% 

was used in an argon-oxygen gas mixture with O/Ar inlet flow proportion at 31% and total pressure 0.5 Pa. The 

substrate and the target were both kept at room temperature during the deposition process. The power density during 

the deposition process was 1.06 W/cm2. The deposited thin films had a thickness of 200 nm for the flat substrate and 

was determined by a profilometer. 

After CeO2 deposition, the obtained thin films were covered with different organic materials by thermal evaporation 

performed in air. For this, samples were put in a polypropylene box with a liquid source of organic molecules before 

the closed and sealed box was placed in an oven at a temperature of 100℃ for durations up to 17 hours. The organic 

materials used for the deposition were silicone oil (technical grade, type P20.275.50, Huber SilOil) and hydrocarbon 

1-octadecene (technical grade 90%, Sigma-Aldrich). 

The phase content of the obtained thin films was characterized by means of XRD (Bruker D2 Phaser, Cu-Kα radiation). 

The scanning was conducted with Bragg-Brentano focusing, in the range of 2θ from 20° to 60° to estimate the 

contribution of the main planes to the surface crystallography. The surface images of the films were obtained with 

SEM (JEOL model JSM-7900F). The wettability characterization was carried out with the sessile droplet method. 

Droplets of Milli-Q water were placed on the thin film surface with a manually controlled mechanical syringe with 

varying droplet volume in the range 8-12 µL. The water droplets on the surface were photographed using a high-speed 

camera. Image analysis and calculations of the contact angles were performed with Attension Theta software. The 

final value of the contact angle for each sample was averaged over five independent measurements.  

To confirm the elemental composition, X-ray photoeelectron spectroscopy (XPS) was performed on a CeO2 sample 

at the AU-MATLINE beamline of the ASTRID2 synchrotron, Aarhus University, Denmark. To reduce the probability 

of charging effects due to the insulating nature of CeO2, a thinner film of 50nm thickness was deposited on a flat Si 

substrate, without any consequent covering with organic materials. Measurements were performed in ultrahigh 

vacuum (pressure in the order of 10-10 mbar) and with photoexitation energies 600 eV and 650 eV. The sample was 

measured as prepared, and after having been heated to 700°C in vacuum.  

 

 



3. Results and Discussion 

3.1 Wettability  

Influence of organic material type on wettability 

Dependences of the WCA for the CeO2 deposited on the texturized and flat Si with deposited silicone oil (SilOil) and 

1-octadecene are shown in Fig 2(a) and (b), respectively. The initial values of WCA for the as-deposited ceria stay 

below 60°, defining the surface as hydrophilic. Such wetting behavior corresponds well with numerous works [6]–

[9], [16]–[19] and confirms the idea of the intrinsic hydrophilicity of CeO2. The obtained results demonstrate a 

significant increase of the hydrophobicity after deposition of the carbon containing molecules. For both types of the 

deposited organic materials, WCA exceeds 90° and transforms the ceria surface to the hydrophobic state. The 

saturation of the WCA values for the 1-octadecene occurs faster than that for the silicone oil, however the maximum 

achieved values remain lower for both the texturized and flat thin film. According to the Young equation, this indicates 

a lower surface energy for the silicone oil which stimulates reducing the total interface area between water and ceria. 

Texturization enhances the initial hydrophobicity of the CeO2 surface no matter what contaminator was used. It should 

be noted that silicone oil deposition on the surface allows superhydrophobicity of the CeO2 with contact angle 162°.  

Fig 2. – Dependence of WCA on time of organic molecules deposition for (a) silicone oil and (b) 1-octadecene 

Applying the adsorption process of the organic molecules allows us to achieve three different goals. The first one is 

related to the time of saturation for wetting properties. In various works [6]–[9], [18], the period of establishment for 

the hydrophobic state of CeO2 and other REOs is found in the large range from days to months. Applying the 

deposition process in a saturated environment allows the completion time to be reduced from days to hours. This time 

might be controlled by the temperature of the process which governs the vapor pressure of the organic material. The 

second advantage is in the reproducibility of the results over different experiments since the deposition environment 

remains constant. The last advantage of using a controlled environment is the ability to modify the final wetting 

properties of the material using various substances, including those which cannot be found in atmosphere or vacuum 

chambers. 

Influence of the different substrates 

To summarize the influence of the different factors on the wetting properties of the surfaces, WCA for samples with 

and without deposited CeO2 have been compared, with and without silicone oil present. The comparative diagram of 

the wetting properties for different types of surfaces is shown in Fig. 3. For each type of substrate topology, we 

considered 4 different situations: deposited ceria and SilOil (black bars), substrate without ceria but with SilOil (red), 

ceria without SilOil (blue) and bare substrate without SilOil (grey). All depositions of the silicone oil have been carried 



out for 17 hours. Analysis shows that the presence of the ceria thin film increases WCA regardless of the presence of 

the attached organic molecules on the surface (black and red, blue and grey columns within one group for samples 

with and without SilOil, respectively). The surface of the substrate without ceria (red and grey bars in Fig. 3) consists 

of the non-stoichiometric SiOx, naturally formed by oxidation of silicon in the atmospheric air. Silicon oxide possesses 

hydrophilic behavior with contact angle less than 10°, corresponding well with the studies on the wetting properties 

of silica [6]. Applying the SilOil significantly increases hydrophobicity for any type of surface, however, the presence 

of the organic molecules with low surface energy does not make different materials equally water repelling. This fact 

points out the importance of the surface material in achieving the superhydrophobic condition. 

Fig 3 – Comparative diagram of the WCA for different substrates with and without adsorbed organic molecules. 

Dashed lines indicate thresholds for the hydrophobic (90°) and superhydrophobic (150°) conditions 

3.2 XRD and SEM measurements 

Results of the XRD measurement are shown in Fig. 4(a). The pattern obtained indicates presence of the fcc fluorite 

structure of CeO2. The peak at 2θ ≈ 33° appears as combination of signals from CeO2 (200) and Si (200) planes. The 

reflection from the latter is forbidden for the ideal Si-crystal, and when it occurs it may indicate lattice distortion of 

the substrate [20]. Analysis within the Debye-Scherrer equation applied to peaks (111), (220) and (331) reveals the 

average crystalline size equal to 15 nm. The lattice parameter is found according to the Bragg equation as a=5.41Å 

which corresponds well with the reported value of 5.411 Å (JCPDS No. 34-0394).  

The SEM micrograph of the texturized thin film surface is shown in Fig. 4(b). Applying the KOH treatment to the 

monocrystalline Si-substrate creates a pyramidal morphology of the surface. This effect is a result of the selective 

etching where different crystallographic planes are etched at different rates. The surface of the pyramids is formed by 

Si-(111) planes. Deposition of the ceria thin film on top of the etched silicon does not change morphology of the 

surface. This occurs due to a relatively small thickness of the film compared with the typical size of the features on 

the substrate, allowing CeO2 to inherit roughness.  



Fig 4 – XRD pattern (a) and SEM micrograph (b) of the CeO2 thin film deposited on the texturized substrate 

 

3.3 XPS measurements 

XPS spectra for the CeO2 films are presented in Fig. 5. From the widescan [Fig. 5(a)], Ce and O peaks are observed, 

together with C and some Si from the substrate. Before the sample was heated in vacuum, the relative intensities of 

Ce4p:O1s:C1s were found to be 1:2:4, and after heating the ratios were 1:2:2. Hence, the intensity of the O 1s and Ce 

peaks increases and the C 1s peak decreases upon heating, indicating that some of the carbon contamination on the 

surface is released and more of the CeO2 is seen. The spectra shift 1-3 eV towards lower binding energies after heating. 

When the thin film is heated in vacuum, oxygen may be emitted from the surface. This in turn may change the potential 

at the surface, possibly causing the observed shift in binding energy [21]. The binding energies given in previous work 

[22]–[25] are closer to those of the sample after it has been heated in vacuum, and the following discussion will hence 

be based on those values. 

Figure 5 (b)-(d) shows spectra of the O 1s, C 1s and Ce 4p peaks. The O 1s spectra can be decomposed into three 

peaks with binding energy 530.2 eV (531.5 eV), 531.6 eV (533.5 eV) and 532.5 eV (534.6 eV) after (before) heating. 

The largest component at EB=530.2 eV is oxygen from the CeO2 lattice, and this is the component increasing upon 

heating. The component at 531.6 eV has previously been assigned to hydroxyls or carbonates [22]–[24], and the peak 

at 532.5 eV may be from O bound to the Si-substrate or molecular water [23]–[25]. Since the Si 2p peak can be seen 

[Fig. 5(a)] even with a relatively thick film of CeO2, the film is probably not uniform. It is likely that the substrate has 

reacted with oxygen to form SiO2 during the preparation of the sample, and that some of this SiO2 gives rise to the 

peak at 532.5 eV. The peak decreases upon heating, as is expected for both SiO2 and adsorbed water. Heating may 

make the film more uniform, such that less of the SiO2 is seen, or make water evaporate from the surface.   

 

(a) (b) 



 

Fig. 5 – XPS results from as prepared and annealed samples: (a) Widescan measured with photon energy 600 eV. 

(b)-(d) Narrow scans of O 1s (b), C 1s (c) and Ce 4p (d) core levels. The dark red line is the sample as it was loaded, 

and the orange dotted line after it had been heated to 700°C in vacuum. The O 1s (b) and C 1s (c) spectra have been 

decomposed into peaks corresponding to different groups of molecules containing oxygen or carbon. 

For the C 1s peak, the major component at binding energy 285.3 eV (287.2 eV) stems from a variety of hydrocarbons 

on the surface, as is expected for most samples exposed to air [26]. The peak at 287.0 eV (289.2 eV) is likely from 

carbon bound to oxygen in alcohols, ethers, ketones or aldehydes [23], [26]. Ce 4s is expected to be at a binding energy 

of 289 eV [25]. The peak at 289.7 eV (291.0 eV) in the C 1s spectrum is therefore thought to be Ce 4s, but it could 

also be carbonates [23].  

The decomposition of the Ce 4p peak is under further investigation, but its general shape resembles that found in 

literature [25]. If a surface layer of carbon is removed when heating, the cerium intensity is expected to increase. 

However, from the narrow scan in Fig. 5(d), the intensity of the Ce 4p peak seems to not increase upon heating, and 

neither does the Ce 4s peak in Fig. 5 (c). This is probably because of uncertainty in the intensities for these scans. Due 

to low intensities, a higher pass energy (100 eV, instead of 40 eV) was used when acquiring spectra Ce 4p and C 1s 

after heating. In Fig. 5(c) and (d), a scaling factor was utilized to obtain equivalent intensities before and after heating, 

but the uncertainty when comparing the intensity for these curves are greater than for the O 1s spectra. When looking 

at the Ce 4p peaks before and after heating from the widescan in Fig. 5(a), the intensity of Ce 4p seems to have doubled 

after heating.  



4. Conclusions 

In the current research effort, the different factors influencing the wettability of CeO2 were studied. For this, magnetron 

sputtering deposition of CeO2 thin films was carried out on texturized silicon. The chemical composition of the 

coatings was found as CeO2 by means of XRD and XPS measurements and the texturization of the films was confirmed 

with SEM. We found that water contact angle of the films can drastically be enhanced by surface texturization. It was 

shown that hydrophobicity of the magnetron sputtered films can further be enhanced by depositing silicone oil and 1-

octadecene. Our results indicate that different organic molecules adsorbed on the CeO2 surface have a divergent effect 

on modification of the wetting properties. Despite the presence of adsorbed molecules, the surface material still has a 

significant effect on the general hydrophobicity that was shown for CeO2 and naturally oxidized SiOx. Control of all 

mentioned parameters – surface texturization, surface material and adsorbed organic molecules – allows variation of 

the water contact angle in a wide range, including the superhydrophobic state. 
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