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Abstract 

Identifying chemical starting points is a vital first step in small molecule drug discovery and can 

take significant time and money. For this reason, computational approaches to virtual screening 

are of great interest as they can lower cost and shorten timeframes. However, simple approaches 

such as molecular docking and pharmacophore screening are of limited accuracy and provide a 

low probability of success. Alchemical binding free energies represent a promising approach for 

virtual screening as they naturally incorporate the key effects of water molecules, protein 

flexibility, and binding entropy. However, the calculations are technically very challenging, with 

performance depending on the specific forcefield used. For this reason, it is important that the 

community has access to benchmark test sets to assess prediction accuracy. In this paper we present 

an approach to alchemical binding free energies using OpenMM. We identify effective simulation 

parameters using an existing BRD4(1) test set and present two new benchmark sets (cMET and 

PDE2A) that can be used in the community for validation purposes. Our findings also highlight 

the effectiveness of some AMBER forcefields, in particular AMBER ff15ipq.  
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1. Introduction 

Absolute binding free energy calculations are increasingly being exploited for virtual screening in 

drug discovery.1 The methods use molecular dynamics (MD) simulations with ligands being 

decoupled from their interactions in solution and coupled to their interactions in complex. A 

number of named methods and approaches have been published for calculation of absolute binding 

free energies.2-12 Named packages include BEDAM,13 BFEE,14, 15 CHARMM-GUI,16 XFEP,17 and 

GA-FEP.18 The performance of absolute binding free energy calculations depends on the protein 

and ligand forcefields used and, to date, there is a dearth of work on identifying the most effective 

protein and ligand forcefields. To enable effective development and application of absolute 

binding free energy calculations in virtual screening it is important that well curated benchmark 

sets are available. Community challenges such as SAMPL19 have focused on small supramolecular 

receptors such as octa-acid, cyclodextrin, and cucurbiturils such as CB7.20-22 Simple proteins such 

as the T4 Lysozyme mutants L99A and L99A/M102Q23-26 have been suggested but do not 

effectively mirror the desired use case. More recently, Mobley et al identified BRD4(1) as a useful 

and realistic test case.27 Recent publications have applied absolute binding free energies to a 

number of test cases developed using congeneric series for relative binding free energies.6, 17 

However, additional test cases with diverse ligands that are appropriate to drug discovery are 

needed to assess protein and ligand forcefields for virtual screening effectively. 

In this study we assess the accuracy of three AMBER protein forcefields (ff14SB,28 ff15ipq,29 

AMBER-FB1530), five water models (SPC/E,31 TIP3P,32 TIP3P-FB,33 TIP4P-Ewald,34 and TIP4P-

FB33), and two partial charge models for the ligand (AM1-BCC35 and RESP36) for absolute binding 

free energy calculations. All are available in the widely used OpenMM37-41 software package such 
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that the results provide a useful guide to the community. To achieve this, we have curated two new 

benchmark sets in addition to BRD4(1) and have made these available to the community.   
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2. Methods 

The methods section is comprised of the following subsections. First, subsection 2.1 describes how 

the test sets were assembled and details the proteins and ligands used. Then, subsection 2.2 

describes the process of protein and ligand preparation. Subsection 2.3 lists the different protein, 

ligand, and water molecule forcefields that were tested. Subsection 2.4 describes the system setup, 

simulation details, and alchemical protocols used for the absolute binding free energy calculations. 

Finally, subsection 2.5 specifies the simulation details for the extended molecular dynamics 

simulations performed on each protein test case. 

 

2.1 Test Set Selection 

Validation of absolute binding free energy calculations requires thorough validation of overall 

accuracy on a dataset of diverse protein-ligand complexes. We used an existing benchmark set 

from BRD4(1)27 and curated two additional benchmark sets from cMET kinase and PDE2A. These 

additional benchmark sets represent protein families (kinases and esterases) that have different 

folds and different binding sites from the bromodomain BRD4(1) and each other. They are also 

well studied proteins with a large number of crystal structures and published inhibitors. In addition, 

PDE2A has two metal ions and a number of interfacial water molecules in the binding site. This 

provides challenges that are not present in BRD4(1) and cMET. The structures of the three protein 

test cases and their binding sites are shown in Figure 1. 

 

Figure 1 – Crystal structures of the three test systems and their binding sites. Representative 

holo crystal structures of (a) BRD4(1) from PDBID 4LRG, (b) cMET from PDBID 5EOB, and (c) 

PDE2A from PDBID 5U7D. Proteins are shown as blue, red, and green cartoon ribbons with 
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ligands in space filling with cyan, orange, and dark green carbons for BRD4(1), cMET, and 

PDE2A respectively. The ligands and their binding sites are also shown for (d) BRD4(1), (e) 

cMET, and (f) PDE2A. Proteins are shown as blue, red, and green cartoon ribbons, ligands are 

shown in atom-colored balls and sticks with cyan, orange, and dark green carbons, and binding 

site residues plus ions are shown in atom-colored balls and sticks with blue, red, and green carbons 

for BRD4(1), cMET, and PDE2A respectively. 

 

 

For the ligands, we selected compounds from published works with differing scaffolds across a 

range of affinities.  
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Table 1 – BRD4(1) test set. The ligand IDs used in this work, the 2D structures of the ligands, the 

PDBIDs, the experimental IC50/Kd values, the corresponding (approximate) binding free energies, 

and the ligand IDs in the original literature references. 

Ligand 

ID 
Structure PDBID 

IC50 

(nM) 

~Gbind 

(kcal/mol) 
Lit. ID 

B1 

 

4LYS 46,000 -5.95 XD142 

B2 

 

4HBV 23,000 -6.36 843 

B3 

 

3U5J 2,460 -7.40 Alprazolam44 

B4 

 

4MR4 1,142 -7.84 RVX-20845 

B5 

 

3U5L 640 -8.16 BzT-744 

B6 

 

4MR3 153 -8.99 RVX-OH45 
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B7 

 

3MXF 49 -9.64 (+)-JQ146 

B8 

 

4LRG 26 -10.41 347 

 

Table 2 – cMET test set. The ligand IDs used in this work, the 2D structures of the ligands, the 

PDBIDs, the experimental IC50/Kd values, the corresponding (approximate) binding free energies, 

and the ligand IDs in the original literature references. 

Ligand 

ID 
Structure PDBID 

IC50 

(nM) 

~Gbind 

(kcal/mol) 
Lit. ID 

M1 

 

4DEH 612 -8.47 348 

M2 

 

3CCN 120 -9.44 3a49 

M3 

 

5YA5 79 -9.68 HL-11f50 

M4 

 

3A4P 28 -10.30 451 
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M5 

 

3CD8 9 -10.97 449 

M6 

 

6SDE 3 -11.62 2852 

M7 

 

4XYF 1 -12.27 (S)-21f53 

M8 

 

4DEI 0.6 -12.57 354 

M9 

 

5EOB 0.24 -13.12 2355 

 

Table 3 – PDE2A test set. The ligand IDs used in this work, the 2D structures of the ligands, the 

PDBIDs, the experimental IC50/Kd values, the corresponding (approximate) binding free energies, 

and the ligand IDs in the original literature references. 

Ligand 

ID 
Structure PDBID 

IC50 

(nM) 

~Gbind 

(kcal/mol) 
Lit. ID 

P1 

 

4C1I 2,460 -7.65 1(EHNA)56 
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P2 

 

5TZW 987 -8.19 3157 

P3 

 

5U7J 389.6 -8.74 358 

P4 

 

5TZ3 140 -9.35 757 

P5 

 

5U7I 66.6 -9.79 458 

P6 

 

4D08 10.1 -10.90 1259 

P7 

 

5U7K 7.1 -11.11 3958 

P8 

 

5TZA 0.8 -12.40 1957 
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P9 

 

5VP0 0.61 -12.57 3660 

P10 

 

5U7D 0.03 -14.35 861 

 

Protein and ligand structures are available on Github (https://github.com/djhuggins/Holoware-

TestCases) 

 

 

2.2 Protein Preparation 

The protein structure for BRD4(1) was taken from the benchmark study of Mobley et al 

(https://github.com/MobleyLab/benchmarksets/tree/master/input_files/BRD4). This structure was 

generated from PDBID 4LYI.42 Protein structures for cMET and PDE2A were downloaded from 

the protein databank.62 We used the protein structure PDBID 4XYF for cMET53 and PDBID 4HTZ 

(chain D) for PDE2A.63 In all cases, selenomethionines were changed to methionines and missing 

side-chains were added using Schrödinger’s Preparation Wizard, which was also used to evaluate 

the orientations of the asparagine, glutamine, and histidine residues, as well as the protonation 

state of all ionizable residues. Heteroatomic species such as buffer solvents were removed. For 

BRD4(1) and cMET, all water molecules were deleted. For PDE2A, two protein structures were 

https://github.com/djhuggins/Holoware-TestCases
https://github.com/djhuggins/Holoware-TestCases
https://github.com/MobleyLab/benchmarksets/tree/master/input_files/BRD4
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generated: one where all water molecules were deleted and one that retained 13 active site water 

molecules. The magnesium and zinc ions were retained in both cases but not restrained in the 

binding site. The structures were then minimized, converging the heavy-atom RMSD to 0.3 Å. For 

each test case we aligned all structures to these reference structures and extracted the 

crystallographic binding modes of the ligands for use in the calculations. 

 

2.3 Forcefields 

We used the GAFF 2.11 forcefield for ligand parameters64 alongside three protein forcefields, five 

water models, and two charge models. Not all combinations are appropriate and so the 16 

parameter sets used are reported in Table 4. 

 

Table 4 – Forcefield parameters tested. The 16 forcefield parameter sets tested. 

Parameter Set Protein Forcefield Water Model Charge Model 

1 ff14SB SPC/E AM1-BCC 

2 ff14SB SPC/E RESP 

3 ff14SB TIP3P AM1-BCC 

4 ff14SB TIP3P RESP 

5 ff14SB TIP4P-Ewald AM1-BCC 

6 ff14SB TIP4P-Ewald RESP 

7 FB15 TIP3P-FB AM1-BCC 

8 FB15 TIP3P-FB RESP 

9 FB15 TIP4P-FB AM1-BCC 

10 FB15 TIP4P-FB RESP 

11 ff15ipq SPC/E AM1-BCC 

12 ff15ipq SPC/E RESP 

13 ff15ipq TIP3P AM1-BCC 

14 ff15ipq TIP3P RESP 

15 ff15ipq TIP4P-Ewald AM1-BCC 

16 ff15ipq TIP4P-Ewald RESP 

 

AM1-BCC partial atomic charges for the ligands were calculated using Antechamber.65 RESP 

partial atomic charges for the ligands were calculated with Jaguar66 using the DFT/B3LYP method 
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with a Poisson-Boltzmann solver and water as the solvent. Protein partial atomic charges are 

defined by the protein forcefields. The crystallographic binding modes of the ligands were first 

subjected to minimization at the 3-21G* level and then charges were fit at the 6-31G** level. 

 

2.4 Absolute Binding Free Energy Calculations 

Absolute binding free energy calculations were performed using OpenMM37-41 version 7.267 with 

the openmmtools toolkit for Hamiltonian replica exchange (HREX).68 Simulations were conducted 

at 300 K and 1 atm using a Monte Carlo barostat. Three calculations were performed to estimate 

each absolute binding free energy: decoupling of the ligand in solution, coupling of the ligand in 

complex whilst restrained to the protein, and releasing of these restraints. Free energy changes 

were calculated using MBAR69, 70 with 37 lambda states for the solution, 37 lambda states for the 

complex, and 9 lambda states for the restraints. For decoupling in solution, the electrostatics were 

first entirely decoupled before decoupling the sterics. For coupling in complex, the sterics were 

first entirely coupled before coupling the electrostatics.71, 72 The exact sequence of lambda 

windows with the specified lambda values for the electrostatics, sterics, and restraints is described 

by the lambda schedule. We found that sigmoidal lambda schedules tapered around =0.15 for 

the sterics, =0.5 for the electrostatics, and =0.0 for the restraints enhanced the mixing of the 

alchemical states for the HREX and improved convergence of the free energy (data not shown). 

However, this may be specific to the ligands, proteins, forcefields, and softcore functions used. 

The exact lambda schedules used are reported in the supplementary information tables S1 and S2. 

Best practices dictate that the ligand should be restrained to the protein to prevent the ligand 

leaving the binding site and exploring the entire simulation box when all protein-ligand 

interactions are decoupled. For this reason, ligands were restrained to the protein using the six 
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restraints identified by Boresch.8, 12, 73 The restraints were selected and calculated using an 

automated protocol that is described in the SI methods. We are careful to choose restraining atoms 

that are part of a relatively rigid framework for both the protein and the ligand such that the 

thermodynamic cycle is close to exact. An example of the restraints is shown in Figure 2. 

 

Figure 2 – Illustration of the bond, angle, and dihedral restraints connecting the protein and 

ligand together. The six restraints used in the free-energy calculations for ligand B2. The six 

atoms involved in the restraint are displayed as balls and labelled L1, L2, L3, P1, P2, and P3. The 

bond (r) is colored and labelled in red. The angles (θ1 and θ2) are colored and labelled in orange. 

The dihedrals (ɸ1, ɸ2, and ɸ3) are colored and labelled in yellow. The protein is shown as cartoon 

ribbons and atom-colored wires with grey carbons. Residue Asn140 is shown as atom-colored 

sticks with grey carbons. The ligand B2 is shown as atom-colored sticks with green carbons. 
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Force constants from 0.25-8.0 kcal/mol/Å2 for the bonds, 2.5-80.0 kcal/mol/rad2 for the angles, 

and 5.0-160.0 kcal/mol for the dihedrals were tested (data not shown) in line with literature 

values.7-11, 71, 73 The final force constants used were 1.0 kcal/mol/Å2 for the bonds, 5.0 

kcal/mol/rad2 for the angles, and 5.0 kcal/mol for the dihedrals. Simulations were performed with 

a timestep of 4.0 fs using hydrogen mass repartitioning and a hydrogen mass of 4 AMU.74 Based 

on the scoping calculations presented in the results, the final simulations were performed with 500 

MD steps per iteration for 200 equilibration iterations and 1000 production iterations. Solvent 

systems were generated with a 9.0 Å buffer between the solute and the edge of the cubic periodic 

box. Complex systems were generated with a 5.0 Å buffer between the solute and the edge of the 

cubic periodic box. Systems were neutralized as appropriate and the ionic strength was set to 150 

mM with Na+ and Cl- ions. Electrostatics were modelled with PME75 and van der Waals were 

modelled using a nonbonded cutoff of 10.0 Å. Bonds to hydrogen were constrained and water 

molecules were modelled as rigid. To avoid the numerical instabilities referred to as end point 

catastrophes that occur when ligands approach the fully decoupled state, OpenMMTools employs 

a softcore function.76 Default parameters were used for softcore_alpha (0.5), softcore_a (1), 

softcore_b (1), softcore_c (6), softcore_beta (0.0), softcore_d (1), softcore_e (1), and softcore_f 

(2). Python input files are available on Github (https://github.com/djhuggins/Holoware-TestCases) 

 

2.5 Molecular Dynamics Simulations  

MD simulations were performed on the initial states for each protein test case to explore structural 

variations in the absence of the ligands. Calculations were performed using the setup protocol and 

with the same simulation parameters as the absolute binding free energy calculations. RMSD 

values and system measurements were performed with MDTraj.77 

https://github.com/djhuggins/Holoware-TestCases
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3. Results and Discussion 

3.1 Scoping Calculations 

Scoping calculations were performed for both MD simulations and absolute binding free energy 

calculations in order to refine the OpenMM parameters and protocols. MD simulations were 

performed on the initial states for each protein test case (five independent simulations of 24 ns). 

In the case of BRD4(1), a transition to a more favorable “open” conformation of the protein’s ZA-

loop (Pro86 to Tyr98) has been noted in molecular dynamics simulations in the absence of ligands.9 

By monitoring the Asp88 and Asp96 ϕ and ψ backbone torsions and using ff14SB and TIP3P 

parameters, Heinzelmann et al noted a transition after approximately 50 ns and the ZA-loop 

remained in the new conformation for an additional 250 ns of simulation. By monitoring the same 

backbone torsions and using ff14SB and SPC/E parameters, we note the transition in one of the 

five simulations of BRD4(1) and it occurs after approximately 12 ns. The transition does not occur 

in the other four simulations. The data is shown in supplementary figure S1. Heinzelmann et al 

calculated that the transition between the two states is associated with free energy changes of 

−2.54, −3.72, and −1.67 kcal/mol, for TIP3P, TIP4P-Ewald, and SPC/E, respectively (using 

ff14SB parameters for the protein) and adjusted their binding free energy predictions accordingly.9  

In the case of cMET, protein conformational change is also important. The activation loop of the 

kinase adopts a specific conformation in the presence of the inhibitors in Table 2, all of which 

make key contacts with Tyr1230 in the activation loop.50, 55, 78 In the apo state, the activation loop 

and the P-loop have markedly different conformations.79 For this reason the apo state is not suitable 

for free energy calculations with these ligands. The five independent simulations of the initial state 

illustrate that the activation loop retains essentially the same conformation on the timescale of the 

simulation. Figure 3 shows the apo state from PDBID 2G15,79 the initial state used for the 
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simulations (a ligand bound structure), and an example of the conformation after 24 ns of MD with 

the ligand absent. 

 

Figure 3 – Relevant conformations of cMET. The crystallographically observed apo 

conformation of cMET from PDBID 2G15 (orange), the crystallographically observed ligand 

bound conformation of cMET from PDBID 4XYF used for the simulations (green), and an 

example conformation after 24 ns of MD simulation in the absence of the ligand (magenta). The 

protein is shown as cartoon ribbons and residue Tyr1230 is shown in atom-colored balls and sticks. 

 

 

Whilst the protein clearly does not shift to the apo state conformation in any of the five independent 

simulations, the activation loop does show some flexibility and explores different conformations 

on the timescale of the simulations. This is illustrated by the time series data for backbone torsion 

angles of Met122, Tyr1230, Asp1231, and Lys1232 shown in supplementary figure S2. For 
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PDE2A, the simulation was monitored to check that the zinc and magnesium ions do not leave the 

binding site when no ligand is present. For all five independent simulations the ions remain in the 

site at a distance of approximately 4.7 Å from one another (the distance in the crystal structure is 

approximately 3.7 Å). The data is shown in supplementary figure S3.  

Moving on to the alchemical simulations, we studied the effect of the frequency of HREX attempts 

on the results for the BRD4(1) test case with ligand B6. We used the ff14SB forcefield with the 

SPC/E water model and AM1-BCC charges. For a fixed number of total steps (50,000 equilibration 

plus 250,000 production) we varied the frequency of HREX attempts. Increasing the frequency of 

HREX attempts from one every 1000 steps to one every 50 steps lengthens the simulation time 

proportionally (as expected) but does not improve the convergence or the results. The data is shown 

in supplementary figure S4.  

We then considered the number of equilibration steps using ligands B6, M8, and P10 for the three 

test cases. For a fixed number of production steps (200000) and frequency of HREX attempts (one 

every 1000 steps) we varied the number of equilibration steps. Decreasing the number of 

equilibration steps from 50000 to 5000 does not worsen the convergence or the results. However, 

the data suggests that more than 200000 production steps may be required for more flexible ligands 

such as P10. The data is shown in supplementary figures S5, S6, and S7 for BRD4(1), cMET, and 

PDE2A respectively. We also considered the convergence of the predictions as the number of 

production steps was increased. The number of equilibration steps was fixed at 100,000 and the 

frequency of HREX attempts was fixed at one every 500 steps. The convergence of the total 

binding free energy for all eight ligands in the BRD4(1) test set is shown in Figure 4.  
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Figure 4 – Convergence of the total binding free energy for all eight ligands in the BRD4(1) 

test set. The sum of the complex, solvent, restraint, and correction terms for ligands B1-B8 using 

the ff14SB forcefield with the SPC/E water model and AM1-BCC charges. Free energies were 

estimated every 5000 steps. 

 

The total binding free energy estimates show little variation after 300,000 steps, stabilizing to 

within +/- 1.0 kcal/mol of the value after 500,000 steps. In fact, if one monitors the correlation 
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between experiment and prediction as the number of steps is increased, the R2 stabilizes around 

0.6 after only 100,000 steps. After analyzing these results, we chose the parameters for the test set 

calculations noted in Table 5.  

 

Table 5 – Final parameters. The simulation parameters used for the three test sets. 

Parameter Name Value 

HREX attempt frequency 500 

Equilibration steps 100,000 

Production steps 500,000 

 

These parameters correspond to 2.0 nanoseconds of production simulation per lambda window. 

This is much smaller than the timescale observed for the BRD4(1) conformational change, with 

only one transition observed after 12.0 nanoseconds in only one of five independent simulations. 

Thus with 37 lambda windows we use 74 nanoseconds per transformation for the solvent/complex 

calculations and with 9 lambda windows we use 18 nanoseconds per transformation for the 

restraint calculation. Importantly, the MD simulations of the apo state suggest that the BRD4(1) 

protein is likely to remain in the ligand bound state on the timescale of the simulations. For cMET, 

the MD simulations of the initial state suggest that the activation loop remains in the state that is 

competent for ligand binding when the ligand is fully decoupled. However, conformations of the 

activation loop may be differentially sampled when the ligand is fully decoupled and this may 

affect convergence and reproducibility. In the case of PDE2A, the MD simulations of the apo state 

suggest that the zinc and magnesium ions remain in the binding site on the timescale of the 

simulations. As a final check of the convergence and reproducibility using these parameters, we 

performed five repeats for each protein test case using the ff14SB forcefield with the SPC/E water 

model and AM1-BCC charges. Ligands B4, M8, and P10 were selected as they have more rotatable 
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bonds and are likely to present the greatest challenge for sampling. A plot of the mean and standard 

deviation of the total binding free energy is shown in Figure 5. 

 

Figure 5 – Convergence plots for ligands B4, M8, and P10 using the optimized set of 

parameters. Means and standard deviations of the free energy values for five independent 

simulations of ligand B4, M8, and P10 using the ff14SB forcefield with the SPC/E water model 

and AM1-BCC charges as the number of production steps is increased. The means are shown as a 

solid lines and the standard deviations are shown as shaded areas in blue, red, and green for B4, 

M8, and P10 respectively. 

 

 

After 500,000 production steps the standard deviations across the five independent simulations are 

0.78, 0.83, and 1.15 kcal/mol for B4, M8, and P10 respectively. The complex leg is the main source 

of the variance, with standard deviations of 0.76, 0.81, and 1.06 kcal/mol respectively. As 
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expected, the variance is highest for ligand P10 which is the most flexible with eleven non-methyl 

rotatable torsion angles. The variance is expected to be much lower for molecules with lower 

flexibility. For example, ligand B2 with zero non-methyl rotatable torsion angles has a standard 

deviation of 0.35 kcal/mol across five independent simulations (data shown in Figure S8). Whilst 

the data suggests that flexible molecules do present a challenge for sampling, we consider these 

parameters acceptable for assessing performance across the different test cases and ligands.  

 

3.2 BRD4(1) Performance 

The results for BRD4(1) are presented in Table 6. 

  

Table 6 – BRD4(1) results. The results for the BRD4(1) test set with the 16 forcefield parameter 

sets. 

Protein 

Forcefield 

Water 

Model 

Charge 

Model 

MSE 

(kcal/mol) 

MUE 

(kcal/mol) 

RMSE 

(kcal/mol) 
R2 τ 

ff14SB SPC/E AM1-BCC -2.78 3.00 3.36 0.54 0.71 

ff14SB SPC/E RESP -1.38 1.78 2.02 0.46 0.40 

ff14SB TIP3P AM1-BCC -1.51 1.67 2.20 0.48 0.43 

ff14SB TIP3P RESP -1.01 1.54 1.78 0.31 0.36 

ff14SB TIP4P-Ewald AM1-BCC -2.65 2.79 3.17 0.53 0.50 

ff14SB TIP4P-Ewald RESP -0.91 1.37 1.44 0.56 0.50 

FB15 TIP3P-FB AM1-BCC -2.85 2.86 3.18 0.67 0.71 

FB15 TIP3P-FB RESP -1.10 1.62 1.85 0.37 0.36 

FB15 TIP4P-FB AM1-BCC -2.04 2.34 2.55 0.54 0.57 

FB15 TIP4P-FB RESP -0.27 1.36 1.62 0.33 0.29 

ff15ipq SPC/E AM1-BCC -2.05 2.50 2.99 0.57 0.57 

ff15ipq SPC/E RESP -0.73 1.03 1.26 0.66 0.71 

ff15ipq TIP3P AM1-BCC -0.88 1.25 1.47 0.60 0.50 

ff15ipq TIP3P RESP -0.30 1.13 1.40 0.31 0.43 

ff15ipq TIP4P-Ewald AM1-BCC -2.51 2.55 3.01 0.47 0.50 

ff15ipq TIP4P-Ewald RESP -1.28 1.70 2.07 0.50 0.50 
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The mean signed error (MSE) is negative in all cases indicating a bias to predict the binding free 

energy as more favorable than experiment (between 0.27 and 2.85 kcal/mol). However, the mean 

unsigned error (MUE) and root mean square error (RMSE) are reasonable in most cases, with the 

combination of ff15ipq, SPC/E, RESP yielding the best performance for both of 1.03 kcal/mol and 

1.26 kcal/mol respectively. The R2 and Kendall τ in this case are 0.66 and 0.71 respectively. It 

should be noted that these predictions are based on simulations that are not expected to sample the 

“open” state predicted to be favored by Heinzelmann et al.9 One cannot strictly apply the free 

energy changes for transitions to the “open” state calculated by Heinzelmann et al to our 

calculations because they performed the binding free energy calculations with protein torsional 

restraints and then calculated the free energy of releasing them whilst no protein torsional restraints 

were used in the current study. However, one can consider how the errors would be affected for 

parameter sets 1-6 which correspond to those used by Heinzelmann et al (−2.54, −3.72, and −1.67 

kcal/mol for TIP3P, TIP4P-Ewald, and SPC/E, respectively using ff14SB parameters for the 

protein). For example, the MUEs for the parameter sets ff14SB, TIP3P, AM1BCC and ff14SB, 

TIP3P, RESP would improve by over 1.0 kcal/mol to 2.00 and 0.97 kcal respectively, while the 

MUE for the parameter set ff14SB, TIP4P-Ewald, RESP would worsen by over 1.0 kcal/mol to 

2.89 kcal. Whilst informative, these offsets cannot be strictly used as a full accounting of the 

thermodynamic cycle is required separately for each ligand. The full set of results for all molecules 

and all parameter sets are in supplementary table S3. 

 

3.3 cMET Performance 

The results for cMET are presented in Table 7. 

 



25 
 

Table 7 – cMET results. The results for the cMET test set with the 16 forcefield parameter sets. 

Protein 

Forcefield 

Water 

Model 

Charge 

Model 

MSE 

(kcal/mol) 

MUE 

(kcal/mol) 

RMSE 

(kcal/mol) 
R2 τ 

ff14SB SPC/E AM1-BCC -8.71 8.71 8.85 0.47 0.50 

ff14SB SPC/E RESP -7.83 7.83 8.09 0.43 0.56 

ff14SB TIP3P AM1-BCC -6.24 6.24 6.63 0.61 0.56 

ff14SB TIP3P RESP -5.77 5.77 6.00 0.57 0.72 

ff14SB TIP4P-Ewald AM1-BCC -7.92 7.92 8.12 0.77 0.78 

ff14SB TIP4P-Ewald RESP -7.46 7.46 7.63 0.65 0.65 

FB15 TIP3P-FB AM1-BCC -10.08 10.08 10.21 0.71 0.72 

FB15 TIP3P-FB RESP -9.79 9.79 9.92 0.57 0.67 

FB15 TIP4P-FB AM1-BCC -9.33 9.33 9.60 0.45 0.61 

FB15 TIP4P-FB RESP -8.09 8.09 8.22 0.69 0.82 

ff15ipq SPC/E AM1-BCC -7.66 7.66 7.72 0.73 0.72 

ff15ipq SPC/E RESP -7.29 7.29 7.63 0.25 0.50 

ff15ipq TIP3P AM1-BCC -4.97 4.97 5.32 0.75 0.83 

ff15ipq TIP3P RESP -4.66 4.88 5.24 0.31 0.50 

ff15ipq TIP4P-Ewald AM1-BCC -7.79 7.79 8.05 0.34 0.50 

ff15ipq TIP4P-Ewald RESP -6.91 6.91 7.35 0.24 0.33 

 

The MSE is again negative in all cases indicating a bias to predict the binding free energy as more 

favorable than experiment. In this case the trend is more severe than for BRD4(1), with MSE 

values between 4.66 and 10.08 kcal/mol. This leads to poorer MUE and RMSE values compared 

with the BRD4(1) test case. We posit that the bias in this case is caused by the need for a significant 

protein rearrangement to allow ligand binding. As noted above, the residue Tyr1230 forms a pi-

stacking interaction with all the ligands and this requires a significant rearrangement of the A 

loop.78 This rearrangement is so major that attempts to quantify the free energy change 

computationally would be extremely challenging. Despite this bias, the correlation with 

experiment is higher than 0.7 in a number of cases. The best R2 of 0.77 is found for ff14SB, TIP4P-

Ewald, AM1-BCC and the best Kendall τ of 0.83 is found for ff15ipq, TIP3P, AM1-BCC. Notably, 

the ff15ipq, TIP3P, AM1-BCC parameter set correlates well with experiment for both the BRD4(1) 
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and cMET test cases, with R2 values of 0.60 and 0.75. The full set of results for all molecules and 

all parameter sets are in supplementary table S4. 

 

3.4 PDE2A Performance 

For PDE2A we first studied predictions with and without water molecules in the binding site of 

the input protein structure. There are many water molecules bridging between the ligand and the 

protein in addition to coordinating the active site magnesium and zinc ions. Alongside this we 

studied predictions with the original AMBER parameters for divalent cations and a set of 

parameters rationally designed to be compatible with PME simulations in explicit solvent (the HFE 

set).80 These preliminary calculations were performed for only 200 production iterations with 20 

equilibration iterations and only the ff14SB forcefield with the SPC/E or TIP3P water model. For 

both water models and both divalent cation parameters we found that the results without water 

molecules in the binding site of the input protein structure were always poorer (mean unsigned 

error ranging from 5.15 to 7.70 kcal/mol) than the results with water molecules present in the input 

protein structure (mean unsigned error ranging from 3.24 to 5.10 kcal/mol). To expand on this, 

using a structure without water molecules in the binding site of the input protein structure led to a 

much larger bias to predict the binding free energy as more favorable than experiment. We also 

found that using the HFE divalent cation parameters improved accuracy over the original divalent 

cation parameters in all cases (the mean unsigned error improved by between 0.07 and 2.55 

kcal/mol). The full results for these calculations are in supplementary table S5. The full results for 

PDE2A (with water molecules in the binding site of the input protein structure and the HFE 

divalent cation parameters) are presented in Table 8. 
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Table 8 – PDE2A results. The results for the PDE2A test set with the 16 forcefield parameter 

sets (with water molecules in the binding site of the input protein structure and the HFE divalent 

cation parameters). 

Protein 

Forcefield 

Water 

Model 

Charge 

Model 

MSE 

(kcal/mol) 

MUE 

(kcal/mol) 

RMSE 

(kcal/mol) 
R2 τ 

ff14SB SPC/E AM1-BCC -0.40 1.44 1.67 0.65 0.47 

ff14SB SPC/E RESP 1.16 2.32 2.94 0.49 0.56 

ff14SB TIP3P AM1-BCC 1.99 1.99 2.61 0.48 0.42 

ff14SB TIP3P RESP 2.08 2.21 2.71 0.62 0.56 

ff14SB TIP4P-Ewald AM1-BCC -1.11 1.82 2.29 0.51 0.56 

ff14SB TIP4P-Ewald RESP 0.30 1.29 1.96 0.66 0.60 

FB15 TIP3P-FB AM1-BCC -1.38 1.78 2.51 0.71 0.64 

FB15 TIP3P-FB RESP -0.15 2.28 2.71 0.70 0.69 

FB15 TIP4P-FB AM1-BCC -1.27 1.77 2.40 0.81 0.81 

FB15 TIP4P-FB RESP -0.72 1.83 2.10 0.71 0.64 

ff15ipq SPC/E AM1-BCC -0.52 1.65 2.12 0.61 0.51 

ff15ipq SPC/E RESP 0.36 1.40 1.90 0.67 0.51 

ff15ipq TIP3P AM1-BCC 0.87 1.45 1.81 0.59 0.51 

ff15ipq TIP3P RESP 1.80 2.05 2.89 0.64 0.60 

ff15ipq TIP4P-Ewald AM1-BCC -2.51 2.64 3.01 0.73 0.60 

ff15ipq TIP4P-Ewald RESP -1.15 2.01 2.57 0.61 0.60 

 

Many of the parameter sets perform well, without a clear bias to predict the binding free energy as 

more favorable than experiment as seen for the other two test cases. The majority of the parameter 

sets yield R2 values greater than 0.6 and some of the parameter sets yield MUE values below 1.5 

kcal/mol. Again, there is a slight disconnect between the best performance in terms of error and 

the best performance in terms of correlation. Again, the combination of ff15ipq, TIP3P, AM1-

BCC yields a good performance relative to the other parameter sets, with an MUE and RMSE of 

1.45 kcal/mol and 1.81 kcal/mol respectively. The R2 and Kendall τ in this case are 0.59 and 0.51. 

Conversely, the ff15ipq, TIP4P-Ewald, AM1-BCC parameter set shows R2 and Kendall τ values 

that are higher than this at 0.81 and 0.81 but MUE and RMSE values that are also higher 1.77 
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kcal/mol and 2.40 kcal/mol respectively. The full set of results for all molecules and all parameter 

sets are in supplementary table S6. 

 

3.5 Forcefield Performance 

The results are reasonable for all three test cases, with many parameter sets yielding an R2 

correlation with experiment greater than 0.6. However, the use of RESP charges in place of AM1-

BCC charges does not tend to improve the accuracy of the predictions, if anything leading to poorer 

performance on average. The TIP4P-Ewald model also does not improve performance relative to 

the TIP3P and SPC/E models, which show similar performance. Overall, it is interesting to note 

the good performance of the ff15ipq forcefield in combination with the TIP3P water model relative 

to the other parameter sets, especially at accurately reproducing the free energy values. In this case, 

results are similar for both AM1-BCC and RESP charges. Figure 6 shows plots of the correlation 

between experiment and prediction for the ff15ipq, TIP3P, AM1-BCC parameter set. 

 

Figure 6 - Correlation between experiment and prediction for the ff15ipq, TIP3P, AM1-BCC 

parameter set for (a) BRD4(1), (b) cMET, and (c) PDE2A. 
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The R2 values indicating correlation are 0.60, 0.75, and 0.59 for BRD4(1), cMET, and PDE2A 

respectively. The mean unsigned errors for BRD4(1) and PDE2A  are 1.25 kcal/mol and 1.45 

kcal/mol respectively while the mean unsigned error for cMET is low in comparison (4.97 

kcal/mol). As discussed, this is likely due to a significant conformational changed required for 

ligand binding that is not sampled on the timescales employed here.    

 

4. Summary and Conclusions 

We have developed a workflow in OpenMM to calculate absolute binding free energies and 

validated it using the existing test case of BRD4(1) and two newly developed test cases (cMET 

and PDE2A). The results for many of the parameter sets in the BRD4(1) and PDE2A test cases 

show MUEs below 1.5 kcal/mol and R2 values above 0.6. For the cMET test case, many parameter 

sets yield similar correlations, but relatively poorer MUE/RMSE values as discussed. For 

BRD4(1), we can compare these results with previous studies. Aldeghi et al applied MBAR 

calculations to BRD4(1).10 In Table 1 they report results for 11 ligands, 6 of which are in the test 

set used here. With the parameter set of the Amber99SB-ILDN protein forcefield,81 GAFF ligand 

parameters, the TIP3P water model, and AM1-BCC charges they report an MUE of 0.6 kcal/mol, 

an RMSE of 0.8 kcal/mol, and a correlation coefficient of 0.84 (R2 of 0.71) for all 11 ligands. 

Heinzelmann et al applied attach-pull-release calculations to BRD4(1).9 In Table 2 they report 

results for 7 ligands, 5 of which are in the test set used here. With the optimal parameter set of the 

ff14SB protein forcefield, GAFF ligand parameters, the SPC/E water model, and AM1-BCC 

charges they report an RMSE of 1.42 kcal/mol, a correlation coefficient of 0.83 (R2 of 0.69), and 

a Kendall τ of 0.49 for all 7 ligands (accounting for the free energy of the protein’s closed-to-open 

conformational change). For our work using the parameter set of the ff15ipq protein forcefield, the 
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SPC/E water model, and RESP charges the MUE is 1.03 kcal/mol, the RMSE is 1.26 kcal/mol, the 

correlation coefficient is 0.81 (R2 of 0.66), and the Kendall τ is 0.71 for all 10 ligands. Results in 

all three studies are comparable and show a good performance relative to literature values, a 

performance that would be useful for virtual screening. 

For the cMET and PDE2A test cases we cannot compare directly with previous studies but the 

MUE, RMSE, R2, and Kendall τ values can be analyzed. For cMET, the R2 values are relatively 

high with a maximum of 0.77 but the errors are relatively high with MSE values between 4.66 and 

10.08 kcal/mol. We suggest that this is due to the need for a significant protein rearrangement to 

facilitate ligand binding for all ligands. The optimal parameter set of the ff15ipq protein forcefield, 

the TIP3P water model, and AM1-BCC charges yields an MUE of 4.97 kcal/mol, an RMSE of 

5.32 kcal/mol, an R2 of 0.75, and a Kendall τ of 0.83. For PDE2A, preliminary calculations also 

suggest that structural waters are important for accurate predictions and were not treated 

appropriately using a standard MD method when they were missing from the starting structure. 

This reinforces the need for methods such as GCMC that can place water molecules during a 

simulation.82, 83 However, when water molecules are included in the starting structure, the accuracy 

is typically better then 2.0 kcal/mol and the R2 values are higher than 0.6.  Absolute binding free 

energies may also benefit from the use of enhanced sampling techniques such as solute tempering84 

or temperature replica exchange85 but have not been explored here.  

The parameter set of the ff15ipq protein forcefield, the TIP3P water model, and AM1-BCC charges 

yields an MUE of 1.45 kcal/mol, an RMSE of 1.81 kcal/mol, an R2 of 0.59, and a Kendall τ of 

0.51. As discussed in the introduction, there are a number of published approaches for calculation 

of alchemical binding free energy and it would be interesting to apply them to the two new test 

cases presented here and discover whether the ff15ipq protein forcefield is equally effective.  
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These results are reasonable in the context of absolute binding free energy predictions and in 

comparison with similar studies. XFEP was applied to a set of test cases developed using 

congeneric series for relative binding free energies. The authors reported an overall RMSE of 1.11 

kcal/mol, an R2 of 0.47, and a Kendall τ of 0.49.17 GA-FEP has been applied to both congeneric 

series and diverse ligands.18 Across the test cases, the authors reported RMSEs between 0.62 

kcal/mol and 1.54 kcal/mol with R2 values between 0.48 and 0.88. Khalak et al also analysed a set 

of test cases with congeneric series to calculate absolute binding free energies.6 They reported an 

overall MUE of 1.17 kcal/mol and an R2 of 0.40. 

MD simulations of the apo states indicate that the ligand-bound states of the three proteins are 

stable on the timescale of the simulations performed here. However, these findings may well be 

dependent on the forcefield and conformational changes are certainly dependent on the timescale 

of the relevant simulations. Such considerations are system dependent and will always be 

important for MD-based methods. Heinzelmann et al noted a transition to a more favored “open” 

state of BRD4(1) after 50 ns of MD that is unlikely to be sampled on the timescale of standard free 

energy calculations. We note this transition after 12 ns in one of five independent simulations of 

BRD4(1). Corrections to binding free energy predictions may be warranted in such cases and they 

would likely improve results for BRD4(1) using the parameter sets studied here based on simple 

considerations. Importantly, the cMET test case developed here shows a much more significant 

protein rearrangement upon binding all of the ligands studied and this likely requires a parameter 

set dependent correction to binding free energy predictions. However, if all ligands bind to a 

similar state that is stable on the timescale of the calculations, there should be minimal effect on 

the correlation and ranking as the corrections will provide a similar offset to all of the predictions. 

Notably, of the three test cases studied here, the cMET test case shows the best performance in 
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terms of correlation with experimental binding free energies but the worst performance in terms 

of error. 

For all three cases we note that there is no clear improvement when using RESP charges relative 

to AM1-BCC charges. However, alternative protocols to generate the RESP charges should be 

explored in future work. In addition, no clear improvement is seen when the FB15 protein model 

and/or the four-point water models TIP4P-Ewald/TIP4P-FB are used. Relative to the other 

parameter sets tested, we also note the good performance of the ff15ipq protein forcefield for all 

three test cases, particularly when considering the MUE and RMSE. Non-polarizable forcefields 

typically use an average or specific polarization of molecules and cannot explicitly model or 

quantify changes in polarization. We posit that this manifests most clearly in absolute binding free 

energy calculations where the entire ligand changes its environment from the solvent to the 

complex and polarization changes are most significant. 

In summary, this work reports the predictive accuracy of 16 parameter sets in calculating absolute 

binding free energies for 27 ligands across one existing and two newly developed test cases. There 

are an array of forcefields that could be used for such calculations and deciding which will be 

accurate in any given case is challenging. We have provided some guidance based on the results 

for BRD4(1), cMET, and PDE2A but performance varies so the best practice is to validate 

effectiveness on a case-by-case basis. Unfortunately, appropriate benchmarking data is typically 

unavailable in the use case where virtual screening is being used to identify novel chemical matter. 

Benchmark against a similar protein system could also prove useful but, in the absence of such 

information, the work presented here suggests that the ff15ipq protein forcefield performs very 

well, with the parameter set ff15ipq, TIP3P, AM1-BCC yielding the best results across the three 

test sets considered. However, there are a large number of parameter sets that have not been 
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considered here. For example, the mdgx program from Ambertools can generate ligand parameters 

using the IPolQ approach that was used the generate the ff15ipq protein forcefield.86 Open Force 

Field have also recently released their 1.0.0 small molecule force field (Parsley)87 and a version 

2.0.0 (Sage). In addition, the combination of the OPC water model88 and the ff19-SB protein 

forcefield has been recommended for better predictive power and could be added to 

opemmforcefields.89 This study introduces two new benchmark sets that can be used to identify 

the most effective parameter sets for absolute binding free energy calculations in future work. 
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