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ABSTRACT: Benenodin-1 is a thermally-actuated lasso peptide rotaxane switch with two 
primary translational isomers that differ in the relative position of residue Gln15. The conversion 
from one conformer to the other involves substantial enthalpy-entropy compensation: one 
conformer is energetically-favored and the other is entropically-favored. Here, we take a multi-
scale quantum mechanical (QM) and classical molecular dynamics (MD) approach to reveal 
residue-specific sources of these differences in stability. QM reveals that the two benenodin-1 
conformers involve distinct hydrogen bonding networks, with the enthalpically-favored 
conformer having more intra-peptide hydrogen bonds between Gln15 sidechain and nearby 
residues. Evaluation of configurational entropy over the MD-sampled geometries reveals that the 
entropically-favored conformer has enhanced conformational flexibility. By computing the by-
residue-sum entropies, we identify the role of Gln15 and neighboring Glu14 in mediating the 
entropic variation during the switching process. These computational insights help explain the 
effects of Glu14Ala and Gln15Ala mutations on the conformational population of benenodin-1 
observed experimentally.  
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1. Introduction. 

The macromolecular structure of proteins imparts unique properties that allow them to 

play diverse roles in the cell. While most proteins are large and globular in nature, consisting of 

a-helical and b-sheet domains connected by loops, there are notable exceptions. Small peptides 

can take on more diverse structures, e.g., as intrinsically disordered proteins1-3 and cyclic 

peptides4-6. In comparison to their large, globular counterparts, these peptides remain poorly 

understood, motivating further experimental and computational investigation. Exemplary of this 

class of peptides, are the lasso peptides, which are a type of ribosomally-derived natural 

products.7-9 Ever since their first discovery in 1991,10 lasso peptides have been increasingly 

reported as candidates for new antibiotics,11-14 enzyme inhibitors,12,15 and receptor antagonists,10 

(e.g., microcin J2515,16). Lasso peptides involve a 1-rotaxane topology with a macrolactam ring 

threaded by the C-terminal tail.8,17 The ring is held in position by sterically bulky residues above 

and below the ring, which act as plugs. The ring in the lasso peptide is connected by an 

isopeptide bond between the N-terminal α-amino group and the carboxylic acid side chain of an 

aspartate or glutamate, which can be located at positions 7, 8, or 9 of the amino acid sequence 

depending on the specific Lasso peptide. Lasso peptides exhibit unique properties, including 

protease stability, thermostability, and thermal switchability.17  

Computational modeling can provide valuable insight into the dynamics18-24 and non-

covalent interactions25-28 of proteins that govern structure-function relationships. While 

molecular modeling with classical molecular mechanics (MM) force fields is often the method of 

choice for protein modeling29,30, challenges remain for their application in non-globular, small 

peptides31,32. Thanks to key advances in quantum mechanical (QM) modeling methodology33-39 

combined with the modest size of small peptides has made peptides increasingly tractable for 
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fully QM study33,40-42. While the levels of approximate density functional theory (DFT) with 

modest basis sets typically used in QM modeling of peptides also can suffer from inaccuracies 

due to self-interaction error43 or basis set incompleteness33,42,44,45, QM modeling has been shown 

to be superior for de novo prediction of properties of peptides with non-folded structures33. At 

the same time, the sampling required for understanding conformational ensembles is typically 

prohibitive, motivating a multi-scale approach46-49. 

In this work, we introduce a multi-scale approach aimed at bridging potential limitations 

of MM and QM modeling on benenodin-1, a representative lasso peptide. Derived from A. 

benevestitus, lasso peptide benenodin-1 was discovered as a natural example of a switchable 

mechanically interlocked molecule.50,51  In benenodin-1, the residues Glu14 and Gln15 act as 

steric plugs that bracket the lasso ring. This contrasts with most other lasso peptides which have 

bulkier aromatic or large positively charged amino acids that act as steric lock residues. Upon 

heating, benenodin-1 ΔC5 (i.e., the natural product with the last five residues removed) has been 

observed to achieve equilibria among four translational isomers. The two primary isomers in the 

ensemble are: Conformer 1, where the lasso peptidic wheel is between Glu14 and Gln15, and 

Conformer 2, where the lasso peptidic wheel is between Glu15 and Lys17.51 Although the 

structural ensembles of these conformers have been characterized using NMR, mass 

spectroscopy, and HPLC experiments, computational simulations are needed to elucidate the 

ways the electronic structure and dynamics of individual amino acids that contribute to the 

overall thermal switchability of benenodin-1. 

While this study represents the first detailed computational study of benenodin-1 with 

large-scale QM, other studies have been carried out on the broader family of lasso peptides. 

Molecular mechanics has been employed to elucidate the molecular details of lasso peptide 
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formation and un-threading. Ferguson et. al performed replica exchange MD52 to study the 

wrapping mechanism of uncyclized analogue of microcin J-25 (i.e., pro-microcin J25).53 The 

studies reveal dynamic pathways of pro-microcin J25 to generate either a loop-tail peptide or a 

coil-conformation that can be potentially converted to lasso topology. The study implicated 

important roles of enzyme machinery to wrap the uncyclized peptide to form a lasso geometry. 

Caitlin et. al conducted biased MD simulations to understand the thermal unthreading 

mechanism (i.e., loop-pulling or tail-pulling) of lasso peptide astexin-2 and astexin-3.54 They 

computed the free energy barriers associated with different amino acids passing through a 

macrolactam ring. Applying these modeling data, they established a quantitative model of the 

strength of amino acid steric plugs to estimate the thermostability of a lasso peptide, albeit with a 

significant energetic uncertainty around 8kBT (i.e., 5 kcal/mol at room temperature).  

In experiments, benenodin-1 was expressed in a truncated form that lacks 5 C-terminal 

amino acids (benenodin-1 ΔC5).50,51 Based upon characterization by NMR, MALDI-MS and 

HPLC, benenodin-1 ΔC5 can switch among four geometric isomers, with two primary isomers 

being Conformer 1 and Conformer 2 (Figure 1). One major difference between the two 

conformers lies in the position of the Gln15 residue. Gln15 locates beneath the lasso ring in 

Conformer 1 but flips above the ring in Conformer 2. Consequently, Conformer 1 has 6 amino 

acids (i.e., aa) in the threaded loop (i.e., from Ser9 to Glu14) and 5 aa in the tail (i.e., from Gln15 

to Met19), while Conformer 2 has a loop of 8 aa (i.e., from Ser9 to Ala16) and a tail of only 3 aa 

(i.e., from Lys17 to Met19). For benenodin-1 ΔC5, the conversion from Conformer 1 to 

Conformer 2 was characterized to have a 27 kcal/mol activation energy barrier.50 Although the 

switching process does not involve direct bond rearrangement, the activation energy observed for 

this process is comparable to (if not higher than) typical chemical reactions that involve bond 
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rearrangement. This highlights the strength of the “mechanical bond” that exists in rotaxane or 

other mechanically interlocked molecules.55,56 It has been proposed that the activation barrier for 

the lasso peptide switching or threading depends on the size of the “steric plug” residues (e.g., 

Glu14 and Gln15 in Conformer 1).54 This model is chemically intuitive and is consistent with the 

observation that lasso peptides with bulkier steric plugs (such as phenylalanine) do not easily 

unthread.57 Nevertheless, benenodin-1 plug residues are less bulky than other well studied lasso 

peptides, motivating investigation of their roles in hindering rearrangement.  

 
Figure 1. Thermally switchable conformers for benenodin-1 ∆C5, Conformer 1 and Conformer 
2, and their associated, experimentally measured thermodynamic parameters, including enthalpy 
(∆H), entropy (∆S), and activation energy (∆E‡). The lasso peptide backbone is colored in grey. 
The sidechains of Glu14 and Gln15 and the isopeptide bond (between Gly1 and Asp8) are shown 
in sticks, where carbon, oxygen, nitrogen atoms are colored in grey, red, and blue. 

 

Despite the high activation barrier, Conformer 1 and Conformer 2 were observed to co-

exist in experiment and the composition in the structural ensemble varies in different 

temperatures (i.e., Conformer 1 to Conformer 2 is 2:1 at 286 K and 1:2 at 368 K).50  

Experimental kinetic and thermodynamic studies indicate that the conversion from Conformer 1 

to Conformer 2 is energetically uphill by 4 kcal/mol but entropically favored by 12 cal/mol/K. 

The mechanism behind this thermodynamic trend is not easily comprehensible due to the 

structural and dynamic complexity of lasso peptide. Furthermore, the impact of mutation on the 
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conformational population appears puzzling. For example, mutation of Gln15 to alanine, which 

presumably eases the up-threading of lasso tail to generate Conformer 2, in fact leads to 

exclusive observation of Conformer 1 in the structural ensemble. However, mutation of Glu14 to 

alanine leads to exclusive observation of Conformer 2. These phenomena imply the important 

roles played by Glu14 and Gln15 during the switching process: besides serving as a steric plug to 

hold the peptide chain in place to conform a lasso shape, these two residues might also facilitate 

the stabilization of the energy state of Conformer 1 and the enhancement the conformational 

flexibility of Conformer 2. Therefore, we combined GPU-accelerated quantum mechanics 

(QM)34,58,59 and classical molecular dynamics (MD) simulations to unravel the atomic-level 

mechanism behind the lasso peptide switch. 

Notably, for peptides such as benenodin-1 that interconvert near room temperature, a 

quantitative description of this thermal switching is particularly difficult because the free energy 

difference between the two conformational states are likely within 3 kcal/mol.51 In addition, 

thermal switchability involves a subtle balance between the change of enthalpy and entropy. 

Evaluating these two parameters separately is essential to elucidate the driving force behind the 

conformational switching behavior. Thus, we carry out a combined study that employs QM in 

the form of dispersion-corrected, range-separated hybrid DFT along with MM sampling of the 

thermal switching of benenodin-1. The study reveals quantitatively how rearrangement of 

hydrogen bonding networks and changes of residue dynamics contribute to the formation of the 

two primary benenodin-1 translational isomers, Conformer 1 and Conformer 2. These results are 

consistent with both experimental observations and hypotheses.50,51 We expect that the 

computational studies can potentially facilitate the rational design and engineering of lasso 

peptide mutants as thermally responsive biomolecules.  
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2. Computational Details. 

Lasso Peptide Structure and Preparation. Solution NMR structures for the lasso peptide 

benenodin-1 were obtained from the Protein Data Bank (PDB IDs: 5TJ1 and 6B5W), and all 

crystallizing agents were removed.50 These structures correspond to two distinct states (i.e., 

Conformer 1 PDB ID: 5TJ1 and Conformer 2 PDB ID: 6B5W) that have been resolved 

experimentally and differ by the position of the lasso ring.50 For each conformer, 20 structures 

were available from the NMR ensemble deposited in the PDB.50 Residue protonation states were 

assigned using the H++ webserver60-62 assuming a pH of 7.0 and a dielectric constant of 78.4 to 

mimic aqueous solvent with all other defaults applied (Supporting Information Table S1). The 

resulting protonated structure consists of 282 atoms with zero net charge.  

 Structures were prepared with the AMBER63 tleap utility for classical molecular 

dynamics (MD) with the AMBER ff14SB force field64 for the peptide. Benenodin-1 contains an 

isopeptide bond between Gly1–NH3+ and Asp8–COO–, which was parameterized using 

AMBER99 force field parameters65 (Supporting Information Table S2). For each of the 20 

benenodin-1 NMR conformers in the Conformer 1 and Conformer 2 states, we constructed the 

model by solvating the conformer in a periodic rectangular box with at least a 12.0 Å buffer of 

TIP4P-Ew30,66,67 water (Supporting Information Tables S3-S4). The TIP4P-Ew water model was 

chosen for its good performance in NMR structure prediction in prior studies.30 The AMBER 

MD input files (i.e. topology and coordinate files) for the models are provided in the Supporting 

Information .zip file. 

Classical MD Simulations. The peptide models were equilibrated with MD using the 

GPU-accelerated pmemd form of AMBER.68,69 The equilibration steps were as follows: i) 2000 

minimization steps, ii) 10-ps NVT heating to 300 K with a Langevin thermostat with collision 
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frequency of 1.0 ps-1 using a random seed, and iii) 10-ps NpT equilibration using the Berendsen 

barostat with a pressure relaxation time of 2 ps. These steps were followed by a 100 ns NpT 

production run. Throughout the equilibration and production runs, the peptide backbone atoms 

(i.e., Ca, C, O, and N) were restrained using harmonic potentials with 20 kcal/mol.Å2 force 

constants. The positional restraints were employed here to ensure the backbone in each NMR 

conformer was preserved while sidechain motions were sampled (Supporting Information Figure 

S1). The restraining potential on the backbone is also used to ensure the high percentage of the 

cis-configurations (55% of NMR configurations) of the isopeptide bond in benenodin-1 in 

comparison to typical peptides (<0.1%)70 (Supporting Information Figure S2). The SHAKE 

algorithm71 was applied to all bonds with hydrogen atoms in combination with a 2-fs timestep 

for all MD simulations. For the long-range electrostatics, the particle mesh Ewald method was 

used with a 10-Å real space electrostatic cutoff. For each of the Conformer 1 and Conformer 2 

states, the production runs result in a total of 2.0 μs (i.e., 20 models x 100 ns/model) trajectories, 

from which we removed all water molecules. We then extracted snapshots every 100 ps for a 

total of 200,000 peptide structures for the conformational entropy calculations. We also extracted 

100 peptide conformers for QM geometry optimizations spaced 20 ns apart (see next).  

Conformational Entropy Calculations. The PARENT program72 was employed to 

compute the conformational entropy. With the protein structural ensemble as input, the program 

first transforms the peptide Cartesian coordinates to internal bond, angle, and torsion angle 

coordinates. With a default setting of 50 bins, a histogram-based approach was then employed to 

estimate the probability density function for each degree of freedom (DOF) and the joint-

probability density function between DOFs. These probability density functions are employed to 

compute the one-dimensional entropy terms and the higher-order entropy terms using mutual 
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information spanning tree approximations73. To ensure statistical convergence, we benchmarked 

the dependence of total conformational entropy on structural ensemble sizes for Conformer 1 and 

Conformer 2 (i.e., the number of conformers) and determined the analysis was converged with 

an ensemble size of 100,000 structures (Supporting Information Figure S3).  

Quantum Mechanical Modeling. We performed geometry optimizations and single point 

energy calculations corrections on 100 conformers for each of the Conformer 1 and Conformer 2 

states with range-separated hybrid density functional theory (DFT). All DFT calculations were 

carried out using a developer version of the GPU-accelerated code TeraChem34,58,59. The long-

range-corrected, range-separated wPBEh74 (w=0.2 bohr-1) exchange-correlation functional was 

employed in conjunction with the 6-31G75 basis set for geometry optimizations. Additionally, 

empirical dispersion (i.e., D3) corrections were included76,77 with Becke-Johnson damping. The 

full 282-atom benenodin-1 peptide was modeled as a closed shell singlet with a net charge of 0, 

and the solvent environment was modeled implicitly. The C-PCM implicit solvent model78,79 

implemented in TeraChem40,80 was employed with ε=78.4 and default 1.2x Bondi radii81 to build 

the cavity. Basis set and functional sensitivities were found to be modest in ranking relative 

conformer energies (Supporting Information Figures S4-S6). On each of these conformers, single 

point energies were obtained with wPBEh and B3LYP functionals in conjunction with a larger, 

polarized 6-31G(d) and 6-311G(d,p) basis set. Geometry optimizations were carried out in 

translation-rotation internal coordinates (TRIC)82 with L-BFGS. The convergence criteria were 

loosened from their defaults by an order of magnitude due to the large size of the model, with a 

maximum for the gradient of 4.5x10-3 hartree/bohr and maximum change in energy between 

steps of 1.0x10-5 hartree. All final QM-optimized geometries and single point energies are 

provided in the Supporting Information .zip file. 
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3. Results and Discussion. 

3a. Loss of Hydrogen Bonding Interactions Elevates the Energy State of Conformer 2. 

We first performed QM calculations to study the electronic energy distribution of the two 

conformational states (shown in gray and red for Conformer 1 and Conformer 2, respectively, 

top, Figure 2). We conducted geometry optimizations with range separated hybrid DFT along 

with a modest double-z basis set and refined these energies with single points using polarization 

functions (see Computational Details). Benchmarks with other methods and basis sets yielded 

comparable results and are reported in the Supporting Information (Supporting Information 

Figures S4-S5). Calculations were carried out on representative geometries of Conformer 1 and 

Conformer 2 obtained from MD simulation (Figure 2). The distribution in energies for structures 

sampled in each state corresponds roughly to a right-skewed Gaussian distribution with a longer 

tail extending to higher energy conformational states. Despite having a wide range of energy 

distribution, Conformer 1 is statistically more favored than Conformer 2 by 2.7 kcal/mol using 

Boltzmann averaging. We adopted Boltzmann averaging due to its relevance to characterize 

energy state of canonical ensemble in thermodynamic equilibrium.83,84 The computed energy gap 

of 2.7 kcal/mol is consistent with the experimental trend for ∆H (i.e., 4 kcal/mol). The agreement 

is particularly good considering that we neglected vibrational zero-point energy corrections due 

to the high cost of computing Hessians for such large systems. We also neglected the P∆V term, 

which is known to contribute a trivial part to chemical processes in solution under ambient 

conditions.  The current model also employs an implicit solvent model to describe the aqueous 

environment in the QM energy calculation, and explicit treatment of water molecules in future 

work could also lead to shifts in hydrogen bonding between residues (see next).  
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Figure 2. (Top) Distribution of electronic energies for 100 optimized geometries of Conformer 1 
(grey) and Conformer 2 (red). The geometries were sampled by using NMR-guided MD 
simulations. Each geometry was optimized using ωPBEh/6-31G method followed by single point 
energy corrections using ωPBEh-D3/6-311g(d,p). Both calculations were conducted in implicit 
water model. The relative energy values of the geometries were computed with reference to the 
energy of the lowest-energy geometry of Conformer 1. The gray and red dashed line represent 
the averaged energy values for Conformer 1 and Conformer 2 using Boltzmann averaging. 
(Bottom) The lowest-energy geometries in the Conformer 1 and Conformer 2 ensemble. The 
lasso peptide backbone is colored in gray. The sidechains of residues (i.e., Gly5, Arg6, Pro7, 
Glu14, Gln15, and Met19) and the isopeptide bond (between Gly1 and Asp8) are shown in 
sticks, where carbon, oxygen, nitrogen atoms are colored in grey, red, and blue. The hydrogen 
bonds between Glu14/Gln15 and nearby residues are colored in yellow dashes.   

 

To understand why Conformer 1 is more stable than Conformer 2, we studied the lowest-

energy geometries for each conformational state (Figure 2). For these two cases, there are 

notable differences in the hydrogen bonds (H-bonds) formed between Glu14/Gln15 and nearby 
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residues (Figure 2). Changes in the orientation of these two residues induce significant 

rearrangement of hydrogen bonding network during the conversion from Conformer 1 to 

Conformer 2. 50,51 Specifically, Gln15 forms H-bonds to the charged C-terminus of Met19 and 

polar Pro7 as well as positively charged Arg6 in Conformer 1 (Figure 2).  In conformer 2, the 

hydrogen bonding pattern of Gln15 is different (Figure 2). The backbone of Gln15 forms 

hydrogen bonds to the backbone amide nitrogen of nonpolar Gly1, its sidechain oxygen acts as a 

hydrogen bond to the backbone amide nitrogen of Gly5, and the sidechain nitrogen acts as a 

hydrogen bond donor to Glu14 in Conformer 2 (Figure 2). Although the number of H-bonding 

residues remains the same for Gln15, this process involves a replacement of two charge-assisted, 

double-hydrogen bonds27,85 in Conformer 1 (i.e., Gln15-Met19 and Gln15-Arg6) by two single-

hydrogen bonds, leading to a reduction of the total number of hydrogen bonds. At the same time, 

Glu14 shifts its H-bonding partner from nonpolar Gly5 in Conformer 1 to both a sidechain-

sidechain hydrogen bond polar Gln15 and a backbone-backbone hydrogen bond to the amide 

nitrogen of Asp8 in Conformer 2. Overall, the conversion from Conformer 1 to Conformer 2 

involves a net loss of one intra-peptide hydrogen bond, which contributes to destabilize 

Conformer 2. Overall, the relatively similar number of hydrogen bonds is consistent with the 

only slight (ca. 2-3 kcal/mol) destabilization of Conformer 2 over Conformer 1.  

3b. Configurational Entropy Analysis Reveals the Important Roles of Glu14 and Gln15.  

Next, we investigated the change of configurational entropy72,73,86 during the 

conformational conversion. The total configurational entropy of a molecule can be expressed as: 

𝑆(𝑥!, … , 𝑥") =	– 𝑅 ∫ 𝐽(𝑥!, … , 𝑥") 𝜌(𝑥!, … , 𝑥")𝑙𝑛𝜌(𝑥!, … , 𝑥")𝑑𝑥!…𝑑𝑥"   (1) 
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where m is the total number of degrees of freedom (i.e., 3N–6 for nonlinear molecules with N 

being the number of atoms). In eqn. (1), J represents the Jacobian determinant associated with 

the coordinate variables xi (i = 1, …, m), where xi are the internal (i.e., bond, angle, torsion) 

coordinates. Internal coordinates are preferred to avoid spurious correlations that may be present 

the Cartesian coordinate representation. Using the second-order mutual information spanning 

tree (MIST) method,73 the full dimensional configurational entropy can be truncated to: 

𝑆"
#$%&!(𝑥!, … , 𝑥") = 	∑ [𝑆!(𝑥')	–	

𝑚𝑎𝑥
𝑗 ∈ {1, … , 𝑖 − 1}𝐼(=𝑥'; 𝑥)?]

"
'*!      (2) 

where S1 represents the one-dimensional (1D) entropy calculated using the marginal probability 

density function of xi. The I2 term represents the mutual information between two coordinate 

variables xi and xj, which can be expressed as: 

𝐼(=𝑥'; 𝑥)? ≡ 	𝑆!(𝑥') +	𝑆!=𝑥)?	–	𝑆(=𝑥' , 𝑥)?        (3) 

where S2 represents the entropy calculated using the two-dimensional (2D) joint probability 

density function of xi and xj.  

By combining eqns. (2) and (3), we can calculate the configurational entropy value of a 

conformational ensemble using the 1D- and 2D-entropy terms derived from the probability 

density functions of the coordinate variables xi and xj. The distribution of the 1D and 2D 

probability density functions can be estimated using a histogram-based approach (see Sec. 2). An 

example of the outcomes of this analysis can be observed for how representative angle variables 

are coupled for the Glu14 residue in ensemble of Conformer 1 (Figure 3).  
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Figure 3. Schematic for computing the conformational entropy. S1(xi) represent the one-
dimensional entropy for the variable xi. The coordinate variables, xi and xj, are shown for the 
example of two adjacent angles of Glu14. S2(xi, xj) represents the two-dimensional entropy for 
the joint probability distribution of xi and xj. The conformational ensemble of Conformer 1 is 
represented by an overlap of 10 geometries at left. The lasso peptide backbone is colored in gray. 
The sidechain of Glu14 is shown in sticks, where the carbon and oxygen atoms are colored in 
grey and red, respectively. 

 

We extracted geometries from 2.0 μs of MD trajectories to compute the converged 

configurational entropy values for Conformer 1 and Conformer 2 (Supporting Information 

Figure S3). From this analysis, we conclude that the entropy of Conformer 2 is higher than that 

of Conformer 1 by 14.4 cal/(mol·K). This difference is consistent with the experimentally 

measured ∆S value between these two conformers (i.e., 12.0 cal/(mol·K)). Using eqn. (2), we 

decomposed the 14.4 cal/(mol·K) entropy difference to a sum of the 1D entropy (i.e., 9.2 

cal/(mol·K)) and negative 2D mutual information (i.e., 5.2 cal/(mol·K)). This indicates that the 

ensemble of Conformer 2 exhibits a broader conformational distribution (i.e., 1D entropy is 

larger) and more de-coupled intra-peptide residue motion (i.e., the 2D mutual information is 

smaller). 

To understand the origin of entropic favorability of Conformer 2 over Conformer 1, we 

computed the variation of by-residue-sum 1D entropy values and negative 2D mutual 
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information values for each benenodin-1 ∆C5 residue. We sorted the entropic variation values of 

all residues and ranked them based on their favorability in Conformer 1 or Conformer 2. For the 

1D entropy change from Conformer 1 to 2, the entropy values for 9 residues exhibit negative 

changes, indicating the shrinkage of their conformational space, whereas 10 residues have 

positive changes and thus expansion of their conformational variation (Figure 4). Thus, the 

changes of residue entropy values are compensating. This phenomenon may be expected because 

the enhanced flexibility of a residue may restrict the motion of other spatially proximal 

residues.87 Gln15 has the most positive change of 1D entropy (i.e., 9.2 cal/(mol·K)) from 

Conformer 1 to Conformer 2, which is more than twice the entropy change of the following 

residue on the rank (i.e., Glu14 with 4.3 cal/(mol·K)). This indicates that Gln15’s conformational 

space is significantly enlarged in Conformer 2. Two reasons may contribute to this phenomenon. 

First, unlike the Conformer 1 in which Gln15 and Glu14 are constrained to bracket the lasso ring, 

Conformer 2 leaves sufficiently large space for Gln15 and Glu14’s side chain to adopt a variety 

of vibrational modes and states. The lengthening of the threaded loop (i.e., 8 aa in Conformer 2, 

compared to 6 aa in Conformer 1) also mobilizes the backbone atoms of Gln15 and Glu14, 

which, combined with their more flexible side chain, further enhances the conformational space 

of Gln15 and Glu14.  
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Figure 4. Variation of by-residue-sum 1D entropy values for each benenodin-1 residue upon 
converting from Conformer 1 to Conformer 2. All residues are sorted and populated on a 
continuous gradient bar based on their entropic variation, in which a negative or positive value 
indicates their favorability towards Conformer 1 (blue) or 2 (red), respectively.  
 

Consistent with the hypothesis that compensation can occur due to changes in the lasso 

ring, the residues on the lasso tail from Ala16 to Met19 have slightly increased 1D entropy, 

albeit with a lower value than Gln14 or Glu15, whereas the residues on the lasso ring from Gly1 

to Asp8 involve a decreased 1D entropy value (Figure 4). The loss of charge-assisted, double-

hydrogen bonds between the Gln15 sidechain and Met19 also allows Gln15 to adopt more 

rotamers. Notably, Met19 has the third most-enhanced entropy values by rank from Conformer 1 

to 2 (i.e., 3.6 cal/(mol·K)), which is likely a consequence of the C-terminal carboxylate not 

forming any strong hydrogen bonds, leading to enhanced backbone and side-chain motion. These 

differences in Conformer 1 and 2 depend on the size and polar nature  of Gln15’s side chain. 

Thus, mutating Gln15 to alanine should reduce the favorable shift in entropy of Conformer 2 

because of a reduced bulkiness and abolished hydrogen-bonding capability of the side chain, 

helping to explain the exclusive observation of Conformer 1 in the Gln15Ala mutant in 

experiment.50    
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 As in the case of 1D mutual information, the changes of residue 2D mutual information 

values also appear to involve compensation. From Conformer 1 to Conformer 2, the mutual 

information becomes larger for 10 residues and smaller for 9 residues (Figure 5). An increased 

mutual information value indicates an enhanced correlated motion among residues. The same 

group of residues that involved an enhanced 1D entropy (i.e., from Glu14 to Met19) also exhibit 

enhanced mutual information that could be a consequence of enhanced collective motion of 

threading and stretching. A large portion of residues on the lasso ring that have diminished 1D 

entropy also show decreased mutual information (e.g., from Gly5 to Asp8, now colored in red, 

Figure 5). Conversely, Glu14 exhibits the most significant increase in mutual information 

(Figure 5). As the magnitude of mutual information changes proportionally with the size of the 

residue, replacing Glu14 with alanine to reduce the size would reduce the magnitude of coupling 

and eliminate the enhanced mutual information by a significant amount. As such, compared to 

the wild-type benenodin-1, the Glu14Ala is expected to have an even more favorable the 

entropic increase in Conformer 2. This computational analysis thus explains the exclusive 

observation of Conformer 2 in the Glu14Ala mutant.50  

 

  
Figure 5. Variation of by-residue-sum two-dimensional mutual information values for each 
benenodin-1 residue upon converting from Conformer 1 to Conformer 2. The negative mutual 
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information values are adopted here to ensure a consistent sign notation to that used in Figure 4. 
All residues are sorted and populated on a continuous gradient bar based on their mutual 
information variation, in which a negative or positive value indicates their favorability towards 
Conformer 1 (blue) or 2 (red), respectively.  

 

4. Conclusions.  

The protein benenodin-1 is a naturally occurring mechanically-interlocked lasso peptide 

rotaxane switch that can exist in either Conformer 1 or Conformer 2. Experimentally, the 

conversion from Conformer 1 to Conformer 2 is enthalpically uphill but entropically favorable, 

but the origin of these differences had been unknown. Through a combination of QM and MM 

MD calculations, we aimed to decompose by-residue contributions to these differences in the 

conformer. Based on the lowest energy geometries computed by QM simulations, we showed 

that Conformer 1 and Conformer 2 involve different hydrogen bonding interactions as a result of 

the differences in placement of Gln15. Compared to Conformer 1, Conformer 2 involves a net 

loss of hydrogen bonds, which contributes to the diminished (i.e., by around 3 kcal/mol) 

stability.  

Based on the ensemble of geometries sampled using MD, we computed the 

configurational entropies for Conformer 1 and Conformer 2 within the second-order mutual 

information spanning tree approximation. In contrast to Conformer 1, Conformer 2 involves a 

substantially enhanced conformational flexibility (i.e., enhanced 1D entropy values) and reduced 

intra-peptide correlated motions (i.e., reduced 2D mutual information values). From the by-

residue-sum entropies, Gln15 involves the largest increase in 1D entropy values, indicating its 

significantly increased conformational flexibility in Conformer 2. In addition, Glu14 had the 

largest increase in 2D mutual information values from Conformer 1 to 2, indicating its 

significantly enhanced correlated motions with the rest of the residues in the peptide. Mutation of 
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Glu14 to Ala could thus be expected to favor Conformer 2, whereas Gln15 mutation to Ala could 

be expected to favor Ala, consistent with experimental observations. Further calculations on the 

Glu14Ala and Gln15Ala mutants are needed to elucidate how other weak interactions and 

protein dynamics collectively affect the equilibrium distribution. Nonetheless, we expect that 

these quantitative studies inform a strategy to evaluate and even predict the molecular switching 

behaviors of lasso peptide, which can be used to rationally design and engineer other thermally-

responsive biomolecules.  
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