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Abstract

The speed of sound depends on the structure and on the material properties of
the crystal, such as the density and the Young’s modulus. On the other hand,
from atomistic arguments it is possible to link the Young’s modulus to other
material properties. These observations drive to a relation between the binding
energy of the atoms in a crystal (which is one of the parameters appearing in the
Mie-Lennard-Jones potential), the speed of sound in the longitudinal direction
and the mass of one atom in the lattice. Applications of this relation to noble
gases and few metals are presented and the results compared to others taken
from literature.
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1. Introduction

The speed of sound in solids depends on the structure and on the material
properties of the crystal. When the medium is a bar, the speed of sound cs, in
the longitudinal direction, can be expressed in terms of the ratio between the
Young’s modulus Y and the density ρ [1]:

c2s = Y/ρ. (1)

On the other hand, the Young’s modulus, defined as the ratio between the
strain and the stress, can be derived from atomistic arguments [2,3] based on
the Mie-Lennard-Jones potential [4].

Combining the two expressions we obtain a relation between the binding
energy and the speed of sound in the crystal, in the longitudinal direction. Its
derivation is presented in Sec. 2.
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Figure 1: The Mie-Lennard-Jones potential.

2. Theory

2.1 Young’s modulus from Mie and Lennard-Jones potential
The Mie potential is a simple particle-pair potential composed of two terms

representing the repulsive and attractive forces between the particles. Following
the approach proposed in refs. [2,3], it is used here to represent the forces acting
between the atoms in the crystal. Its formulation is the following one [5,6]:

U(r) =
ε

m− n

(
n
(r0
r

)m
−m

(r0
r

)n)
, (2)

where ε is the binding energy of the interacting particles (the energy required
to separate them) and r0 is the equilibrium distance between two particles. The
exponents depend on the material.

A most used form, with n = 6 and m = 12, is the 12-6 Lennard-Jones
potential [e.g. 7]:

U(r) = ε

((r0
r

)12
− 2

(r0
r

)6
)
. (3)

With reference to Fig. 1, which plots function U(r), parameters ε and r0
are the depth of the potential U(r) and its position, respectively.

The Young’s modulus can be obtained from the definition of the Mie po-
tential. Taking the derivative of the potential provides the force between the
particles:

F (r) = − mn

(m− n)

ε

r

((r0
r

)m
−
(r0
r

)n)
, (4)
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Figure 2: Cubic lattices: simple, body centered and face centered.

It can be seen that F (r0) = 0, which proves that for r = r0 the potential U(r)
has a minimum. In the framework of our approach, r0, which is the equilibrium
distance, is also the size of the crystal cell as illustrated by the simple cube (sc)
lattice in Fig. 2, representative of the internal structure of the bar.

Let us apply a force F to the bar extremities. The atoms will be displaced
from r0 to r. Young’s modulus Y is defined as the ratio between stress (force
per unit surface, F (r)

/
r20 ) and strain (relative deformation, (r − r0) /r0) in

the limit as the strain goes to 0. Therefore, in mathematical terms, Young’s
modulus can be written as:

Y = lim
r→r0

F (r)
/
r20

(r − r0) /r0
. (5)

Taking into account that F (r0) = 0, Eq. (5) can be written as:

Y =
1

r0
lim
r→r0

(F (r) − F (r0))

(r − r0)
, (6)

which, in virtue of the derivative definition, is equivalent to:

Y =
1

r0

dF (r)

dr

∣∣∣∣
r=r0

. (7)

Computing the derivative of F (r) from Eq. (4) we obtain:

Y = mn
ε

r30
. (8)
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2.2 Relation between binding energy and speed of sound

From Eq. (1) and Eq. (8) we obtain:

c2s = mn
ε

ρr30
. (9)

The term at denominator, ρr30 , i.e. the density multiplied by the atom-cell
volume, is the mass M of a single atom-cell in a cubic lattice, where a simple
cubic structure has been assumed, which enables writing:

ρ = M
/
r30 . (10)

Substituting Eq. (10) into Eq. (9) provides the relation between binding
energy and speed of sound in the longitudinal direction:

ε =
Mc2s
mn

. (11)

Even if it has been assumed a simple cubic structure, this relation is valid
for body centered (bcc) and face centered (fcc) cubic structures (see Fig. 2) as
well (cf. Appendix A).

3. Values of binding energy for several elements

Eq. (11), has been used to compute the binding energy ε for several elements
having cubic structure, where the mass of the atom M is defined as the ratio
between the atomic weight A and the Avogadro number NAv:

M = A /NAv . (12)

The elements studied are: 4 noble gases, Ne, Ar, Kr and Xe, which at
solid state have fcc crystal structure [8], 7 metals with fcc and 3 metals with
bcc structure. Both the 12-6 Lennard-Jones and Mie potentials have been used.
The data used in the formula, taken from references [9-13], is presented in Table
1.

3.1 Values of binding energy using the 12-6 Lennard-Jones potential

For this formulation Eq. (11) has been used with the values n = 6 and
m = 12. The results for 4 noble gases are presented in Table 2 and compared
to the ones obtained by Horton [6] solving a two-equation system set by fit of
two crystal properties: the sublimation energy and the 0◦K lattice size. The
results for 8 metals are presented in Table 3 and compared to the ones obtained
by Heinz et al. [7] and Kanhaiya et al. [14], who used a molecular dynamics
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Table 1: Data used in the evaluation of the binding energy for the elements studied.

Atomic Crystal Speed of Reference
Weight Structure Sound (m/s)

Ne 20.149 fcc 1290. [9]
Ar 39.948 fcc 1630. [10]
Kr 83.8 fcc 1335. [11]
Xe 131.3 fcc 1150. [12]
A1 26.9815 fcc 6420. [13]
Au 196.967 fcc 3240. [13]
Pb 207.2 fcc 2160. [13]
Ni 58.6934 fcc 6040. [13]
Pt 195.078 fcc 3260. [13]
Ag 107.868 fcc 3650. [13]
Cu 63.546 fcc 4760. [13]
Fe 55.845 bcc 5950. [13]
Mo 95.94 bcc 6250. [13]
W 183.84 bcc 5220. [13]

approach. The results for molybdenum and tungsten are also provided but no
comparison is available.

Table 2: Binding energy (eV) for noble gases using the 12-6 Lennard-Jones potential.

This work Horton
Ne 0.00483 0.0045
Ar 0.01528 0.01473
Kr 0.0215 0.02028
Xe 0.025 0.02859

3.2 Values of binding energy using the Mie potential

For this formulation Eq. (11) has been used with the values of n andm taken
from Magomedov’s work [5]. The results for 4 noble gases and 10 metals are
presented in Tables 4 and 5, respectively, and compared to the ones obtained by
Magomedov [5], who used an approach based on the preservation of measured
quantities such as sublimation energy and thermal expansion coefficient. The
approximation of interaction of only nearest-neighbor atoms has been adopted.

4. Conclusion

A relation between the binding energy in crystals and the speed of sound
has been derived on the basis of the Mie and Lennard-Jones potentials. The
12-6 Lennard-Jones potential shows a quite good agreement with other results
from literature, whereas the Mie potential shows higher differences, which can
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Table 3: Binding energy (eV) for 10 metals using the 12-6 Lennard-Jones potential.

This work Heinz et al. Kanhaiya et al.
A1 0.1601 0.1743 −
Au 0.2977 0.2294 −
Pb 0.1392 0.127 −
Ni 0.3083 0.245 −
Pt 0.2985 0.3382 −
Ag 0.2069 0.1977 −
Cu 0.2073 0.2046 −
Fe 0.2846 − 0.2601
Mo 0.5395 − −
W 0.7211 − −

Table 4: Binding energy (eV) for noble gases using the Mie potential.

This work Magomedov n m
Ne 0.0028 0.0045 5.83 21.39
Ar 0.01 0.015 6.62 16.69
Kr 0.0148 0.0205 6.56 15.92
Xe 0.0173 0.0285 6.73 15.42

Table 5: Binding energy (eV) for 10 metals using the Mie potential.

This work Magomedov n m
A1 0.4239 0.5714 2.49 10.92
Au 0.7027 0.6387 1.96 15.56
Pb 0.31 0.3399 2.27 14.24
Ni 0.8149 0.7506 3.56 7.65
Pt 0.6372 0.9795 2.53 13.33
Ag 0.4673 0.4944 3.08 10.35
Cu 0.5884 0.5895 3.03 8.37
Fe 0.8975 1.0838 3.54 6.45
Mo 2.3635 1.7042 2.14 7.68
W 1.7695 2.2068 3.42 8.58
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reach 40%. It is emphasized that this relation, expressed by Eq. (11), has only
a theoretical purpose. It adopts some approximations such as to limit atoms
interactions to nearest neighbors, therefore it is not supposed to be used for
detailed calculations of interatomic interactions in crystals, where appropriate
and accurate force fields have been derived. Moreover, these force fields are
applicable to all kinds of crystals and to other forms of solid matter, whereas
our approach is limited to crystals of pure elements.

The values of the binding energy computed for various elements depend on
the form of the potential. Values associated to the 12-6 Lennard-Jones potential
cannot be compared with the ones associated to the Mie potential. This is due
to the fact that the values of the binding energy ε, the exponents n and m, the
r0 distance, have to be seen as part of an inseparable whole.
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Appendix A. Case of face and body centered cubic structures

Eq. (11), expressing the relation between the binding energy and the square
of speed of sound, has been obtained in case of simple cubic structure. We
show here that the cases of face centered (fcc) and body centered (bcc) cubic
structures respond to the same relation.

In case of fcc or bcc structures (Fig. 2), the lattice can be seen as NLat

embedded lattices with cells of size r0, where one of the lattices is related to the
vertices and:

• three others to the center of the faces, in case of fcc,
• the other one to the center of the body, in case of bcc.
Summarizing, NLat is 4 for fcc and 2 for bcc. Therefore the surface r20 is

affected by NLat pairs of interacting particles and the force appearing in Eq. (4)
has to be multiplied by NLat, which conducts to a Young modulus NLat times
higher than in the case of simple cubic structure:

Y = NLatmn
ε

r30
. (A.1)

This means that the square of the speed of sound, which is proportional to
Y according to Eq. (1), is NLat times higher too and Eq. (9) becomes:

c2s = NLat
mnε

ρr30
. (A.2)
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On the other hand, in a fcc or bcc lattice cell there is more than one atom.
This number is NLat, which drives to replace Eq. (10) by the following one:

ρ = NLatM
/
r30 . (A.3)

Substituting Eq. (A.3) into Eq. (A.2) and solving with respect to ε we
obtain the relation between binding energy and speed of sound:

ε =
Mc2s
mn

, (A.4)

which is the same as Eq. (11).
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