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Abstract  

In this work, we determined the tilt angles of molecular units in  hierarchical self-assembled 

materials on a single-sheet level, which were not available previously. This was achieved by 

developing a fast linescanning vibrational sum frequency generation (VSFG) hyperspectral 

imaging technique in combination with nearal network analysis. Rapid VSFG imaging enables 

polarization resolved images on a single sheet level to be measured within a short time period, 

circumventing technical challenges due to long term optical setup instability. The polarization 

resolved hyperspectral images were then used to extract the supramolecular tilt angle of a self-

assembly through a set of spectra-tilt angle relationships which were solved through neural 

network techniques. This unique combination of both novel techniques offers a new pathway to 

resolve molecular level structural knowledge of self-assembled materials. Understanding these 

properties can further drive self-assembly design from a bottom-up approach for applications in 

biomimetic and drug delivery researches.  

Introduction 

Molecular self-assemblies (MSAs) are a class of materials that spontaneously organize from 

individual molecular subunits into an ordered structure without templates or external guidance.1–6 

MSAs can have larger architectures that maintain the high ordering and orientation of the smaller 

structures, known as hierarchical organization.2,6–10 In both natural and synthetic materials, even 

when formed from identical subunits, different hierarchical organization can lead to various 

material functions.11,12 For example, the diverse structures of natural collagen enable them to 

assume different tissue functions such as bone, skin etc.13 In particular, bone possesses a twelve-

level hierarchical structure from collagen fibrils to the macroscopic fractal-like artitectures,  

affording it both high stiffness and toughness, properties often considered mutually exclusive.14 

Moreover, liquid crystal displays show different optical properties based on the orientation of the 

building blocks.15 Thus, it is feasible to design and manipulate materials functions through 

hierarchical organizations however, to do so, it is necessary to understand and control the relative 

positions and orientations of the subunits within the MSAs.16,17 

Specifically, the orientation of building blocks within a MSA are important to its functions. 

Applications can be found in chemistry, such as alkanethiol self-assembled monolayers, which are 

used as an active layer in molecular electronics. The tilting of the alkanethiol chains with respect 

to surface normal can open additional tunneling pathways and change interfacial dipole properties, 



altering the electron transport properties.18–20 In biomaterials, mechanical properties often depend 

on the hierarchical subunit orientation. For example, the longitudinal modulus of nacre is higher 

than the transverse one because of oriented tiles in the hierarchical structures.21 It has also been 

demonstrated that surface wettability is correlated with the tilting of subunits22, which could 

further affect protein adsorption and cell adhesion.23  

An interesting, recent development in MSAs is a lattice self-assembly composed of beta-

cyclodextrin (β-CD) and sodium dodecyl sulfate (SDS) in a 2:1 ratio, formed through 

intermolecular forces, especially hydrogen bonds.11 This MSA  assumes a variety of morphologies 

depending on the concentration of SDS and β-CD in water. We will refer to this MSA as SDS@2β-

CD herein. The primary subunit of the SDS@2β-CD self-assembly is the supramolecule comprised 

of two β-CD molecules penetrated by one SDS molecule (Figure 1a and b). These subunits form 

highly ordered and oriented, rhombic nano-thickness sheets (referred to as a nanosheet herein) that 

can fold into larger mesoscopic architectures such as, lamella sheets, microtubules, rhombic 

dodecahedra, and micelles among others.11 This MSA has drawn much attention because of the 

biomimetic nature of many of its mesoscopic architectures in addition to its broad application such 

as wastewater treatment24, drug delivery25, and optoelectronics.26 However, the structural details 

of the nanosheets – the most basic formation of the self-assembly that folds into all other higher 

order molecular architectures, are not fully understood.11 Through small angle X-ray scattering 

(SAXS) the inter-supramolecular distance was determined to be 1.52 nm but,  open questions 

remain regarding the relative orientation of the supramolecule in SDS@2β-CD. Because molecular 

orientations often act as critical factors to MSA’s functions, it is pertinent to understand whether 

and how the supramolecules in the self-assembled sheets are tilted (Figure 1c), which could 

potentially indicate the van der Waals contact, the structural symmetry or the materials 

macroscopic properties.18,22,27,28  



 

Figure 1 Structure of SDS@2β-CD. a) Top down view of the SDS@2β-CD MSA building blocks 

b) Side view of the MSA c) Microscopic formations of the SDS@2β-CD which hierarchically 

oriented to form rhombically shaped nanosheets. The orientation of the MSA relative to surface 

normal is unknown. 

In this work, we determined the orientation of the supramolecules in SDS@2β-CD through the 

development of a fast line-scanning vibrational sum-frequency generation (VSFG) microscopy in 

combination with neural network data analysis.29,30 Building on our previous efforts in ultrafast 

hyperspectral imaging techniques,31,32 this new technical advancement enabled imaging single 

SDS@2β-CD sheets hyperspectrally with eight different polarization combinations. Then, to 

reveal structural information, we applied a neural network method to solve a set of equations which 

relate the supramolecular tilt angle to the 2nd order susceptibility of different polarizations.  We 

found that the supramolecules were tilted relative to normal of the nanosheets by ~23°. This 

provides insight into how to design future materials as well as offer details as to what role 

hierarchical orientation played in MSAs. This structural knowledge is revealed through the 

combination of rapid acquisition of hyperspectral imaging and neural networks. Both are crucial 

to extract these parameters with the former minimizing long term laser drift issues, and the latter 

offering a route to solve a complex set of equations that were otherwise difficult to be solved.  

Results and Discussion 

Linescanning VSFG imaging 

The hyperspectral microscope was based on VSFG spectroscopy, a second-order nonlinear optical 

phenomenon. VSFG employs a broadband IR pulse (290 fs duration) centered at ~2850 cm-1 to 

excite CH vibrational modes of the SDS@2β-CD system, which is followed by a narrowband 



1025nm near IR pulse to upcovert the vibrational coherence to a higher frequency macroscopic 

polarization emitted as the VSFG signal. As an even-order nonlinear optical process, only non-

centrosymmetric systems produce VSFG responses, such as the air/liquid, air/solid and solid/liquid 

interfaces29,31,40–42,32–39 with a powerful demonstration of the techniques capabilities found in its 

application to the air/water interface.43–45 Another class of systems that can be studied by VSFG 

that have not been paid much attention are materials without inversion centers.46–55 Many MSAs 

are non-centrosymmetric systems, and widely exist in nature, such as collagen49,50 and amyloid 

fibers56; as well as in artificial materials57 used in drug delivery58,59, metal-organic-

frameworks60,61,62 and piezoelectric crystals.63 Thus, VSFG, which probes the molecular vibrations 

of the subunits in the non-centrosymmetric MSAs, could similarly reveal MSA structures with 

molecular level detail.  

A big challenge in using VSFG spectroscopy to probe MSA is that most MSAs only form nano- 

to micrometer sizes domains, while the illumination area of VSFG spectroscopy is generally 

around 100μm-by-100μm. Thus, traditional VSFG spectroscopy will probe multiple MSAs in an 

ensemble-averaged manner which does not accurately reflect the molecular structure of an 

individual MSA.32 The development of VSFG spectroscopy into a hyperspectral imaging 

technique32,48–50,52,53,64–67 overcame this challenge with 1-micron or submicron resolution being 

obtained, which offered a platform that could resolve multiple micron-sized MSAs individually. 

Additionally, to retrieve molecular orientations, it was necessary to measure VSFG images with 

multiple polarization combinations.49,50,65,68 Though theoretically feasible, it was practically 

prohibited in our previous point-scanning VSFG microscope31,32 since it took nearly 4 hours to 

scan a 100μm-by-100μm image and would take at least 30 hours to collect all eight polarization 

combinations. The long acquisition time would introduce fluctuations in opto-mechanics and laser 

output which further complicates data analysis. To decrease acquisition time, we hybridized the 

line-scanning technique with our existing VSFG microscope. A line scanning method was first 

implemented in VSFG microscopy by the Ge and Potma groups using a photomultiplier tube as a 

detector,49,50,64,65 which required scanning the source IR frequency to gain spectral information. 

The integration of linescaning with a CCD detector reported here, enabled simultaneous 

measurement of a set of spectra of a vertical line, maximizing the information measured by the 2D 

detector. 

Specifically, we combined the mid-IR and upcoversion beam collinearly using a dichroic mirror 

and then steered the angle of the beam along the vertical axis using a fixed-frequency resonant 

scanner of 325Hz. The scanned beams were focused through a purely reflective Schwarzschild 

objective (Pike Technologies Inc 0.70NA) onto the sample area. At the sample plane, the incoming 

beams were transformed into a vertical line of illumination which generated a line of VSFG signal 

that was imaged by another objective lens (Zeiss 0.75NA) and further magnified by a home-built 

tube lens to match the vertical dimension of the CCD. The signal was frequency resolved finally 

by a spectrograph horizontally(Figure 2a). Thus, the CCD measured the spectra dispersed along 

the horizontal axis and the spatial profile along vertical axis. 2D images were acquired by scanning 

the sample in the horizontal direction with an automated mechanical stage. This improvement 

decreased image acquisition times by 10, compared to the point-by-point microscope, to 20 mins 

for a 100 μm -by-100 μm image.  



The VSFG images obtained from the line-scanning microscope captured the same geometric 

features of the optical image of plated gold patterns on quartz substrates (Fig. 2a and b). Depending 

on the scan angle of the resonant mirror and magnification of the tube lens, we achieved a 100μm 

vertical field of view. The vertical and horizontal resolutions were 1.2 and 1.6 µm respectively 

(Figure 2c and d), and the total magnification was 66.  

 

Figure 2 Linescanning VSFG microscope. a) Schematic of the setup. b) VSFG image of quartz 

substrate target image. c) Vertical and horizontal resolution generated by taking the derivative of 

the corresponding cut. d) Optical image of gold target on quartz substrate in a similar area. 

Polarization resolved hyperspectral imaging on SDS@2β-CD 

To measure the tilt angle of supramolecules in SDS@2β-CD, we applied the linescaning VSFG 

microscope to image single SDS@2β-CD sheets. Single SDS@2β-CD sheets were carefully 

prepared by spin-coating 5μL of the SDS@2β-CD suspension in water, synthesis details in ESI, at 

10,000 rpm spin rate onto glass coverslips, to minimize sheet stacking which would complicate 

analysis later as well as affect the image quality. An example of hyperspectral images of SPS 

polarization combination (left to right were polarization of VSFG, upconversion and IR beams) 

was shown in Fig. 3a. Edges of a single SDS@2β-CD sheet could be clearly seen as well as the 

rotational orientation of the rhombic shape inherent to the self-assembly, and the VSFG and optical 

images agreed well. (Fig. 3c and d) We noted that there was a significant improvement in the 



quality of VSFG images and their agreement with the optical images of the SDS@2β-CD, 

comparing to the images in our previous publications.31,32 This improvement is achieved by (1) an 

improved sample deposition method to prepare single sheets instead of multiple sheets stacking 

on top of each other; (2) that the fast linescanning VSFG microscope allowed optimizations of 

image quality within a short image acquisition time and large field of view, which was not 

available before.   

To further disentangle spectral features of the VSFG image, spectral maps were generated using 

the MatLab hyperspectral imaging toolbox. Two unique spectra for the SPS polarization 

combination were  identified, highlighted in blue and magenta in Fig. 3a with corresponding 

spectra shown in Fig. 3b. Clearly, there were two types of sheets and spectra with the sheets with 

magenta color coding is due to sheet stacking.  In the following, we only analyzes the areas 

highlighted with blue spectra to extract tilt angles, which were single sheets.  

To extract molecular orientations, all eight lab frame VSFG polarization combinations (SSS, SSP, 

SPS, PSS, SPP, PSP, PPS, PPP) were collected. Four representative polarization resolved VSFG 

spectra of a single sheet (blue rectangle labeled area in Figure 3a and c) area shown in Figure 3e 

(additional spectra shown in ESI). Each spectrum was fitted with multiple Voigt functions (shaded 

area, Fig. 3e, fitting methods see Methods, detailed fitting parameters are summarized in ESI). In 

all spectra, we identified a clear peak at the 2910 cm-1 position, the -CH3 stretching mode, which 

we used for the orientation analysis below. 

 

Figure 3 VSFG hyperspectral image and spectral analysis of the SDS@2β-CD. a) Polarization 

resolved hyperspectral VSFG image of SDS@2β-CD. Purple and pink colors represent areas 



where different spectra reside and the corresponding spectra are ploted in b). The sheets in the blue 

and red boxes are analyzed explicitly below to extract the supramolecue tilt angles. c) optical image 

of the same area as that in a. d) VSFG hyperspectral image overlayed with optical image of 

identical area. e) from left to right: PPS,  PPP, SSP, SSS polarization resolved spectra. All spectra 

had a dominant feature centered at approximately 2910 cm-1. The spectra were fitted with multiple 

Voigt functions, which were represented by the shaded areas. 

Theoretical basis of orientation analysis of a single MSA sheet 

Theoretically, VSFG spectra with different polarization combinations, which were related to the 

lab frame 2nd order susceptibility, χ(2)
IJK, could be expressed in terms of the molecular orientation 

(such as tilt angle and in-plane rotation) in the lab frame and molecular frame hyperpolarizability 

tensor, βijk, through an Euler rotation.49,65,69,70 In our measurement, the z-axis of the lab frame and 

the MSA frame were identical (i.e. sheets lying flat), and the x-y axis of the MSA was only rotated 

away from their counter parts in the lab frame. Thus, in principle, we could extract the relative 

supramolecular orientation in the MSA using the lab frame VSFG spectral intensity.  

Because the SDS@2β-CD supramolecule has C7 symmetry, it has 13 βijk elements, of which only 

7 are nondegenerate, 𝛽𝑧𝑧𝑧, 𝛽𝑥𝑥𝑧, 𝛽𝑥𝑧𝑥, 𝛽𝑧𝑥𝑥, 𝛽𝑥𝑧𝑦, 𝛽𝑧𝑥𝑦, 𝛽𝑥𝑦𝑧 (ESI).32  Here, we also do not assume 

Kleinman symmetry, which has been previously reported as non-universal.71,72 Then, for the lab 

frame, with the NA of the condenser objective being 0.7, the axial z-component can be neglected73, 

which renders 8 independent 2nd order measurement χ(2)
XXX = χ(2)

SSS, χ(2)
XXY = χ(2)

SSP, χ(2)
XYX = 

χ(2)
SPS, χ(2)

YXX = χ(2)
PSS, χ(2)

XYY = χ(2)
SPP, χ(2)

YXY = χ(2)
PSP, χ(2)

YYX = χ(2)
PPS,  χ(2)

YYY = χ(2)
PPP. Through 

an Euler rotation (A graphical depiction of the rotation is shown in Fig. 4a.) and assuming the twist 

angle, ψ, is arbitrary, the lab frame χ(2) could be expressed as a function of βijk and solid angles, 

resulting in a set of 8 equations. One of the output equations of the Euler rotation is provided, Eq. 

1, as an example and the rest were listed in the ESI. As evident from Eq. 1 and ESI Eq. 5 - 12, 

three hyperpolarizability elements were not completely independent as they appeared as 𝛽𝑥𝑧𝑦 +

 𝛽𝑧𝑥𝑦 and 𝛽𝑥𝑦𝑧 − 𝛽𝑧𝑥𝑦  grouped terms in all equations. Therefore, 7 nondegenerate 

hyperpolarizability elements were grouped down to 6 independent terms simplifying our set of 

eight equations with 8 inputs to 8 unknowns (6 βijk grouped terms, and two solid angles). 

𝜒𝑃𝑃𝑆
(2)

=  
1

16
[(4 𝑐𝑜𝑠(3𝜑) 𝑠𝑖𝑛3(𝜃) + 𝑐𝑜𝑠(𝜑) (13 𝑠𝑖𝑛(𝜃)  + 𝑠𝑖𝑛(3𝜃))𝛽𝑥𝑥𝑧

− 8 𝑠𝑖𝑛(𝜑) (𝑠𝑖𝑛(2𝜃) (𝛽𝑥𝑧𝑦 + 𝛽𝑧𝑥𝑦)

+ 𝑠𝑖𝑛3(𝜃) 𝑠𝑖𝑛(2𝜑) (𝛽𝑥𝑧𝑥 + 𝛽𝑧𝑥𝑥 − 𝛽𝑧𝑧𝑧))] 

 

Eq. 1 

 



  

 
Figure 4 Euler transformation, neural network and extracted tilt angles of the supramolecules 

in MSAs. a) The Euler transformation between the laboratory coordinates (XYZ) and the 

molecular coordinates (xyz). z-y’-z’’ Euler rotation is performed on the molecular coordinates, 

with φ as the in-plane rotation angle, θ as the tilt angle, and ψ as the twist angle. b) Schematic 

illustration of the neural network employed to extract orientation information of the SDS@2β-

CD. c) Neural network results for the tilt (left) and in-plane rotation (right) angles. d) 

Visualization of the  tilted supramolecule subunits forming a sheet determined by the neural 

network results. 

To extract molecular orientations in the MSA frames, we need to solve the equations based on the 

experimentally measured χ(2) to extract θ, φ and βijk. To enhance the consistency of the result, we 

analyzed the signal on two single sheets and assumed that the supramolecular subunit in all single 

sheets had the same tilt angle. Two single sheets, i.e., without stacking and with visibly different 

orientations, were selected as a simplified scenario (identified by red and blue rectangles in Fig. 

3c and a. See details in SI Fig. 2). The χ(2) of the 2910 cm-1 peak of two sheets were extracted by 

the fitting results illustrated in Figure 3e, for the orientation analysis. Based on the optical images, 

(Fig. 3 and S2), we determined that the two single sheets are rotated approximately 600 in the XY 

plane relative to one another. Therefore, we further restrained our model with φ2 = φ1 + 60 degrees. 

As a result, for two sheets, we have 16 input values (2 x 8 different polarization combinations) and 

9 outputs: 6 independent variables consisting of βijk, the in-plane rotation φ1, tilt angle θ and the 

relative coverage ratio N between sheets. 

Neural networks to train the solvers and extract tilt angles 

This equation set was solvable however, traditional solvers required higher computational load 

(such as memory) for numerous iterations to obtain solution sets and re-calculation, and had low 



tolerance to noise, which was always present experimental data.74,75 These limitations prohibited 

us from obtaining reasonable results so, we turned to a neural network approach.76,77 The training 

set was created by randomly generating angles and hyperpolarizabilities (training output) and then 

supplying the values to the polarization-dependent equations (ESI Eq. 5-12) to calculate the 

corresponding susceptibilities (training input) (Fig.4b). The training set was used to train the 

relationships between the training input and outputs. The trained model was then tested with 

another data set generated via a similar random process, which investigated how well the model 

could solve for molecular orientations when supplied with susceptibility values that were not part 

of the training input. Fig. 4c displayed the correlation between Euler angles, i.e., molecular 

orientations, predicted by our model which captured the true values in the test data set well, 

resembling a y=x relationship. Thus, our neural network based orientation solver was appropriate 

in predicting the molecular orientations. 

Finally, we extracted molecular orientation using this method, by supplying it with the 

experimentally determined susceptibility values. Since phase information was not retrieved in our 

homodyne experiment, we enumerated the signs of all 16 susceptibility values when supplying 

them to the model and selected the predicted results with the smallest mean squared error of 

susceptibilities. It was predicted that the SDS@2β-CD subunit was tilted away from the lab frame 

z-axis (axis of light propagation) by 23 degrees (Fig. 4d). From the polarization-dependent 

equations we could see that if the tilt angle was 0°, all susceptibility terms on the left side of the 

equations would be zero, which did not agree with the strong SFG signal, implying non-zero 

susceptibilities of the SDS@2β-CD system. On the other hand, using the literature reported in-

plane unit cell parameters of the SDS@2β-CD system11, we could visually demonstrate that when 

the tilt angle was 30 degrees, the space between subunits was tight and when the tilt angle was 45-

60 degrees, SDS@2β-CD subunits would collide with each other (Fig. S6). Hence, the SDS@2β-

CD subunits were tilted slightly at 23 degrees retrieved with the neural network model was 

appropriate and consistent with exiting structural knowledge of the nanosheets.  Comparable to 

the well-studied system of self-assembled monolayer on metal substrates, we believed the driving 

force of the tilting could be the interplay of intermolecular interactions (such as hydrogen bonds) 

among subunits and binding behaviors between subunits and substrate.22,27,78,79 

It had been widely studied that the tilt of molecules within monolayers commonly existed in self-

assembled materials and potentially adjusted the conduction80,81, wetting82,83, or mechanical 

properties80,84,85. With SDS@2β-CD as an important biomimetic motif, the tilt angle resolved in 

our neural network approach sheds light on how the subunits pack within the self-assembly and 

provids a protocol to study other MSA systems structure-properties correlations. Moreover, as the 

tilting is influenced by the interaction of the subunits and hydration level, future works on humidity 

dependent packing of the system might unravel how the chemical environments affect the self-

assembly process and could be very interesting and significant for the drug delivery field86 as the 

release of target molecules highly relies on the biological environment. 

Conclusion 

The molecular self-assembly formed from a mixture of β-CD and SDS in water was analyzed using 

a linescanning hyperspectral VSFG microscope and neural network. A 1-D resonant scanner 



coupled to a CCD/spectrograph increases image collection speed 10 fold with simultaneous 

spectral information. This development enables polarization resolved VSFG images of single 

MSA sheets, which were analyzed by a neural network approach. The analysis revealed that the 

supramolecular building blocks are tilted at around 230 in the SDS@2β-CD MSA frame. Such 

information could help us further understanding the structure and intermolecular interactions of 

other biomimetic morphologies that the nanosheets construct. This information became available 

because of the power of VSFG microscopy to extract spatially resolved, spectral information of 

the nanosheets.  

Experimental Section 

 VSFG Line Scanning Microscope 

Our VSFG linescanning microscope is shown in Fig 2. Laser pulses for the microscope is provided 

by an 100 kHz Yb based cavity femtosecond laser (Light Conversion, Carbide) centered at 

1025nm. The output from the Carbide is used to pump an optical parametric amplifier (OPA) 

(Light Conversion, Orpheus-HP) centered at 3500 nm which covers the CH stretching vibration 

region of interest. The residual 1025 nm beam is used as the up-conversion and is first conditioned 

spectrally by directing it through a folded 4f pulse shaper. The frequency narrowed 1025 nm beam 

is then focused through an 8 um spatial filter followed by a λ/2 waveplate. The mid IR (MIR) light 

is steered towards a delay stage filter followed by a λ/2 waveplate and spatially overlapped with 

the up-conversion with a customized dichroic mirror that is transparent to MIR and reflective to 

near IR (NIR). The overlapped beams are then guided to a 1-D resonant scanner (EOPC) and 

focused onto the sample mounted to a 2D piezo stage (MadCity Labs) by a purely reflective 20x 

Schwarzschild objective (PIKE Technologies Inc. PN 891-0001) which acts as a condenser. The 

emitted nonlinear VSFG signal is collected by an infinity corrected, 20x refractive microscope 

objective (Zeiss, Fluar 20x/0.75 WD=0.6) and passes through a linear polarizer (ThorLabs). The 

polarization resolved signal is then analyzed using a Shamrock 500i spectrograph (Andor) coupled 

to a Newton CCD (Andor).  
 2B-CD@SDS Synthesis 

B-CD sheets are synthesized by adding B-CD and SDS at a molar ratio of 2:1 in DI water until the 

percent concentration is 10% m/m. The suspension is then heated to clarity and cooled to room 

temperature overnight. CuCl2 is added with sheets fully forming approximately 3-5 days later. 

Isolated sheet samples with linear dimensions on the 10s of micron scale are produced by drop 

casting 5 uL of the sheet suspension onto a 15 mm *15 mm * 0.170 mm microscope slide spinning 

at 10000 rpm. The sheets are transparent, but the silhouette can be observed with a standard optical 

microscope (Fig3).   

 Neural network model 

Keras in Python is employed to set up the neural network model. A layered neural network 

modified from Github repotsitory77 is built with a 200-100-50 node structure and a hyperbolic 

tangent activation function between layers (Fig. 4a). Training data set contains 100,000 input 

vectors and the corresponding output vectors correlated via the polarization-dependent equations. 

Similar to simple trigonometric function where 𝜃 = 0 and 𝜃 = π both satisty 𝑠𝑖𝑛(𝜃) = 0, one input 

vector (susceptibility values) in our model could also have multiple output vectors (different in-



plane rotation, tilt angle, hyperpolarizabilities combinations) at the same time. Hence, in-plane 

rotation angle is divided into [0, π) and [π, 2π) intervals and the tilt angle is divided into [0, π/2) 

and [π/2, π) intervals to differentiate these output vectors. Training is run with an epoch size of 

1000 and a batch size of 100. Mean squared error of output vector is used to monitor the deviation 

of prediction from true values. During the training, only 90% of the dataset is used for actual 

modeling and the rest 10% of the training data is separated out to testify whether the model can 

generalize to unseen data. In such way one can mitigate the overfitting, as can be seen in the small 

and close loss values obtained in both training and test process (SI Figure 7). 

After validating that our model is capable of predicting the tilt angle (Fig. 4c), we supply the model 

with experimentally determined susceptibilities (see ESI for details on spectral fitting) to extract 

the tilt angle. Since there is no phase information in our measurement, we enumerate the sign of 

each susceptibility values (total of 216 combinations) and provide all these as input vectors to our 

neural network. By calculating the mean squared errors of the predicted normalized susceptibility 

values and the experimentally determined ones, the smallest mean squared error we can obtain is 

0.02, whose corresponding predicted tilt angle is 23° (SI Table 2). 
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