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ABSTRACT: The rational design of organic semiconductors based on crystalline co-

valent organic frameworks (COFs) as efficient photocatalysts is highly desirable. In 

this study, the first example of phenanthroimidazole-based COFs is reported: PIm-

COF1 with an imine linkage and PIm-COF2 with a β-ketoenamine-linkage. Both 

COF materials showed substantial optical properties. The average hydrogen evolution 

rate was 7417.5 μmolg-1h-1 for PIm-COF2, which was 20 times higher than that of 

PIm-COF1 (358.5 μmolg-1h-1). This can be attributed to the strong donor-acceptor 

effect of PIm-COF2 and the continuous separation and transfer of the photoexcited 

electron-hole pair from the phenanthro[9,10-d]imidazole moiety.  

KEYWORDS covalent-organic frameworks, photocatalytic hydrogen evolution, phe-

nanthro[9,10-d]imidazole derivatives 

INTRODUCTION 

Covalent organic frameworks (COFs) are an emerging class of 

organic semiconductor materials composed of atomically orga-

nized organic subunits connected by strong covalent bonds. The 

photocatalytic potential of COFs has already been reported.1,2 

The highly crystalline nature of COFs and long-range order in 

the material not only benefits the light-harvesting capacity and 

transfer of photogenerated electrons to the surface but also pre-

vents electron-hole pair combination.3,4 The tunability of build-

ing blocks allows for linkage diversity in COFs, such as the β-

ketoenamine linkage,5,6 triazine linkage,7,8 and olefin link-

age,9,10 which also contributes to the development of COF or-

ganic semiconductors with excellent optical and electronic 

properties. COFs have exhibited a high performance as hetero-

geneous organic photocatalysts, owing to their high porosity as 

well as good chemical and thermal stability.11-13 Three key fac-

tors are required for COFs to qualify as photocatalysts; (i) a 

broad light absorption range, (ⅱ) the separation and migration 

of photoexcited electron-hole pairs, and (ⅲ) an appropriate ox-

idation-reduction potential.14-16 Among them, the generation 

and migration rate of photogenerated electron-hole pairs deter-

mines the progress of the photocatalytic reaction. Therefore, it 

is essential to rationally design and synthesize COFs with a high 

capacity for photogenerated electron-hole separation and mi-

gration for application in photocatalysis. 

Phenanthroimidazole derivatives exhibit a rigid-planar-con-

jugate structure and ambipolar characteristics owing to the 

bonding structures of the two nitrogen atoms of the imidazole 

ring.17, 18 These derivatives have been widely employed as blue 

light-emitting materials based on their high carrier mobilities 

and conductivities, high triplet energies, and high fluorescent 

efficiencies.19-21 Therefore, the phenanthroimidazole unit is a 

good candidate for the fabrication of COFs. However, no well-

defined COF synthetic route from phenanthroimidazole 

derivaties has been reported to date. Herein, we report the first 

example of phenanthroimidazole-based COFs applied as highly 

efficient photocatalysts in the hydrogen evolution reaction 

(HER). Phenanthro[9,10-d]imidazole-5,10-diamine was syn-

thesized as a new building block and was subjected to conden-

sation with 1,3,5-benzenetricarboxaldehyde and 2,4,6-tri-

formylphloroglucinol to yield PIm-COF1 and PIm-COF2, re-

spectively, as potential photocatalysts.  

RESULTS AND DISCUSSION 

PIm-COF1 and PIm-COF2 were synthesized via the conden-

sation of 1H-phenanthro[9,10-d] imidazole-5,10-diamine 

(PIDA, 1) with different aldehyde building blocks, such as 

1,3,5-benzenetricarboxaldehyde (BTA, 2) and 2,4,6-tri-

formylphloroglucinol (TP, 3), under solvothermal conditions 

(Figure 1a and Scheme S1 ESI†). PXRD measurements were 

performed for all samples to verify the successful formation of 

PIm-COF1 and PIm-COF2. As shown in Figure 1b, PIm-

COFs exhibit a typical two-dimensional (2D) layered hexago-

nal network structure. The PXRD patterns of PIm-COF1 ex-

hibited an intense peak at 3.5° and three minor peaks at 6.9, 9.0, 

and 25.5°, which correspond to the (100), (200), (210), and (001) 



 

 

Figure 1. (a) Schematic illustration for the synthesis of PIm-COFs. (b) Experimental, Pawley-refined, and AA model simulated powder 

X-ray diffraction (PXRD) patterns of PIm-COF1 (right) and PIm-COF2 (left) (with side views of the ideal eclipsed structures). 

 

 



 

reflections, respectively. The PXRD pattern of PIm-COF2 

showed a major diffraction peak at 3.4° and three minor peaks 

at 5.9, 6.9, 9.0, and 26.0°, which correspond to the (100), (110) 

(200), (210), and (001) reflections, respectively. The experi-

mental PXRD patterns corresponded well with the patterns sim-

ulated using the eclipsed AA layer stacking model (Figure 1b; 

Figure S1). The lattice parameters of PIm-COFs were ex-

tracted using Pawley refinement with the P3 hexagonal space 

group, and low residual values and acceptable profile differ-

ences were observed (Figure 1b; Table S1 and S2). 

 

 

Figure 2. FT-IR spectra of (a) PIm-COF1 and (b) PIm-COF2, and 13C CP/MAS NMR spectra of (c) PIm-COF1 and (d) PIm-COF2. 

 

Fourier transform infrared (FT-IR) and 13C cross-polarization 

magic angle spinning (CP-MAS) nuclear magnetic resonance 

(NMR) spectroscopies were performed to examine the chemical 

composition of PIm-COF1 and PIm-COF2 (as shown in Fig-

ure 2). The FT-IR spectra of the two samples indicated the com-

plete conversion of the starting materials based on the disap-

pearance of the N−H stretching vibrational peaks of PIDA 

(3102, 3340, and 3389 cm-1). The disappearance of the C=O 

stretching vibrational peak of BTA (1695 cm-1) and the appear-

ance of the C=N stretching vibration for PIm-COF1 (Figure 2a) 

at 1625 cm-1 confirmed the formation of the imine linkage. The 

characteristic vibration of the C=O stretching band of TP (1640 

cm−1) disappeared and a strong peak at 1579 cm-1 was observed 

for PIm-COF2 (Figure 2b), which may be attributed to the C=C 

stretching vibration of the keto form. Additionally, the absence 

of hydroxyl (-OH) and imine (C=N) stretching peaks confirmed 

the existence of the keto form instead of the enol form. Solid-

state 13C NMR spectroscopy also confirms that the condensa-

tion reaction occurred to form the PIm-COF1 structure (Figure 

2c), as the spectrum exhibits a characteristic peak at 160.3 ppm, 

which corresponds to the carbon atom of the C=N bond. A sig-

nal at 186.9 ppm was observed for the PIm-COF2 structure, 

which may be attributed to the carbonyl carbon (C=O) of the 

keto form (Figure 2d). The FT-IR and XRD results, therefore, 

confirmed that PIm-COF1 and PIm-COF2 formation was suc-

cessfully achieved. 

N2 adsorption−desorption measurements at 77 K were per-

formed to elucidate the porosity of PIm-COFs (Figure S2a). 

Both PIm-COF1 and PIm-COF2 displayed a type-I isotherm, 

which indicates that the COF materials possess a microporous 

structure. The Brunauer–Emmett–Teller (BET) surface area 

was 1004 and 950 m2g-1 for PIm-COF1 and PIm-COF2, re-

spectively. PIm-COFs had a relatively uniform pore size dis-

tribution with an average pore size of 2.2 nm according to the 

nonlocal density functional theory (DFT) calculation method 

(Figure S2b). Both PIm-COFs exhibited good CO2 uptake be-

havior in the isothermic adsorption studies performed at 273 K 

(Figure S2c). However, the CO2 adsorption capacity of PIm-



 

COF2 was 64 cm3g-1, which was higher than that of PIm-

COF1 (49 cm3g-1). This may be attributed to the strong affinity 

between the structure after keto-enol tautomerization and CO2 

molecules.22,23 The thermal stability of PIm-COFs was also an-

alyzed by thermogravimetric analysis (TGA), and the PIm-

COFs were observed to be thermally stable up to 623 K (Figure 

S3). To evaluate the chemical stability, activated PIm-COFs 

samples were immersed in 0.1 M ascorbic acid, 3 M aqueous 

HCl, and 3 M NaOH solutions and DMSO at 298 K for one 

week. Notably, PIm-COF1 samples exhibited different degrees 

of loss in crystallinity, whereas PIm-COF2 retained strong dif-

fraction peaks (that is, crystallinity) (Figure S4). 

 

The morphology of PIm-COFs was analyzed using scanning 

electron microscopy (SEM), which exhibited the homogeneous 

rod-like and microsphere-like crystallites of PIm-COF1 and 

PIm-COF2, respectively. (Figure S5). The uniform texture of 

PIm-COFs was further confirmed by SEM-EDX mapping, 

which showed a homogeneous distribution of C, N, and O ele-

ments in the COF matrix. Moreover, the morphologies of PIm-

COFs were analyzed by high-resolution transmission electron 

microscopy (HR-TEM), and the results matched well with the 

SEM findings (Figure S6). 

The optical absorption properties of PIm-COFs were measured 

using Ultraviolet-visible diffuse reflectance  (UV−vis DSR) 

spectroscopy (Figure 3a), which indicated that PIm-COFs sam-

ples possessed band structures sufficient to absorb visible light. 

The optical band gap energy of PIm-COF1 and PIm-COF2 

were 2.34 and 2.13 eV, respectively, which was obtained from 

the Tauc function (αhν)2 that is related to the incident photon 

energy, as shown in Figure 3b. Notably, the UV−vis spectra of 

PIm-COF1 and PIm-COF2 occupied a broader region com-

pared with that of the secondary unit PIDA. PIm-COF2 exhib-

ited a broader light absorption region compared to PIm-COF1, 

which may be ascribed to the enhanced D-A structure with a 

stronger conjugation effect between the β-ketoenamine linkage 

and PIDA ligand.24-26 MS measurements were performed to de-

termine the semiconductor type and flat band positions of PIm-

COFs (Figure 3c). The positive slopes observed for both PIm-

COF1 and PIm-COF2 indicated an n-type semiconducting na-

ture. The calculated conduction-band positions were -1.33 and 

-1.17 eV for PIm-COF1 and PIm-COF2, respectively. Com-

bined with the bandgap determined from UV-vis DSR data, the 

valence-band position was determined as 1.01 and 0.96 eV for 

PIm-COF1 and PIm-COF2, respectively (Figure 3d). 

The photoelectrochemical properties of the PIm-COFs were 

evaluated by Electrochemical impedance spectroscopy (EIS) 
and transient photocurrent measurements. From Figure 4a, 

Nyquist curves show that the semicircular radius of PIm-COF2 

is smaller than that of PIm-COF1, indicating that the PIm-

COF2 has a lower charge transfer resistance and more rapid 

transfer of the photoinduced electrons than those of PIm-COF1. 

This result was further confirmed by the photocurrent measure-

ments (Figure 4b). As expected, the intensity of the transient 

Figure 3. (a) UV−vis DSR  spectra of PIm-COF1 (blue curve), PIm-COF2 (orange curve), and ligand PIDA (black curve). (b) Tauc 

plot transformed reflectance spectra. (c) MS plot for PIm-COF1 (blue curve) and PIm-COF2 (orange curve).  (d) Energy levels of 

PIm-COFs. 



 

photocurrent response of PIm-COF2 was higher than that of 

PIm-COF1. Moreover, the photoluminescence (PL)  spec-

trum of PIm-COF2 showed an emission peak at 620 nm with a 

very low intensity compared to that of PIm-COF1 observed at 

588 nm (Figure 4c). 

 

A broad visible light absorption range, suitable band posi-

tions, and a high separation efficiency of electron-hole pairs en-

able the application of PIm-COFs as photocatalysts in the HER. 

Their photocatalytic HER activity was evaluated in an aqueous 

solution with the irradiation of visible light (λ ≥ 420 nm). Ascor-

bic acid was used as a sacrificial agent, and in situ photodepos-

ited Pt nanoparticles (from H2PtCl6) served as cocatalysts. The 

average rate of HER was 7417.5 μmolg-1h-1 for PIm-COF2, 

which was 20 times higher than that of PIm-COF1 (358.5 

μmolg-1h-1) under optimal reaction conditions (Figures 4d, 4e, 

and S7). The photocatalytic activity of these PIm-COFs was 

also evaluated without the Pt cocatalyst, and PIm-COF2 was 

found to retain an HER reactivity of 84.6 μmolg-1h-1 (Figure S7). 

In the absence of a catalyst in the reaction system, no H2 was 

generated. These findings further support the excellent optical 

properties and photocatalytic activities of newly synthesized β-

ketoenamine linked PIm-COF2.  

The apparent quantum efficiency (AQE) was determined to 

evaluate the photocatalytic activity of the PIm-COF samples 

(See Supporting Information). Although an AQE of 0.12 % was 

determined for PIm-COF1, the AQE of PIm-COF2 could 

reach up to 2.52 %, which is among the highest efficienies re-

ported to date compared to other β-ketoenamine linked COFs 

used as HER photocatalysts (Table S3). Apart from its excellent 

photocatalytic performance, PIm-COF2 exhibited high photo-

catalytic stability that was determined by performing cycling 

experiments for up to 28 h under visible-light irradiation. PXRD 

patterns indicated that PIm-COF2 maintained its structural in-

tegrity even after 7 cycles (Figure 4f and S8). 

The excellent photocatalytic activity of PIm-COF2 may be 

attributed to (i) high carrier mobilities, conductivities, and visi-

ble light adsorption capacity, which were enhanced by the phe-

nanthro[9,10-d]imidazole derivative, (ⅱ) the strong donor-ac-

ceptor effect between the 1H-phenanthro[9,10-d] imidazole 

moiety and keto-form building blocks transformed by enol-keto 

tautomerism, and (ⅲ) the 2D extended crystalline porous struc-

ture with improved light absorption regions, charge transfer, 

and interactions with aqueous solutions. 

CONCLUSION 

In summary, a new 1H-phenanthro[9,10-d] imidazole-5,10-dia-

mine derivative was successfully incorporated into a COF 

framework to form 2D PIm-COFs. The H-phenanthro[9,10-d] 

imidazole moiety imparted PIm-COFs with excellent optical 

properties. Significantly, β-ketoenamine linked PIm-COF2 

showed an enhanced donor-acceptor effect that resulted in a 

broadened visible light absorption region, a narrowed optical 

band gap, and an accelerated charge separation and transfer. 

These properties resulted in a substantial photocatalytic perfor-

mance between PIm-COFs in the HER. 
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