1	Rhodium Disulfur and Dioxygen Complexes: Examination of Boron
2	Secondary Coordination Sphere Effects
3	Devon Facchinato, Joseph A. Zurakowski, and Marcus W. Drover*
4	*Department of Chemistry and Biochemistry, The University of Windsor,
5	401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
6	E-mail: <u>marcus.drover@uwindsor.ca</u>
7	
8	Abstract:
9	A series of diphosphine-ligated rhodium(III) η^2 -peroxo and -persulfido compounds are targeted

with sp ıga ւբ 10 one subset containing a boron-rich secondary coordination sphere (SCS). A systematic investigation using 11 both experimental and theoretical methods has been performed to assess whether peripheral boranes can be 12 used to engage with rhodium(III)-bound chalcogenides. For the model compound, [Rh^I(dnppe)2]BPh4 13 (dnppe = 1,2-bis(di-n-propylphosphino)ethane), adducts of the form $[Rh^{1}(dnppe)_{2}(\eta^{2}-Ch_{2})]BPh_{4}$ (Ch = O or S) were characterized. For the octaboranyl compound, $[Rh^{1}(P_{2}B^{Cy_{4}})_{2}]BPh_{4}$ ($P_{2}B^{Cy_{4}} = 1,2$ -bis(di(3-14 15 dicyclohexylboranyl)propylphosphino)ethane), however, treatment with O₂ resulted in SCS decomposition 16 via B–O bond formation, while reaction with 0.25 equivs. S₈ provided [Rh^I(P₂B^{Cy₄})₂(η^2 -S₂)]BPh₄, which based 17 on variable-temperature ³¹P NMR spectroscopic measurements, does not exhibit a B-S interaction. Using a 18 compound with a single pendant borane as a model, potential energy surface (PES) scans were found to 19 suggest kinetic and thermodynamic feasibility of a B–O interaction with $\Delta G(B-O) = -2.5$ kcal mol⁻¹; a 20 stationary point for the related B–S system was not located.

21 Keywords:

22 Boron | Secondary Coordination Sphere | Oxygen | Sulfur

23 <u>1. Introduction:</u>

Diphosphine-ligated rhodium (Rh) and iridium (Ir) complexes have a storied history of chalcogen (Ch) bond activation, providing some of the first examples of {[M]- η^2 -Ch₂} (M = Rh, Ir, Ch = O, S, Se) compounds.^{1,2,3,4,5,6,7} For dioxygen, such adducts are particularly noteworthy, representing some of the first fragments showing reversible uptake. Representatives of this class, [M(dppe)₂(η^2 -O₂)]⁺ (M = Rh, Ir, dppe = 1,2-*bis*(diphenylphosphino)ethane), were also some of the first dioxygen compounds to be characterized in the solid-state by X-ray crystallography.⁵ It is thus unsurprising that the robust synthesis of such phosphine-

1 ligated Group 9 compounds has led to several studies on chalcogen functionalization, including dioxygen 2 reduction, oxygen- and -sulfur-atom transfer, and reactivity with electrophiles and nucleophiles. As an 3 example, Braun and co-workers showed that the η^2 -peroxo compound, trans-[Rh(4-C₅F₄N)(CN^tBu)(PEt₃)₂(η^2 - O_2] underwent {[Rh]-O} bond cleavage on exposure to HBPin (BPin = 4,4,5,5-tetramethyl-1,3,2-4 5 dioxaborolane) to provide the boron-protected k¹-O-peroxo rhodium(III) complex, trans-[Rh(4-6 C_5F_4N (CN⁴Bu)(PEt₃)₂(κ^1 -OOBPin)(H)] (Figure 1A).⁸ In a related transformation, the iridium(III) congener, 7 trans-[Ir(4-C₅F₄N)(CNⁱBu)(PⁱPr₃)₂(η^2 -O₂)] was shown to undergo reaction with ClBCy₂ to give trans-[Ir(4-8 C5F4N)(CN/Bu)(PPr3)2(Cl)2] in addition to Cy2BOBCy2 and (CyBO)3, likely through the intermediacy of 9 Cy2BO-OBCy2, sourced from a structurally similar k¹-OOBCy2 peroxy compound, trans-[Ir(4-10 C_5F_4N)(CN^{*i*}Bu)(P^{*i*}Pr₃)₂(κ^1 -OOBCy₂)(Cl)] (Figure 1B).⁹ In the context of sulfur chemistry, [Ir(dppe)₂(η^2 -S₂)]⁺ 11 was observed to undergo methylation using methyl fluorosulfonate (CH_3SO_3F) to give $[Ir(dppe)_2(\eta^2-$ 12 $(SCH_3S)^{+,10}$ whereas $[Rh^{II}(\kappa^2-dppe)(\kappa^1-dppe)(\eta^2-S_2)(H)]$ was found to promote thiirane formation using 13 substituted norbornenes¹¹ (Figure 1A).

In a recent contribution, we reported on the synthesis of a rhodium(I) *bis*(diphosphine) compound, [Rh^I(P₂B^{Cy₄})₂]BPh₄ (1) (P₂B^{Cy₄} = 1,2-*bis*(di(3-dicyclohexylboraneyl)propylphosphino)ethane) that was found to be reactive toward nucleophiles (hydride and alkyl anions), undergoing functionalization at its boron-rich SCS and not at rhodium.¹² This report was particularly thought-provoking given the similarity in hydride

1 donor strength (ΔG_{H-}) between the putative (and unobserved) {[Rh]-H} "[Rh(P₂B^{Cy₄})₂(H)]" and a trialkyl-2 substituted borohydride, [BR₃H]⁻. Continuing our studies on this class of compound, and given the ample 3 precedent for chalcogen activation by [Rh^I(diphosphine)₂]⁺ compounds, we were interested to test whether a 4 Lewis acidic SCS could be used for chalcogen activation/coordination. As motivations for this study - we 5 asked the following: (1) on the basis of theoretical considerations, would these intramolecular B-Ch6 interactions be energetically favorable?; (2) given its bulky secondary coordination sphere (SCS), would 7 $[Rh^{1}(P_{2}B^{Cy_{4}})_{2}]^{+}$ react with O₂ or S₈, and if so, would the boron-rich SCS provide stabilization via 8 intramolecular Lewis adduct formation?; or (3) on exposure to O2, would the SCS decompose to provide 9 boroxines such as those noted in the examples above? and finally, (4) would the spectral and/or structural 10 characteristics of such putative $[Rh(P_2B^{Cy_4})_2(\eta^2-Ch_2)]^+$ (Ch = O, S) compounds differ from those of an 11 archetypical model compound, such as $[Rh(dnppe)_2(\eta^2-Ch_2)]^+$ (d*n*ppe 1,2-bis(di-n-12 propylphosphino)ethane), which lacks boron functionality? Answers to these queries are the focus of 13 ensuing discussion.

14 2. Results and discussion:

15 **2.1 Theoretical considerations:**

16 We first wished to assess the thermodynamics of intramolecular $[Ch_2]^2$ (Ch = O, S) stabilization by 17 $[Rh^{III}(dmpe)(Me_2BCH_2CH_2P(Me)CH_2CH_2P(Me)_2)(\eta^2-Ch_2)]^+$ boron using (dmpe 1,2-18 bis(dimethylphosphino)ethane) as a simplified model and calculated potential energy surfaces (PESs) as aids 19 (see, ESI[‡], Figures S20 and 21). For the peroxo Rh^{III} adduct, these scans were performed by varying the B− 20 O1 bond distance between two extremes, bound and unbound: d(B-O1) from 3.60 to 1.60 Å. From this scan, 21 a local minimum having $d(B-O_1) = 1.64$ Å was identified, with a pyramidalized boron atom ($\Sigma(<X-B-X) =$ 22 340°) (Figure 2). The Lewis adduct was found to have similar bonding metrics as compared to the borane-23 free compound, with minimal changes on boron complexation – distances are provided in Figure 2. For 24 comparison, $[Rh(dppe)_2(\eta^2-O_2)]^+$ has bond lengths of d(O-O) = 1.418(11) Å, d(Rh-O) = 2.026(8) Å and 2.025(9)25 Å.⁵ Taking the interacting and non-interacting isomers, an energy difference (ΔE) of +0.4 kcal mol⁻¹ was 26 calculated with a barrier height ((ΔE^{\dagger}) taken as the energy difference between the lowest and highest energy 27 isomer) of only +2.4 kcal mol⁻¹. Using these isomers as starting points, accurate DLPNO CCSD(T)

20 Figure 2. Calculated energies for Rhodium $\{\eta^2-Ch_2\}$ complexes.

As a final query before advancing into our experimental work, we wished to use the [Rh^{III}(dmpe)(Me₂BCH₂CH₂CH₂P(Me)CH₂CH₂P(Me)₂)(η^2 -O₂)]⁺ blueprint described above to test the effect of metal on B–O interaction energy (Δ G(B–O)). Although the focus of the current work is on rhodium, we hypothesized that changing the identity of M along the Group 9 series: Co, Rh, Ir would result in more favourable interaction energies, owing to stronger {M(d π)-to-O₂(π^*)} back-bonding. For example, the O-O bond in [Ir(dppe)₂(η^2 -O₂)]⁺ (1.625(23)Å) is 15% longer than in [Rh(dppe)₂(η^2 -O₂)]⁺ (1.418(11) Å). It is important to note that compounds of the form, [Co(diphosphine)₂(η^2 -O₂)]⁺ (like the Rh and Ir analogues 1 referenced above), are also known.^{13,14} The results from this study are summarized in **Figure 3** and illustrate 2 that $d(O_1-O_2)$ increases along the series, causing $\Delta G(B-O)$ to decrease *i.e.*, become more favourable. The 3 magnitude of this change, however, is not large. 4

14 **Figure 3.** A summary of Group 9 Co, Rh, and Ir { η^2 -O₂} complexes.

15 **2.2 Experimental work:**

16 Moving towards examining the reactivity of rhodium diphosphine compounds, [RhI(dnppe)2]BPh4 17 $(1)^{12}$ (dnppe = 1,2-bis(di-n-propylphosphino)ethane) was first screened as a structural isostere devoid of 18 borane functionality (Figure 4). Exposure of a degassed THF solution of 1 to 1 atm of dry O₂ resulted in a 19 lightening of its dark orange color. Analysis by ³¹P NMR spectroscopy provided two resonances: one 20 assigned to unreacted 1 at $\delta_P = 53.7$ ppm (d, ¹J_{Rb,P} = 126.3 Hz), and another for [Rh^{III}(dnppe)₂(η^2 -O₂)]BPh₄ (1-21 O₂), characteristic of an 'A₂B₂X' spin-system, at δ_P = 49.6 ppm (dt, ¹*J*_{Rb,P} = 89.0 Hz, ²*J*_{P,P} = 18.4 Hz) and 47.3 ppm 22 (dt, ${}^{1}J_{Rh,P}$ = 125.0 Hz, ${}^{2}J_{P,P}$ = 18.4 Hz) of relative intensity 1:2.74, giving a Keq value of 2.7 atm⁻¹ at 298 K where 23 $K_{eq} = [1-O_2]/([1][O_2])$ (Figure 3). This behavior is consistent with that noted previously for [Rh(dppe)_2]⁺, 24 which in methanol at 30 °C, reacts with O₂ to give $[Rh(dppe)_2(\eta^2-O_2)]^+$ with a K_{eq} value of 0.6 ± 0.1 atm^{-1.15} 25 Compound 1 also reacts with 0.25 equiv. of S₈ to give the persulfido compound, $[Rh^{III}(dnppe)_2(\eta^2-S_2)]BPh_4$ (1-26 S₂) in >99% conversion, with characteristic resonances at $\delta_P = 47.5$ ppm (dt, ${}^{1}J_{Rh,P} = 123.9$ Hz, ${}^{2}J_{P,P} = 18.8$ Hz) 27 and 41.2 ppm (dt, ¹*J*_{Rh,P} = 84.6 Hz, ²*J*_{P,P} = 18.8 Hz) (Figure 4).

1

2 Figure 4. Reactivity of a model compound, [Rh(dnppe)2]BPh4 (1) with O2 and S8.

3 Reactivity of the octaboranyl compound, $[Rh^{1}(P_{2}B^{Cy_{4}})_{2}]BPh_{4}$ (2)¹² with O₂ and S₈ was next gauged 4 (Figure 5). Admission of 1 atm. of O₂ to a degassed THF solution of 2 gave a pale-yellow solution with ³¹P NMR spectroscopic signatures distinct from 1-O₂. Two broad resonances were observed at δ_P = 53.0 ppm 5 6 and 52.0 ppm ($\Delta_{1/2} \approx 80$ Hz), suggesting formation of an unsymmetrical (or fluxional) rhodium complex or a 7 mixture of structurally similar complexes. Notably, unlike in the case of 1, unreacted 2 was not observed. 8 The noted broadness by ³¹P NMR spectroscopy prompted a variable temperature study from 298 K to 193 K. 9 As a function of decreased temperature, these resonances baseline-broadened and did not sharpen, 10 suggesting low symmetry of the resultant product(s). By ¹¹B NMR spectroscopy, two signals at $\delta_B \approx 52$ ppm 11 and 31 ppm, assigned to R2BOR e.g., Cy2BOBCy2 and RB(OR)2 e.g., (CyOB)3, respectively were observed -12 these decomposition products are similar to those described by Braun and co-workers for treatment of an 13 {[Ir]-O₂} complex with BCy₂Cl (vide supra).⁹ These data suggest formation of a series of isomeric C₁-14 symmetric [Rh^{III}(diphosphine)₂]⁺ compounds, some likely with O₂ bound, that result from decomposition of 15 the projecting pendant boranes. For reference, it is well-accepted that trialkylboranes undergo autooxidation 16 via transient $\{[B]-O-O-C\}$ units, which are prone to structural rearrangement or formation of radical 17 species.¹⁶ As an example, BEt₃ (δ_B = 87 ppm) is oxidized in the presence of O₂, giving BEt₂(OEt) (δ_B = 56 ppm) 18 and BEt(OEt)₂ (δ_B = 32 ppm) as well as some amount of Et₂BOBEt₂.¹⁷ In the case of compound **2**-O₂, two 19 possible [B]-C insertion products are possible (either between [B]-Cy or $[B]-^nPrR$ bonds), further 20 complicating matters and likely contributing to low symmetry of the resultant complexes. Given these 21 results, it would seem difficult to controllably stabilize {[M]-O₂} fragments using a peripheral boron-based 22 coordination environment and O₂ as a reagent.

1

2

3

Figure 5. Reactivity of a model compound, $[Rh(P_2B^{Cy_4})_2]BPh_4(2)$ with O_2 and S_8 .

Next, compound 2 was reacted with 0.25 equivs. S₈, resulting in complete consumption of starting 4 5 material (Figure 5). By ³¹P NMR spectroscopy, two signatures were observed at δ_P = 47.2 ppm (dt, ¹J_{Rb,P} = 123.4 Hz, ²J_{P,P} = 18.1 Hz) and 41.0 ppm (dt, ¹J_{Rh,P} = 84.3 Hz, ²J_{P,P} = 18.0 Hz), consistent with formation of 6 7 $[Rh^{III}(P_2B^{Cy_4})_2(\eta^2-S_2)]BPh_4$ (2-S₂) and are similar to those observed for 1-S₂. The symmetry observed by NMR 8 spectroscopy suggests a non-interacting B-S unit at 298 K or one where coordination/re-coordination is 9 rapid/dynamic. A variable temperature ³¹P{¹H} NMR spectroscopy experiment from 298 K to 193 K showed 10 broadening of the signals for 2-S₂, however it remains challenging to draw concrete conclusions, given the 11 multiple possible orientations of the -ⁿPrBCy₂ arms, which could be frozen out at low temperature (Figure 12 6). As an example, ³¹P NMR signal broadening has been observed for a related nickel(II) compound 13 containing the P2BCy4 ligand at similar temperatures.18 Additionally diagnostic of a B-S interaction and 14 thus, sp³-boron formation, α -CH signals adjacent to the boron center e.g., {B(CH^{Cy})₂(CH₂^{nPr})(S)} would be 15 expected to be upfield shifted, this was not observed by VT 1H NMR spectroscopy.12

BEt₃

36 **Figure 7.** A sampling of compounds having $\{[M] - S - B\}$ interactions. $\Delta G(B - S)$ refers to the free energy of

37 adduct formation (endergonic in all cases).

1 <u>3. Conclusion:</u>

2 In summary, we have described here: the reactions of chalcogens (O₂ and S₈) with two compounds of 3 the type $[Rh(diphosphine)_2]^+$ where diphosphine bears $-CH_2CH_2-H$ (dnppe) or $-CH_2CH_2-BCy_2$ 4 $(P_2B^{Cy_4})$ substituents to assess whether Lewis acidic secondary coordination spheres can be used to interact 5 with bound chalcogenide molecules. By theory, monoboranyl candidate models having B--O interactions are 6 calculated to be thermodynamically and kinetically viable, the B--S variant is not. By experiment, 7 $[Rh(dnppe)_2]^+$ reacts with O₂ or S₈ to give compounds of the type $[Rh(dnppe)_2(\eta^2-Ch_2)]^+$ (Ch = O or S). For O₂, 8 this reaction provides an equilibrium mixture, while for S_8 , goes to completion. For the $P_2B^{Cy_4}$ analogue, 9 decomposition of the pendant boranyl arms was noted upon exposure to O₂, likely stemming from O₂ 10 insertion into B – R bonds. Reaction of $[Rh(P_2B^{Cy_4})_2]^+$ with S₈, however, cleanly produced $[Rh(P_2B^{Cy_4})_2(\eta^2-S_2)]^+$. 11 At 298 K this compound does not contain supporting B-S linkages, as examined by solution NMR 12 spectroscopy - fluxionality at 193 K is observed, however, it is difficult to separate a possible B-S 13 interaction from the ensemble of possible ligand motions. This report constrains hypotheses regarding 14 Lewis acid/base interactions in such {[Rh]-Ch2-B} units and provides a launchpad for the design of 15 transition metal-ligand fragments which may cooperatively coordinate such ubiquitous chalcogen sources.

16

17 <u>4. Experimental:</u>

18 4.1 General Considerations:

All experiments were carried out employing standard Schlenk techniques under an atmosphere of dry nitrogen employing degassed, dried solvents in a solvent purification system supplied by PPT, LLC. Non-halogenated solvents were tested with a standard purple solution of sodium benzophenone ketyl in tetrahydrofuran to confirm effective moisture removal. d_8 -THF was dried over molecular sieves and degassed by three freeze-pump-thaw cycles. [Rh¹(dnppe)₂]BPh₄¹² and [Rh¹(P₂B^{Cy}₄)₂]BPh₄¹² were prepared using literature procedures. All other reagents were purchased from commercial vendors and used without further purification unless otherwise stated.

26 4.2 Physical methods:

¹H NMR spectra are reported in parts per million (ppm) and are referenced to residual solvent *e.g.*,
 ¹H(THF-d₈): 3.58; ¹³C(THF-d₈): 67.21; coupling constants are reported in Hz. ¹³C, ¹¹B, and ³¹P NMR spectra
 were performed as proton-decoupled experiments and are reported in ppm.

4 <u>4.2.1 Computational details:</u>

5 All calculations were performed using version 4.2.1 of the ORCA computational package²³ and were 6 run on the Graham cluster maintained by Compute Canada. All geometry optimizations and frequency 7 calculations were performed at the BP86-D3(BJ)/def2-TZVP²⁴⁻²⁶ level of theory. The RI approximation was 8 used to enhance computational efficiency, along with the auxiliary basis *def2/J.*²⁷ Convergence criteria were 9 met using Grid6 and NoFinalGrid integral grid sizes. Frequency calculations (NumFreq) were performed to 10 confirm that each optimized geometry was a true minimum indicated by the absence of imaginary 11 frequencies. Single-point calculations were performed at the BP86-D3(BJ)/def2-TZVP level of theory on 12 optimized geometries using a Universal Solvation Model (SMD) of tetrahydrofuran (THF) to obtain 13 thermochemical values in solvent. Accurate electronic energies were determined using CCSD(T) at the DLPNO-CCSD(T)/def2-TZVP²⁸⁻³⁰ level of theory. The RIJCOSX approximation was used to enhance 14 15 computational efficiency, along with a *def2/J* auxiliary basis set. As well, a *def2-TZVP/C*³¹ auxiliary basis set 16 was used. Potential energy surface scans were conducted on optimized geometries at the BP86-D3(BJ)/def2-17 TZVP level of theory. Starting points of each PES were the structure with the longest B-O bond distance.

18 4.3 Synthesis of Compounds:

19 **4.3.1 {[Rh¹(dnppe)₂(\eta^2-O₂)]BPh₄} (1-O₂; C₅₂H₈₄BP₄RhO₂, Mw = 978.5 g/mol): {[Rh¹(dnppe)₂]BPh₄} (1) (20)** 20 mg, 0.04 mmol, 1 equiv.) was weighed into a 20 mL scintillation vial and 500 µL of THF-ds was added; the 21 mixture was rapidly transferred to a J. Young NMR tube and freeze-pumped-thawed three times using a 22 Schlenk line. At room temperature, O_2 (~ 1 atm) was added, and the sample was analyzed by multinuclear 23 NMR spectroscopy, providing a mixture of 1 and 1-O₂ in a 1:2.74 ratio. ¹H NMR (300 MHz, THF-d₈, 298 K): 24 $\delta H = 7.29$ (br, 8H; BPh4), 6.88 (t, ³J_{HH} = 7.3 Hz, 8H; BPh4), 6.73 (t, ³J_{H,H} = 7.3 Hz, 4H; BPh4), 2.15-1.27 (m, 25 overlapping -CH2- groups), 1.11-0.93 (m, overlapping -CH3 groups). 31P{1H} NMR (121 MHz, THF-d8, 298 26 K): $\delta_P = 49.6$ (dt, ${}^{1}J_{Rh,P} = 89.0$ Hz, ${}^{2}J_{P,P} = 18.4$ Hz), 47.3 (dt, ${}^{1}J_{Rh,P} = 125.0$ Hz, ${}^{2}J_{P,P} = 18.4$ Hz). ${}^{11}B{}^{1}H{}$ NMR (96) 27 **MHz**, **THF-d**₈, **298** K): δ_B = - 6.54 (BPh₄).

1	4.3.2 {[Rh ¹ ($dnppe$) ₂ (η^2 -S ₂)]BPh ₄ } (1-S ₂ ; C ₅₂ H ₈₄ BP ₄ RhS ₂ , Mw = 1010.4 g/mol): {[Rh ¹ ($dnppe$) ₂]BPh ₄ } (1) (31)
2	mg, 0.03 mmol, 1 equiv.) was weighed into a 20 mL scintillation vial and 500 μ L of THF-d ₈ was added. To
3	the mixture was added octasulfur, S ₈ (2 mg, 0.008 mmol, 0.25 equiv.) and all contents were transferred to a J.
4	Young NMR tube for analysis by multinuclear NMR spectroscopy, providing evidence for $1-S_2$ in 92%
5	purity by ³¹ P NMR spectroscopy – compound 1 was entirely consumed (vide infra). ¹ H NMR (300 MHz,
6	THF-d ₈ , 298 K): δ _H = 7.29 (br, 8H; BPh ₄), 6.88 (t, ³ <i>J</i> _{HH} = 7.3 Hz, 8H; BPh ₄), 6.74 (t, ³ <i>J</i> _{H,H} = 7.3 Hz, 4H; BPh ₄), 2.12-
7	1.27 (m, 40H; -C <u>H</u> ₂-), 1.11-0.90 (m, 24H; -C <u>H</u> ₃). ¹³ C{ ¹ H} NMR (125 MHz, THF-d ₈ , 298 K): & = 165.1 (q, ¹ J _{B,C} =
8	50.9 Hz; BPh4), 137.1 (BPh4), 125.5 (BPh4), 121.6 (BPh4), 35.1 (d, J = 25.6 Hz), 34.6 (d, J = 20.7 Hz), 30.4 (br),
9	26.2, 25.6, 19.8, 19.3, 18.4, 17.8, 16.2, 16.1, 15.8, 15.7, 15.6, 15.6. ³¹ P{ ¹ H} NMR (121 MHz, THF-ds, 298 K): δ _P =
10	47.5 (dt, ${}^{1}J_{Rh,P}$ = 123.9 Hz, ${}^{2}J_{P,P}$ = 18.8 Hz), 41.2 (dt, ${}^{1}J_{Rh,P}$ = 84.6 Hz, ${}^{2}J_{P,P}$ = 18.8 Hz). ${}^{11}B{}^{1}H$ NMR (96 MHz, THF-
11	d ₈ , 298 K): $\delta_{B} = -6.54$ (BPh ₄). N.B. Compound 1-S ₂ is 92% pure based on ³¹ P NMR spectroscopy. An
12	additional set of doublets of triplets (dt) was observed in the ³¹ P NMR spectrum at δ_P = 37.1 ppm (dt, ¹ J _{Rh,P} =
13	93.8 Hz, ${}^{2}J_{P,P}$ = 16.5 Hz) and 32.8 ppm (dt, ${}^{1}J_{Rh,P}$ = 88.8 Hz, ${}^{2}J_{P,P}$ = 16.5 Hz) (see ESI). We tentatively assign this
14	by-product as another Rh-containing fragmentation product of S ₈ . ³²

15 **4.3.3** Attempted synthesis of {[Rh¹(P₂B^{Cy}₄)₂(η²-O₂)]BPh₄} (2-O₂; C₁₄₈H₂₅₂B₉P₄RhO₂, Mw = 2387.9 g/mol): 16 {[Rh¹(P₂B^{Cy₄})₂]BPh₄} (**2**) (20 mg, 0.04 mmol, 1 equiv.) was weighed into a 20 mL scintillation vial and 500 µL 17 of THF-d₈ was added; the mixture was rapidly transferred to a J. Young NMR tube and freeze-pumped-18 thawed three times using a Schlenk line. At room temperature, O₂ (~ 1 atm) was added, and the sample was 19 analyzed by multinuclear NMR spectroscopy, resulting in decomposition providing unsymmetrical 20 $[Rh(diphosphine)_2]^+$ and/or $[Rh(diphosphine)_2(\eta^2-O_2)]^+$ complexes with decomposed boranyl units, giving Cy₂BOBCy₂ and (CyOB)₃, as examples. ³¹P{¹H} NMR (121 MHz, THF-d₈, 298 K): $\delta r = 53.0 (\Delta 1/2 \approx 80 \text{ Hz}), 52.0 \text{ m}$ 21 22 ppm (Δ1/2 ≈ 80 Hz). ¹¹B¹H} NMR (96 MHz, THF-d₈, 298 K): δ₈ = 52 (Cy₂BOBCy₂), 31 ((CyOB)₃), - 6.54 (BPh₄). **4.3.4** {[Rh^I($P_2B^{Cy}_4$)₂(η^2 -S₂)]BPh₄} (2-S₂; C₁₄₈H₂₅₂B₉P₄RhS₂, M_W = 2419.9 g/mol): In the glovebox, 23 24 {[Rh¹(dnppe)₂]BPh₄} (1) (62 mg, 0.026 mmol, 1 equiv.) was weighed into a 20 mL scintillation vial and 500 µL

of THF-d₈ was added. To the mixture was added octasulfur, S₈ (2 mg, 0.008 mmol, 0.25 equiv.) and all
contents were transferred to a J. Young NMR tube for analysis by multinuclear NMR spectroscopy,
providing evidence for 2-S₂ in 85% purity by ³¹P NMR spectroscopy – compound 2 was entirely consumed

1	(<i>vide infra</i>). ¹ H NMR (300 MHz, THF-d ₈ , 298 K) : δ_{H} = 7.34 (br, 8H; BPh ₄), 6.92 (t, ³ <i>J</i> _{HH} = 7.3 Hz, 8H; BPh ₄), 6.78
2	(t, ³ <i>J</i> _{H,H} = 7.3 Hz, 4H; BPh ₄), 2.08 – 1.03 (multiple overlapping C(<i>sp</i> ³) – <u>H</u> resonances). ¹³ C{ ¹ H} NMR (125 MHz,
3	THF-d ₈ , 298 K) : δ _c = 165.1 (q, ¹ <i>J</i> _{B,C} = 50.9 Hz; BPh ₄), 137.1 (BPh ₄), 132.0 (allyl <u>C</u> H), 125.5 (BPh ₄), 121.6 (BPh ₄),
4	36.5 (m), 35.4 (m), 29.9, 28.8, 28.6-27.5 (multiple ¹³ C resonances for <u>C</u> (<i>sp</i> ³ -H) carbons). ³¹ P{ ¹ H} NMR (121
5	MHz, THF-d ₈ , 298 K): $\delta_P = 47.2$ (dt, ${}^{1}J_{Rh,P} = 123.4$ Hz, ${}^{2}J_{P,P} = 18.1$ Hz), 41.0 (dt, ${}^{1}J_{Rh,P} = 84.3$ Hz, ${}^{2}J_{P,P} = 18.0$ Hz).
6	¹¹ B{ ¹ H} NMR (96 MHz, THF-d ₈ , 298 K): $\delta_B = 84 (\Delta_{1/2} = 2200 \text{ Hz}, -BCy_2), - 6.54 (BPh_4).$ N.B. Compound 2-S ₂ is
7	85% pure based on ³¹ P NMR spectroscopy. An additional set of doublets of triplets (dt) was observed in the
8	³¹ P NMR spectrum at δ_P = 35.8 ppm (dt, ¹ <i>J</i> _{Rh,P} = 93.9 Hz, ² <i>J</i> _{P,P} = 16.7 Hz) and 33.2 ppm (dt, ¹ <i>J</i> _{Rh,P} = 88.5 Hz, ² <i>J</i> _{P,P} =
9	16.5 Hz) (see ESI). We tentatively assign this by-product as another Rh-containing fragmentation product of
10	S ₈ . ³²
11	
12	Supplementary material:
13	¹ H, ¹³ C{ ¹ H}, ³¹ P{ ¹ H}, and ¹¹ B NMR spectra for all complexes. XYZ coordinates for DFT calculations.
14	
15	Acknowledgements:
16	The authors are grateful to the University of Windsor, the Council of Ontario Universities for a John C.
17	Polanyi award to M.W.D., and the Natural Sciences and Engineering Research Council of Canada
18	(Discovery Grant, RGPIN-2020-04480, Discovery Launch Supplement, DGECR-2020-00183, CGS-M to J.A.Z).
19	
20	Disclosure statement:
21	The authors declare no competing financial interest.
22	
23	Funding:
24	This work was supported by the Natural Sciences and Engineering Research Council of Canada (Discovery
25	Grant, RGPIN-2020-04480, Discovery Launch Supplement, DGECR-2020-00183) and the University of
26	Windsor.
27	

1	ORCID:			
2	Devon Facchinato, https://orcid.org/0000-0002-0311-3225			
3	Joseph A. Zurakowski, <u>https://orcid.org/0000-0001-6903-5787</u>			
4	Marc	us W. Drover, <u>https://orcid.org/0000-0002-2186-1040</u>		
5				
6	Note	s and References:		
7	(1)	Butter, S. A.; Chatt, J. Dihalogenodi-[1,2-Bis(Dimethylphosphino)Ethane]Rhodium(III) and Related		
8		Carbony- and Hydrido-Complexes. J. Chem. Soc. 1970, 1411–1415.		
9	(2)	Vaska, L.; Catone, D. L. A New Series of Four-, Five-, and Six-Coordinated Iridium Complexes. J. Am.		
10		Chem. Soc. 1966, 88 (22), 5324–5325.		
11	(3)	Sacco, A.; Nobile, C. F. Tetraco-Ordinated Complexes of Cobalt(I) and Iridium(I). Chem. Commun.		
12		(London) 1966 , 589–590.		
13 14	(4)	Ginsberg, A. P.; Lindsell, W. E.; Sprinkle, C. R.; West, K. W.; Cohen, R. L. Disulfur and Diselenium Complexes of Rhodium and Iridium. <i>Inorg. Chem.</i> 1982 , <i>21</i> (10), 3666–3681.		
15	(5)	McGinnety, J. A.; Payne, N. C.; Ibers, J. A. Role of the Metal Atom in the Reversible Uptake of		
16		Molecular Oxygen. The Structures of the Molecular Oxygen Complexes Formed by		
17		Bis[Bis(Diphenylphosphino)Ethane]Iridium(I)Hexafluorophosphate and Its Rhodium Analog. J. Am.		
18		Chem. Soc. 1969, 91 (23), 6301–6310.		
19	(6)	James, B. R.; Mahajan, D. Reactions of Bis(Ditertiaryphosphine) Complexes of Rhodium(I) with		
20		Carbon Monoxide, Dioxygen, Dihydrogen, and Hydrogen Chloride. Can. J. Chem. 1980, 58 (10), 996-		
21		1004.		
22	(7)	Ginsberg, A. P.; Lindsell, W. E. Ditertiary Phosphine Rhodium and Iridium Complexes Containing the		
23		Molecular Unit S2 or Se2 as a Ligand. J. Chem. Soc. D 1971, 5, 232.		
24	(8)	Ahijado Salomon, M.; Braun, T.; Penner, A. Stepwise Oxygenation of Pinacolborane by a		
25		Rhodiumperoxo Complex: Detection of an Intermediate Metal Borate and Perborate. Angew. Chem.		
26		2008 , <i>120</i> (46), 8999–9003.		
27	(9)	Baumgarth, H.; Meier, G.; von Hahmann, C. N.; Braun, T. Reactivity of Rhodium and Iridium		
28		Peroxido Complexes towards Hydrogen in the Presence of B(C6F5)3 or [H(OEt2)2][B{3,5-(CF3)2C6H3 }4].		
29		Dalton Trans. 2018, 47 (45), 16299–16304.		
30	(10)	Leonard, K.; Plute, K.; Haltiwanger, R. C.; DuBois, M. R. Reactions of Metal-Disulfur Complexes with		
31		Nucleophiles and Electrophiles. Inorg. Chem. 1979, 18 (11), 3246-3251.		
32	(11)	Arisawa, M.; Ichikawa, T.; Yamaguchi, M. Synthesis of Thiiranes by Rhodium-Catalyzed Sulfur		
33		Addition Reaction to Reactive Alkenes. Chem. Commun. 2015, 51 (42), 8821-8824.		
34	(12)	Zurakowski, J. A.; Austen, B. J. H.; Drover, M. W. Wrapping Rhodium in a Borane Canopy:		
35		Implications for Hydride Formation and Transfer. Organometallics 2021, 40 (15), 2450–2457.		
36	(13)	Ohishi, T.; Kashiwabara, K.; Fujita, J. Preparation and Reactivities of the Bis(1,2-		
37		Bis(Dimethylphosphino)Ethane)Peroxocobalt(III) Complex. Chem. Lett. 1984, 13 (11), 1917–1918.		
38	(14)	Ohishi, T.; Kashiwabara, K.; Fujita, J.; Ohba, S.; Ishii, T.; Saito, Y. Cobalt(III)-Peroxo Complexes		
39		Containing 1,2-Bis(dimethylphosphino)ethane (dmpe) or 1,3-Bis(dimethylphosphino)propane		
40		(dmpp). Molecular Structures of [Co(O ₂)(dmpe) ₂]B(C ₆ H ₅) ₄ and [Co(O ₂)(dmpp) ₂]BF ₄ H ₂ O. Bull. Chem.		
41		Soc. Jpn. 1986 , 59, 385-393.		
42	(15)	Mahajan, D. Bis(DiTertiaryphosphine) Complexes of Rhodium, and Catalytic Asymmetric		
43		Hydrogenation. PhD Thesis. The University of British Columbia. Vancouver. 1976.		

- (16) Zaremski, M. Yu.; Garina, E. S.; Gurskii, M. E.; Bubnov, Yu. N. Organoboranes-Atmospheric Oxygen
 Systems as Unconventional Initiators of Radical Polymerization. *Polym. Sci. Ser. B* 2013, 55 (5–6), 304–
 326.
- 4 (17) Zhang, Z.-C.; Chung, T. C. M. Reaction Mechanism of Borane/Oxygen Radical Initiators during the
 5 Polymerization of Fluoromonomers. *Macromolecules* 2006, *39* (16), 5187–5189.
- (18) Zurakowski, J. A.; Bhattacharyya, M.; Spasyuk, D. M.; Drover, M. W. Octaboraneyl
 [Ni(H)(Diphosphine)₂]⁺ Complexes: Exploiting Phosphine Ligand Lability for Hydride Transfer to an
 [NAD] ⁺ Model. *Inorg. Chem.* 2021, 60 (1), 37–41.
- 9 (19) Kiernicki, J. J.; Norwine, E. E.; Zeller, M.; Szymczak, N. K. Substrate Specific Metal-Ligand
 10 Cooperative Binding: Considerations for Weak Intramolecular Lewis Acid/Base Pairs. *Inorg. Chem.*11 2021, 60 (18), 13806–13810.
- (20) Kiernicki, J. J.; Shanahan, J. P.; Zeller, M.; Szymczak, N. K. Tuning Ligand Field Strength with Pendent
 Lewis Acids: Access to High Spin Iron Hydrides. *Chem. Sci.* 2019, *10* (21), 5539–5545.
- (21) Sellmann, D.; Gottschalk-Gaudig, T.; Heinemann, F. W. Transition Metal Complexes with Sulfur Ligands. 130.¹ Synthesis, Structure, and Reactivity of the Sulfur-Rich Ruthenium Hydride Complexes [Ru(H)(PR₃)('S₄')]- and the *h*²-H₂ Complex [Ru(H₂)(PCy₃)('S₄')] (R = Ph, ⁱPr, Cy; 'S₄'²⁻ = 1,2-Bis((2-mercaptophenyl)thio)ethane(2-)) *Inorg. Chem.* **1998**, *37*, 3982-3988.
- (22) Shanahan, J. P.; Szymczak, N. K. Lewis Acid Effects on Calculated Ligand Electronic Parameters.
 Organometallics 2020, 39 (23), 4297–4306.
- 20 (23) Neese, F. Software Update: The ORCA Program System, Version 4.0. WIREs Comput Mol Sci 2018, 8
 21 (1). https://doi.org/10.1002/wcms.1327.
- (24) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate *Ab Initio* Parametrization of
 Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. *J. Chem. Phys.* 2010, 132
 (15), 154104.
- (25) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density
 Functional Theory. J. Comput. Chem. 2011, 32 (7), 1456–1465.
- (26) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple
 Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* 2005,
 7 (18), 3297.
- 30 (27) Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. *Phys. Chem. Chem. Phys.* 2006, 8 (9),
 31 1057.
- Riplinger, C.; Pinski, P.; Becker, U.; Valeev, E. F.; Neese, F. Sparse Maps—A Systematic Infrastructure
 for Reduced-Scaling Electronic Structure Methods. II. Linear Scaling Domain Based Pair Natural
 Orbital Coupled Cluster Theory. J. Chem. Phys. 2016, 144 (2), 024109.
- Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. Natural Triple Excitations in Local Coupled
 Cluster Calculations with Pair Natural Orbitals. *J. Chem. Phys.* 2013, 139 (13), 134101.
- (30) Riplinger, C.; Neese, F. An Efficient and near Linear Scaling Pair Natural Orbital Based Local Coupled
 Cluster Method. *J. Chem. Phys.* 2013, 138 (3), 034106.
- (31) Hellweg, A.; Hättig, C.; Höfener, S.; Klopper, W. Optimized Accurate Auxiliary Basis Sets for RI-MP2
 and RI-CC2 Calculations for the Atoms Rb to Rn. *Theor. Chem. Acc.* 2007, 117 (4), 587–597.
- (32) Kashiwabara, K.; Morikawa, A.; Suzuki, T.; Isobe, K.; Tatsumi, K. Oxidative Additions of
 Dichloromethane and Cyclo-Octasulfur to Rhodium(I) Complexes Containing (2-Aminoethyl)Dimethylphosphine or -Diphenylphosphine. *J. Chem. Soc., Dalton Trans.* 1997, No. 6, 1075–1082.
- 44
- 45
- 46