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Abstract 
 It is well known that heterogenous catalysts exhibit a distribution of sites/structures, some more 
active than others but more than one often being important to the underlying reaction mechanism(s). 
The inclusion of this reality in mean field microkinetic models has been largely avoided in favor of 
lattice-based models like cluster expansions where in principle different types of sites can be explicitly 
defined. Here, we develop a thermodynamically self-consistent theory of multi-site microkinetics from 
the first principles of statistical mechanics to show how multiple site types can be represented in mean 
field microkinetic models. The theory incorporates local enthalpies and entropies, lateral molecular 
interactions, and global entropy; generating thermodynamic activities for any number of site types that 
deviate significant from those of idealized models. We provide the resultant rate expressions for rates 
of adsorption/desorption and surface diffusion between the site types. Contrary to what is typically 
assumed, even when a species has access to many different sites or binding configurations, only one 
rate, which is driven by the average adlayer chemical potential, can be defined for desorption from the 
surface. The approach in this work correctly describes adsorption/desorption and diffusion for a multi-
site model of a heterogenous catalyst and differs from the commonly used law of mass action.  

 
1. Introduction 
 The development and use of microkinetic models is ubiquitous in heterogenous catalysis.1 
However, few such models incorporate multiple types of potential binding sites.2-4 This is unsurprising 
since the work of Boudart5, 6 on the kinetics of nonuniform surfaces (i.e., one with more than a single 
type of binding site) suggested that they should produce the same kinetics as uniform surfaces if one 
assumes a two-step catalytic reaction and a Boltzmann distribution of variable-affinity binding sites. 
Boudart’s conclusions would therefore seem to obviate the need for multiple sites in microkinetic 
models. However, it is becoming increasingly clear that multiple active centers exist that are relevant 
to the kinetics of such systems,3, 4, 7-29 and recent work has highlighted the critical role of metastable 
state structures in heterogeneous catalysis.30-33 So, a proper formulation is still required.  
 Kinetic models with multiple site types (and other mathematically similar structures) have been 
rigorously formulated and explored in the work of Kreuzer and various co-workers.34 These models 
are generally built by treating the adlayer as an interacting, spatially-resolved  lattice gas that is then 
inserted into the grand canonical partition function. The system’s time-dependent properties can then 
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be determined using transfer matrix35-37 or stochastic Monte Carlo (MC) methods38, 39 depending on 
the level of complexity built into the model. While such models permit a detailed exploration into the 
microscopic origins of adsorption/desorption behavior, their complexity makes the modeling of large 
chemical reaction networks a largely intractable problem, whether including multiple site types or not. 
Despite the recent development and availability of powerful kinetic Monte Carlo (kMC) software, e.g., 
Zacros40-43 for simulating these types of models, it is still clear that challenges remain for increasing 
the complexity of the systems one can study with such a methodology.44  

If surface diffusion is fast compared to adsorption/desorption, the chemical adlayer can be assumed 
to be in quasi-equilibrium where spatial correlation between surface sites disappears. This allows one 
to project the complex space of adsorbate configurations onto a single set of collective variables: the 
areal coverages of each species adsorbed on the surface. In the cases where this assumption is valid 
(or valid enough to reasonable approximation), the adlayer can be described by its “mean field.” This 
mean field is a single free energy value assigned to the entire adlayer, representing essentially the 
statistical average of the underlying spatially-resolved Hamiltonian at some constant set of adsorbate 
coverages, or as we will show, a constant set of adsorbate and site-type coverages. This allows one 
to describe all thermodynamic and kinetic properties as a function described as a function of 
macroscopic coverages alone, permitting the construction of mean-field microkinetic models (MF-
MKMs). To be certain, the lack of spatial correlation represents a significant limitation on such models, 
and other kinetic methodologies have been developed in an attempt to mitigate these limitations,45, 46 
but it is clear that the utility and conceptual simplicity of standard MF-MKMs will continue to make them 
indispensable to researchers and industrial chemical engineers, alike. Therefore, it is important to 
determine how these models should properly incorporate multiple site types.  
 In this work, we derive MF-MKM rate expressions for site-to-site diffusion and 
adsorption/desorption that are valid when multiple site types are present. In the derivation of these 
rate expressions, we find it is both possible and necessary to explicitly define the otherwise implicit 
mean-field free energy of the adlayer. This quantity is central to ensuring what we will term 
thermodynamic self-consistency, which is an extension of thermodynamic consistency and detailed 
balance34 that seeks to guarantee that equilibrium values, as predicted by minimization of the system’s 
free energy, are reproduced when the MF-MKM is chemically isolated and allowed to come to 
equilibrium (i.e., when forward and reverse rates of reaction are equivalent). To enhance the 
physicality of the MF-MKM, its entropy contribution is highly generalized within a (mean-field) lattice 
gas paradigm where site blocking effects are fully incorporated analytically. The forms of the resulting 
rate expressions are found to deviate considerably from those typically assumed unless one treats all 
adsorbates as two-dimensional ideal gases (i.e., non-interacting free translators). Nonetheless, their 
analytical nature ensures they can be easily implemented in any MF-MKM. 

 
2. Theory and Formulation 
2.1 Assumptions and Model Setup  

When we speak of site types on a surface, the terms can be broadly applied. In fact, the 
mathematical formulation presented here is equally applicable to any sort of “deposition” of any 
molecular entity into any n-dimensional space. For instance, instead of “coverage” of adsorbates, 
concentration of species inside a bulk solid or even just inside empty 3D space could be used. 
Additionally, the adsorbate could simply occupy multiple chemical states instead of spatially distinct 
sites, in which case rates of diffusion can be interpreted equivalently as rates of conversion from one 
state to another. This is illustrated in Figure 1, where we use red circles and blue triangles to represent 
site types and/or states, with diffusion or conversion represented by purple curved arrows. Thus, while 
we will continue referring to them as “sites” and “site types”, it should not be construed as a limitation 
of the model. Due to this generalization, even amorphous surfaces/spaces like step defected surfaces 
or multi-faceted nanoparticles can be modeled provided spatial correlation can be sufficiently 
averaged out to produce a valid mean field. While we will restrict ourselves to the case of a single 
molecular species (the “adsorbates”) occupying a surface, the results are equally valid if multiple 
molecular species are present. 
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Figure 1. Illustration of how (a) the “site types” (red circles or blue triangles) in our model and “diffusion” of an adsorbate 
(yellow oval) can be interpreted as both (b) diffusion from site-to-site, such as oxygen adatom diffusion from top to 
hollow sites on an FCC(111) surface or (c) conversion from state-to-state, such as the keto-enol tautomerization of 
phenol on the FCC(111) surface. In (b) and (c), red spheres are O atoms, black spheres are C atoms, white spheres 
are H atoms, and light pink spheres are H atoms colored different to aid the eye. The grey and green spheres are both 
the FCC(111) top surface layer, colored different to enhance contrast with the adsorbates. Purple arrows represent the 
movement needed to create diffusion or conversion. 

 
With this in mind, we first take a surface made up of a very large but finite number of unit cells 

(u.c.), Nu.c., onto which some number of adsorbates of a single species, N, are adsorbed. Defining unit 

cells is a convenience that allows us to define the total coverage as θ =
N

Nu.c.
, but this is not strictly 

required—total surface area and thus surface density could be defined instead. On this surface is 
some number of total adsorption sites with multiple potential site types. The site types will be 
superscripted with A, B, C, etc. (leaving subscripts available for molecular identity) and the number of 

each site type per unit cell is denoted as n(A), n(B), n(C), etc.; which, in the case where sites are not 

homogenously distributed, can be computed as 
NS

(X)

Nu.c.
 where NS

(X)
 is the total number of X sites on the 

entire surface. A simple example of potential site types are the top, bridge, and hollow sites of 

FCC(111) surfaces (where n(top) = 1, n(bridge) = 3, and n(hollow) = 2). Our goal is to determine the 
proper expression for rates of diffusion from one site type to another and for adsorption/desorption 
when a variety of such site types are occupied.   

We define rates according to transition state theory, so that rates of diffusion from, e.g., site type X 

to site type Y, and rate of adsorption/desorption from, e.g., an X site to some reservoir, are given by: 

rX→Y =
kBT

h

1

qr.c.
‡

e−β[μXY
‡ −μX→Y] 

 (1a) 

rX→res =
kBT

h

1

qr.c.
‡

e−β[μX−res
‡ −μX→res]  

(1b) 

where rX→Y is rate of diffusion from site type X to site type Y, rX→res is the rate of desorption from site 

type X to some reservoir appropriate to the adsorbate and system in question; kB and h are the 
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Boltzmann and Planck constants, respectively; T is the absolute temperature; qr.c.
‡

 is the partition 
function of the transition state associated with movement along the reaction coordinate (usually taken 

to be that of an ideal 1D gas or an imaginary vibrational mode); β = (kBT)−1 is the thermodynamic 

beta; μXY
‡

 and μX−res
‡

 are the chemical potential of the transition state complex associated with diffusion 

from site type X to site type Y and the chemical potential associated with the desorption (or adsorption) 
of adsorbates from site type X to the appropriate reservoir (e.g. the gas phase), respectively; and  μX→Y 

and μX→res are the corresponding chemical potentials associated with the driving force for diffusion 
and desorption, respectively, whose functional forms we make no assumptions about a priori. This 
therefore means we make no assumption about the functional form of reactants’ chemical activities 
either, which are generally taken to be equal to their molecular concentrations according to the law of 
mass action. We will show that these “driving force chemical potentials” are not path dependent as 
implied by the “X → Y” in μX→Y, but this presumption is not made here to ensure we do not bias our 
derivation to that result. Regardless, it will be the elucidation of these chemical potentials that 
ultimately defines these rates. 

Site-to-site diffusion is neglected in mean-field microkinetic models because it is inconsequential 
to the (free) energy of the system. That is, if the coverage of adsorbates is not changed by diffusion, 
which is the case in single-site models, the average energy of the adsorbates do not change either—
they are all moving through the same mean field. However, when multiple sites are present on the 
surface, the coverages of the site types will indeed change upon diffusion from site type to site type. 
This means that this type of diffusion is in fact of consequence even in a mean field model—because 
the mean field is changed. We show this in Figure 2, which illustrates how even if diffusion is from 
one unit cell to a nearby one, it only matters if the adsorbate changes site type. This also implies that 
only the adsorbates occupying the same types of sites must be assumed to be in quasi-equilibrium 
instead of the entire adlayer in a multi-site mean field model. The consequence of this will be shown 
in Section 3. 

 
Figure 2. Illustration of how site-to-site diffusion between the same types of sites (A and C) and different types of sites 
(B and D) effect mean-field microkinetic rates. In the illustrations, each large open circle is a supposed surface atom 
with the surface unit cell delineated by dashed grey lines. As in Figure 1, red circles and blue triangles are site types 
A and B, respectively.  

 
2.2 Derivation of Chemical Potentials 
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To determine the chemical potentials in Equation 1, our strategy will be to ensure what we term 
“thermodynamic self-consistency”: the state of the system at equilibrium, according to equality of rate 
expressions, should match that predicted by equilibrium statistical mechanics. Simply put, this means 
we will require that when all rates of diffusion and rates of adsorption/desorption (Equation 1a and 1b, 
respectively) reach the same value, the same equilibrium is reached that one finds using the partition 
function of the same system. Such a requirement obviously requires that one have access to the 
system’s global partition function. We start constructing this by first defining the total free energy of a 
single configuration, 𝝈, of adsorbates. To model this free energy, we will use a mean-field treatment 
of a lattice gas Hamiltonian38, 47-49, which is itself a sum over occupied sites that accounts for the 
presence of lateral interactions and includes the local partition function of each occupied site.  

F𝛔 = [ ∑ N(X)

site types

X

(V(X) − kBT ln[q(X)])] + Nu.c.Vlat (2) 

where N(X) is the total number of adsorbates occupying site type X, such that ∑ N(X)
X = N is the total 

number of (same molecular identity) adsorbates on the surface; V(X) is the binding energy of an 

isolated adsorbate bound to an X site; q(X) is its local molecular partition function describing its 

thermally accessible degrees of freedom within a single X site; and Vlat is a term (with units of energy 
per unit cell here) that accounts for non-ideality and typically takes the form of a multinomial expansion 
of site coverages in a mean-field treatment of a lattice gas. F𝛔 is an extensive variable as written, so it 
will be useful to normalize the free energy on the number of unit cells to give an intensive variable:  

Fu.c. =
F𝛔

Nu.c.
= [ ∑ θ(X)

site types

X

(V(X) − kBT ln[q(X)])] + Vlat (3) 

 

 
Figure 3. Illustration of how various restrictions on the adsorbates in the system produce (A) a microcanonical, (B) a 
canonical, and (C) a grand canonical ensemble, with each building off the next in terms of complexity. The shapes 
shown are the same as those used in Figure 1 and Figure 2. The topmost boxes containing sites with no adsorbates 
present represent all available empty sites of the site type contained within while the middle boxes with adsorbates 
present represent all occupied sites. The bottommost box is, as labeled, a reservoir where the adsorbates reside when 
outside the surface. Dashed borders around each box represents permeability and arrows represent where exchanges 
are permitted.  
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which also allows us to formally define θ(X) =
N(X)

Nu.c.
 as denoting the coverage of adsorbates occupying 

X sites. Coverages are thus defined on a per unit cell basis, ensuring that the basis for defining 
coverage is never ambiguous even when there are different numbers of adsorption sites per unit cell. 
It is not a requirement that the coverages be bounded between 0 and 1. We should note that it is 

common to assume that q(X) is that of a harmonic oscillator, which is independent of coverage. 

However, in general, q(X) could be found using an anharmonic model or made coverage dependent to 
capture further non-idealities.   

Equations 2-3 describe a local free energy that would define a local partition function for a single 
adlayer configuration. However, in any system at equilibrium, all of its properties will be described by 
its global partition function, which is a thermodynamic description of the entire system that includes 
the additional entropy arising from all possible adlayer configurations. We must therefore define the 
underlying global partition function. To do this, we work in stages: first considering the micro-canonical 
case, then the canonical case, and finally the grand canonical case. This is graphically illustrated in 
Figure 3.  
 

2.2.1 Microcanonical Ensemble 

If the number of a species bound to one of its available site types, N(A), N(B) , … , N(X), are kept fixed, 
the (mean-field) energy of the system will stay fixed regardless of the configuration the adsorbates 
take on the surface. Even if we account for the local degrees of freedom as in Equation 2, any 
temperature used will map to a unique local free energy (i.e., Fu.c.). Thus, since the surface size, 
number of adsorbates, and energy of the system are kept fixed, we are nominally dealing with a 
microcanonical ensemble. We can define the canonical partition function corresponding to this 
microcanonical ensemble by explicitly including the constant energy of the ensemble in it, which will 
be useful in the next steps. This produces the “microcanonical” (μc) partition function, Qμc, as: 

Qμc = Ωe−βF𝛔 (4) 

where Ω is the number of degenerate energy states, dependent upon the total number of adsorbates 
on the surface. Note that Ω is in fact the “true” microcanonical partition function here, and, as we will 
see, is the source of the adsorbates’ global entropy and thus chemical activities. We will return to the 

derivation and functional forms of Ω in Section 2.3. For now, however, we borrow the result from that 
section that this term can always be written as 

Ω = ∏ [ω(X)]
Nu.c.

site types

X

 (5) 

where ω(X) is the contribution to the number of degenerate energy states from adsorbates occupying 
site type X. Since all the terms in Equation 4 depend on variables that are kept fixed here, the free 
energy of this microcanonical ensemble is directly determinable as 

Fμc = −kBT ln(Qμc) = F𝛔 − kBT ln(Ω) 

⟹ Fμc = Nu.c. [Fu.c. − kBT ∑ ln(ω(X))

site types

X

] 
(6a) 

 and this gives its global entropy as 

Sμc = (kBNu.c. ∑ [θ(X) (ln(q(X)) + T
∂ ln(q(X))

∂T
)]

site types

X

) + (Nu.c. ∑ kB ln(ω(X))

site types

X

) (6b) 

where the first term in parentheses is the sum of local entropies arising from thermally-induced 

fluctuations of each bound adsorbate; while the second term, involving ω(X), corresponds to the only 
source of non-thermal global entropy, specifically resulting from the configurational space spanned by 
the adsorbates on the entire surface.  
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2.2.2 Canonical Ensemble 
 We now allow adsorbates to move from one site type to any of the other site types present but 
continue to keep the total number of adsorbates on the surface fixed. This is shown in Figure 3B. 

While the total number of adsorbates, N, does not change, the population of occupied site types, N(X), 
does. Since this can result in a change in the local free energy (see Equation 2), we are now working 
with a canonical ensemble. We will assume three site types, A, B, and C, are present, which will 
provide the minimal requirements to generalize the result at the end. The canonical partition function, 
Qcanon, is then given as 

Qcanon = ∑ ∑ Qμc

N

N(A)=0

N−N(A)

N(B)=0

= ∑ ∑ e−βFμc

N

N(A)=0

N−N(A)

N(B)=0

= ∑ ∑ [ω(A)ω(B)ω(C)e−βFu.c.]
Nu.c.

N

N(A)=0

N−N(A)

N(B)=0

 

(7) 

where the constraint that N(A) + N(B) + N(C) = N is implicitly imposed, and we have factored Nu.c. out 
of each term to create a single exponent. Since N is held constant, only two of the three site type 
occupations can be independently defined, i.e., there are only two independent variables, which is 

reflected in the presence of only two summations. These are N(A) and N(B) in Equation 7, but any two 
could be arbitrarily chosen (which will become an important element in the next section). In general, 

there will always be k − 1 independent N(X) variables given k total site types.  

 In the thermodynamic limit, Nu.c. approaches infinity, and it is therefore appropriate to perform a 

change of variables from discrete values (e.g., number of adsorbates populating site type X, N(X)) to 

continuous values (fractional coverage of site type X, θ(X)) via 

N(X) = θ(X)Nu.c. (8a) 
which allows the summations in Equation 7 to be replaced with integrals 

Qcanon = Nu.c.
2 ∫ ∫ [ω(A)ω(B)ω(C)e−βFu.c.]

Nu.c.

θmax
(A)

0

dθ(A)dθ(B)

θmax
(B)

−θ(A)

0

 (8b) 

where we account for the fact that maximum coverages, θmax
(A)

 and θmax
(B)

 (relative to the fixed total 

coverage), may be some value other than unity. In the thermodynamic limit where Nu.c. approaches 
infinity, the integrand in Equation 8b becomes heavily peaked around the maximum value of 

[ω(A)ω(B)ω(C)e−βFu.c.]. This is due to the exponential dependence on Nu.c. which exaggerates the 

maximum value to the point where the integrand becomes a Dirac delta.  That is, as Nu.c. approaches 

infinity, the value that maximizes  [ω(A)ω(B)ω(C)e−βFu.c.] will be the only value that gets integrated, 

making this value equivalent to Qcanon. That is, 

Qcanon = Nu.c.
2 [max(e−βFμc)] (8c) 

where we have collected the ωX terms back into the exponent. Maximizing the integrand of Equation 
8b requires that the critical points of the integrand be met as suggested by Equation 8C. This 
establishes the minimum criteria for equilibrium in a canonical ensemble where a fixed number of 
adsorbates can move freely between sites. Specifically, the critical points can be found by solving  

∂

∂θ(A)
(Nu.c.

2 [ω(A)ω(B)ω(C)e−βFu.c.]
Nu.c.

)
θ,θ(B)

= 0,       dθ(A) = −dθ(C) (9a) 

∂

∂θ(B)
(Nu.c.

2 [ω(A)ω(B)ω(C)e−βFu.c.]
Nu.c.

)
θ,θ(A)

= 0,      dθ(B) = −dθ(C) (9b) 

where we have noted, on the right-hand side, the differential relationship that arises due to the  

counterbalance between the dependent variable (θ(C)) and the independent variables (θ(A), θ(B)) 

through θ(A) + θ(B) + θ(C) = θ. After application of the chain rule, Equations 9a and 9b reduce to  

(
∂Fμc

∂θ(A)
)

θ,θ(B)

= 0,        dθ(A) = −dθ(C) (9c) 
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(
∂Fμc

∂θ(B)
)

θ,θ(A)

= 0,       dθ(B) = −dθ(C) (9d) 

where we have substituted the results from Equation 6a into Equation 9a and 9b, and again noted the 
relationships among differentials.  
 These critical points comprise the basis for ensuring thermodynamic self-consistency within this 
formulation. At equilibrium, when all rates are equal to one another, these critical points must be 
satisfied. Equation 9c indicates that when the coverage of A sites differentially increases while keeping 
the coverage of B sites and total coverage constant, the differential change in free energy resulting 
from this increase and the concomitant decrease in coverage of C sites must be zero at equilibrium. 
In order to keep the coverage of B sites and total coverage constant, an adsorbate must implicitly 
move from a C site to an A site (reflected in the relationship between differentials shown). This 
suggests that the thermodynamic driving force for diffusion between A and C sites should vanish when 
the system reaches specifically the critical point in Equation 9c, while that for diffusion between A and 
C sites should vanish when the system reaches the critical point in Equation 9d. We can make this 
mathematically explicit by recasting the differentials in Equations 9c and 9d in terms of chemical 
potentials of adsorbates occupying the various site types (we show the derivation in Section S1 of the 
SI). This gives that  

(
∂Fμc

∂θ(A)
)

θ,θ(B)

= Nu.c. [(
∂Fμc

∂N(A)
)

N(B),N(C)

− (
∂Fμc

∂N(C)
)

N(A),N(B)

] = Nu.c.[μ
(A) − μ(C)] (10a) 

(
∂Fμc

∂θ(B)
)

θ,θ(A)

= Nu.c. [(
∂Fμc

∂N(B)
)

N(A),N(C)

− (
∂Fμc

∂N(C)
)

N(A),N(B)

] = Nu.c.[μ
(B) − μ(C)] (10b) 

where careful attention to subscripts on the differentials is required. Recalling that Fμc is indeed the 

extensive canonical free energy, we are able to identify the differentials in square brackets (center 
expression) as the usual chemical potentials (the right hand side) corresponding the addition of one 
adsorbate to the system at a specific site type while keeping all others constant. Inserting Equations 
10a and 10b into Equations 9c and 9d, respectively, gives that each critical point is respectively 
satisfied when 

μ(A) = μ(C) (11a) 

μ(B) = μ(C) (11b) 
which will be exactly met if the rates of diffusion from A to C sites (and vice versa) and B to C sites 
(and vice versa) are defined as: 

rA→C =
kBT

h

1

𝑞𝑟.𝑐.
‡

e−β[μAC
‡ −μ(A)]    and    rC→A =

kBT

h

1

𝑞𝑟.𝑐.
‡

e−β[μAC
‡ −μ(C)] 

 (12a) 

rB→C =
kBT

h

1

𝑞𝑟.𝑐.
‡

e−β[μBC
‡ −μ(B)]    and    rC→B =

kBT

h

1

𝑞𝑟.𝑐.
‡

e−β[μBC
‡ −μ(C)] 

 (12b) 

where we can now see that rX→Y depends solely on the chemical potential of μ(X) with the only term 
unique to the specific pathway connecting sites X and Y being the chemical potential of the transition 

state: μXY
‡

.This result is perhaps unsurprising since requirements for equilibrium are defined by the 

equality of chemical potentials. However, since we have now shown that the free energy of the system 
can be defined explicitly as in Equation 6a, its partial differentials can be explicitly assessed. 

Performing this differentiation to get, as an example, μ(A), produces 

μ(A) = (
∂Fμc

∂N(A)
)

N(B),N(C)

= μ(A1) + μ(A2) + μ(A3) (13a) 

μ(A1) = V(A) +
∂Vlat

∂θ(A)
 (13b) 

μ(A2) = −kBT[ln(q(A)) + ∑ (θ(X)
𝜕 ln(q(X))

∂θ(A)
) 

site types

X

] (13c) 
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μ(A3) = −kBT [ ∑
𝜕 ln(ω(X))

∂θ(A)

site types

X

] (13d) 

where μ(A1), μ(A2), and μ(A3) represent contributions, respectively, from the mean-field electronic 
ground state energy; from the thermal part of the local free energy; and from the non-thermal global 

entropy, which we will show manifests as adsorbate chemical activity in rate expressions. If q(X) in 

Equation 13c does not exhibit coverage dependence in any way, μ(A2) reduces to simply 

−kBT ln(q(A)), but if one wishes to incorporate a coverage dependence, the full set of differentials 
would need to be assessed. 

Note that rates corresponding to diffusion between A and B sites are conspicuously absent from 
Equation 12a and 12b. These rates are established by observing that we could have equally chosen 

to make either the coverage of A sites or the coverage of B sites, θ(A) or θ(B), the dependent variable 

in Equation 8b; making θ(C) the dependent variable was arbitrary. As we demonstrate in Section S2 of 
the SI, this means we will always be able to match up each possible rate pair to exactly one unique 
critical point regardless of the number of site types invoked. 

 
 
2.2.3 Grand Canonical Ensemble 
 Finally, we allow the system to permit exchange of adsorbates with a reservoir kept at some 
constant chemical potential, which we will denote as μres, illustrated graphically in Figure 3C. This is 
expanding the previous canonical ensemble into a grand canonical ensemble. The grand canonical 
partition function, Ξ, is thus 

Ξ = ∑ ∑ ∑ Qμc

N

N(A)=0

N−N(A)

N(B)=0

Nmax 

N=0

eβμresN (14) 

where the new summation runs over the total number of adsorbates on the surface up to some 
maximum, Nmax, allowed by the surface.  
 As before, we wish to operate in the thermodynamic limit (Nu.c. → ∞) where variables become 
continuous. That is, we define 

N = θNu.c. (15a) 
to create total coverage, θ, as a continuous variable. However, if total coverage changes, the site 

coverages, θ(X), must necessarily change in some way as well, making them inappropriate 

independent variables in conjunction with θ. We circumvent this by defining site factions, y(X), as the 
fraction of adsorbates present that occupy each site type: 

θ(X)Nu.c. = y(X)θNu.c. (15b) 
Each site fraction runs from 0 to 1, inclusively, and all possible site-type coverages can be found within 
this domain regardless of the total coverage. Substituting Equations 15a and 15b and their differentials 
into Equation 16 and converting the summations to integrals, produces  

Ξ = ∫ ∫ ∫Nu.c.
3 θ2[ω(A)ω(B)ω(𝐂)e−β(Fu.c.−μresθ)]

Nu.c.

1

0

1−y(A)

0

θmax

0

dy(A)dy(B)dθ (16) 

which is once again heavily peaked around the maximum value of the integrand. We note that θmax is 
the absolute maximum coverage allowed on the surface, and the definition of site fractions obviates 
the need for determining the relative maximum coverages for each site type. As in the canonical case, 
we can thus achieve the minimum requirements for equilibrium by satisfying the critical points of the 
integrand. After differentiating with respect to the each of the three independent variables in Equation 
16 (while holding all others constant), we produce 
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∂

∂y(A)
(Nu.c.

3 θ2 [e−β(Fμc−μresNu.c.θ)])
y(B),θ

= 0 

⟹ Nu.c.
3 θeμresNu.c.θ [

∂

∂θ(A)
(e−βFμc)

θ(B),θ
] = 0 

⟹ (
∂Fμc

∂θ(A)
)

θ,θ(B)

= 0,        dθ(A) = −dθ(C) (17a) 
 

∂

∂y(B)
(Nu.c.

3 θ2 [e−β(Fμc−μresNu.c.θ)])
y(A),θ

= 0 

⟹ Nu.c.
3 θeμresNu.c.θ [

∂

∂θ(B)
(e−βFμc)

θ(A),θ
] = 0 

⟹ (
∂Fμc

∂θ(B)
)

θ,θ(A)

= 0,        dθ(B) = −dθ(C) (17b) 
 

∂

∂θ
(Nu.c.

3 θ2 [e−β(Fμc−μresNu.c.θ)])
y(A),y(B)

= 0 

⟹ [
∂

∂N
N2 ([e−β(Fμc−μresN)])

y(A),y(B)
] = 0 

⟹ (
∂Fμc

∂N
)

y(A),y(B)

= {
2kBT

Nu.c.θ
} + μres,     dN(X) = y(X)dN 

(17c) 
 
 

where we have again combined all ω(X) into the exponent to convert Fu.c. to Fμc and differential 

relationships that exist due to site balance are again shown to the right of each critical point. We have 

taken advantage of the fact that θ is constant in Equations 17a and 17b to show that these two critical 
points are identical to those already found in the canonical case (Equations 9c and 9d). Thus, meeting 
these critical points is still a necessary condition to attain full equilibrium in the open system, and the 
results from Section 2.2.2 still apply. However, the critical point in Equation 17c is new, resulting from 

the introduction of total coverage, θ, as an independent variable. The presence of the term in curly 
brackets makes this critical point seemingly odd, too, as it depends on both temperature and total 
coverage. This term is a finite size effect artifact: any finitely sized surface would need to account for 
this term. Thankfully, however, we operate in the thermodynamic limit, where this term approaches 
zero as Nu.c. approaches infinity at any finite temperature, giving 

(
∂Fμc

∂N
)

y(A),y(B),y(C)

= μres,     dN(X) = y(X)dN (17d) 

which says that the differential addition of another adsorbate to the system occurring at constant 
fractional occupation of site types must equal the chemical potential of the adsorbate reservoir at 

equilibrium (since y(A) + y(B) + y(C) = 1, one cannot hold y(A) and y(B) constant without also holding 

y(C) constant as well). Since all y(X) are held constant, and N(A) + N(B) + N(C) = N, we arrive at the 
differential relationships shown to the right in Equation 17d. These differential relationships are the 

only way to satisfy the restriction that all y(X) remain constant and essentially says that 
adsorption/desorption events do not directly perturb the fractional occupation of site types in a multi-
site mean-field model. This analysis also implies that since there’s only one total coverage term per 
molecular species, there can only ever be one critical point, and therefore pair of rates, associated 
with adsorption/desorption of that species regardless of how many site types are present on the 
surface. This is an important result because it is tempting to assume that each site type exhibits its 
own desorption rate independent of the other rates of desorption, yet this analysis clearly shows that 
one cannot have this and ensure thermodynamic self-consistency at the same time. We must therefore 
recast the rate expression corresponding to adsorption/desorption as that of a general surface-to-
reservoir event, giving 



 11 

rsurf→res =
kBT

h

1

qr.c.
‡

e
−β[μsurf−res

‡ −(
∂Fμc

∂N )
y(A),y(B),y(C)

] 
    (18a) 

 

rres→surf =
kBT

h

1

qr.c.
‡

e−β[μsurf−res
‡ −μres]  (18b) 

which satisfies Equation 17d when rsurf→res = rres→surf. Note that we have replaced the presumed 

individual transition states chemical potential, μX−res
‡

, for adsorption/desorption from each site with a 

common transition state chemical potential, μsurf−res
‡

, that connects the surface and reservoir. We will 

return to the interpretation of μsurf−res
‡

 in the Discussion section. Nonetheless, we can see that 

(
∂Fμc

∂N
)
y(A),y(B),y(C)

 in Equation 18a is effectively a desorption chemical potential for the entire surface of 

N adsorbates. While its analytical expression can be found by differentiating Equation 6a with respect 
to the total number of adsorbates, it is easier and more instructive to determine its relationship to the 
site type chemical potentials. Using the same procedure used in Section 2.2.2 (see Section S1 of the 
SI), we can recast this partial derivative as 

 

(
∂Fμc

∂N
)

y(A),y(B),y(C)

= y(A) (
∂Fμc

∂N(A))
N(B),N(C)

+ y(B) (
∂Fμc

∂N(𝐵))
N(A),N(C)

+ y(C) (
∂Fμc

∂N(C))
N(A),N(B)

 

⟹ (
∂Fμc

∂N
)

y(A),y(B),y(C)

= y(A)μ(A) + y(B)μ(B) + y(C)μ(C) 

(19a) 

where again attention to subscripts on the differentials is required. This gives the general result that 

for an adsorbate of any single species, in a k-site model, its desorption chemical potential is given by 

⟹ (
∂F

∂N
)
all y(X)

= ∑ y(X)μ(X)

site types

X

 (19b) 

where we have dropped the “μc” from the subscript of Fμc since it is now clear that this expression is 

the mean field free energy of the adlayer regardless of which ensemble is being probed. We can see 
via inspection of Equations 19a or 19b that when diffusion rates reach equilibrium according to 

Equation 10 (i.e., when μ(A) = μ(B) = μ(C) = ⋯ = μ(X) = μ(eq)), the desorption chemical potential 

becomes exactly the equilibrated chemical potential, μ(eq). Since ∑ y(X)site types
X = 1, Equation 19b 

reduces to ∑ y(X)μ(eq)site types
X = μ(eq), which is precisely as designed. We will return to the rationale 

and implications of desorption rates taking the form shown in Equation 19a in the Discussion section. 

 
 
 
2.3 Derivation of Mean-Field Global Entropy, Ω 

 We now return to the definition of Ω in Equations 4 and 5. This term represents the total number of 

configurations N adsorbates can take on a surface made up on Nu.c. unit cells and n(X) sites of type X 
per unit cell. Since Ω is defined in the microcanonical case of Section 2.2.1, the total number of 

adsorbates, N, and occupation of site types, N(X), can be treated as constant. As a result, the number 

of configurations that N(X) adsorbates can take, Ω(X), need only account for the sites that are currently 

blocked by adsorbates at non-X sites. This makes the number of configurations, Ω(X), that N(X) 

adsorbates can take independent of the number of configurations, Ω(Y), that N(Y) adsorbates can 
simultaneously take. The site X-bound adsorbates have access to the remaining unblocked surface 
area. This means Ω can be written as a product of combinatorics for each site, i.e., 

Ω = Ω(A)Ω(B) …Ω(X) … (20) 
In a mean field treatment of these configurations, any restrictions on site occupation due to the 

presence of other adsorbates (i.e., lateral interactions) are averaged out and expressed in the lateral 
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interaction term, Vlat, shown in Equation 2. However, if adsorbates completely block other adsorbates 
from co-adsorbing nearby, that particular interaction would have to be treated as an infinitely repulsive 

lateral interaction term that cannot be subsumed into Vlat (the average of any set of values that 
contains an infinite term is infinity).  A similar argument exists for finite but very large lateral 

interactions. As a result, this type of site blocking has to be accounted for in each Ω(X) of Equation 20. 
As already mentioned, Ω will be shown to control the chemical activity of adsorbates. To show the 

importance of this, we consider first what Ω is for a 2D gas/free translator (“Case 0”), the simplest 
possible model, incorporating no site blocking effects or restriction on movement/diffusion. We will 
prove that this is the model tacitly assumed in most MF-MKMs in the literature. We will then look at 
four possible more-realistic site-blocking cases due to co-adsorption: (I) mutually exclusive co-
adsorption, (II) self-exclusive co-adsorption, (III) self-inclusive co-adsorption, and (IV) mutually 
inclusive co-adsorption. These cases are illustrated in Figure 4. Sterling’s approximation: 

N! = NNe−N (21) 
is used throughout.  

 
Figure 4. Different site-blocking cases for co-adsorption of a molecular species. Available A sites, B sites, and C sites 
are represented by red circles, blue triangles, and green squares, respectively. Blocked sites are colored in black. Here, 

Ω(B) is defined as an example, and the numbers of A sites, B site, and C sites per unit cell are: n(A) = 1, n(B) = 4, and  

n(C) = 2.  Cases I and II, (A) and (B), require that “always available sites”, (C), be accounted for in Ω(B).  Cases III and 

IV, (D) and (E), require that “extra co-adsorption sites”, (F), be accounted for in Ω(B).   

 
CASE 0: Free Translator 
 To evaluate Ω for a free translator, we look specifically at the translational contribution to the free 
energy and disregard any rotational or vibrational degrees of freedom that may be present since they 

do not often contain a significant coverage dependence. For an adsorbate bound to site X acting as a 
2D gas/free translator, its free energy is, after application of Sterling’s approximation, 

FFT
(X)

= N(X) (V(X) − kBT ln [
au.c.

λth
2

e

θ(X)
]) (22a) 

where FFT
(X)

 and V(X) are the free energy and binding energy, respectively, of an adsorbate occupying 

an X site; λth is the thermal wavelength, given by λth =
h

√2πmkBT
 where m is the mass of the adsorbate; 

and 𝑒 is Euler’s constant, i.e., exp(1). Differentiation with respect to N(X) produces the 2D free 
translator chemical potential 
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μFT
(X)

= V(X) − kBT ln [
au.c.

λth
2 ] + kBT ln[θ(X)] (22b) 

in which the second term in square brackets can be identified as the molecular partition function, q(X), 
for a single adsorbate acting as a free translator confined to the unit cell. It is the only thermal 
contribution to the free energy (aside from the Boltzmann-derived linear dependence on T). Thus, we 

can conclude that the other terms in square brackets in Equation 22a are Ω(X), giving:  

Ω(X) = (
𝑒

θ(X)
)
N(X)

 (22c) 

Note that when Equation 22b is inserted into Equation 1a, we arrive at the usual, phenomenological 
form of rates typically assumed in MKMs based on the law of mass action (the familiar Polanyi-Wigner 
expression), with chemical activity equivalent to a linear dependence on coverage (implying an activity 
coefficient of unity), namely 

rX→Y =
kBT

h
(
qTS

‡

q(X)
) (eβV(X)

)θ(X) (22d) 

where qTS
‡ = (

q‡

qr.c.
‡ ) is the partition function of the transition state perpendicular to the reaction 

coordinate. It is not difficult to show that the typical 2nd order rate law for a bimolecular reaction is the 

result of treating both reacting molecules as ideal 2D gases. For the example of 2H* → H2, μH−H
(X)

=

2μH∗
(X)

= 2μFT
(X)

, and that produces 

rX→Y =
kBT

h
(

qH−H
‡

[qH∗
(X)

]
2
)(e

β[2V
H∗ 

(X)
]
) [θH∗

(X)
]
2
 (22e) 

where subscript H∗ indicates that the quantity is that of a single isolated hydrogen atom. Therefore, 
when we use rates of the form shown in Equations 22d and 22e in a MKM, we are tacitly assuming 
adsorbates behave as non-interacting 2D free translators, i.e., as an ideal gas. Such an assumption 
should be considered carefully as it is generally incompatible with the presence of a surface and 
diffusion barriers. See Section S3 of the SI for comparison of these to an ideal lattice gas formulation 
along with further discussion related to the physicality of rates of the form shown in Equation 22d. 

 
CASE I: Mutually Exclusive Co-adsorption 
 
Table 1. Case I-IV Example Site Blocking Schemes reflected in Figure 4. 

Occupation 
of a(n)… 

Blocks __ 
A sites 

Blocks __ 
B sites 

Blocks __ 
C sites 

 Case I 

A site 1 4 4 

B site 1 4 2 

C site 2 4 5 

 Case II 

A site 1 0 0 

B site 0 4 0 

C site 0 0 5 

 Case III 

A site 1 4 4 

B site 1 1 2 

C site 2 4 1 

 Case IV 

A site 1 0 0 

B site 0 1 0 

C site 0 0 1 
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In this first of the more realistic cases, co-adsorbates block a pre-defined number of other sites 
beyond the bound site. Examples of this include the adsorption of small, strongly bound molecules, 
e.g., CO and NO, onto metal surfaces, where adsorbates typically block all sites within at least the first 
nearest neighbor radius, if not also within the second nearest neighbor radius. An example of this is 
illustrated in Figure 4A, where we have defined the number of configurations adsorbates can take on 

all B sites (Ω(B)) within the figure as a concrete example. Table 1 breaks down the exact site blocking 
produced by occupation of each of the three site types according to this example, along with the other 
cases presented here (which can be found in Section S3 of the SI). 

 We will now construct Ω(A), Ω(B), and Ω(C), the terms representing the number of configurations 
adsorbates can take when occupying A, B, and C sites, respectively. This is a counting problem, and 
so we can take advantage of combinatorics to define these terms. In particular, we must find the 

number of combinations, given by the binomial coefficient, (
𝑛
𝑘
), that N(X) adsorbates occupying X sites 

can take on a surface with Nu.c. unit cells when N(Y) and N(Z) adsorbates already occupy a certain fixed 
number of Y and Z sites, respectively. In a typical lattice gas formulation, one would simply define the 
upper index of the binomial coefficient as the number of total sites and the lower index as the number 
of adsorbates. With sites blocked, the upper index must have the blocked sites subtracted. If we take 
these considerations into account, the following expression are produced: 

Ω(A) = (
Nu.c. − N(B) − 2N(C)

N(A)
) [1][N

(A)] (23a) 

Ω(B) = (
Nu.c. − N(A) − N(C)

N(B)
) [4][N

(B)] (23b) 

Ω(C) = (

2

5
Nu.c. −

4

5
N(A) −

2

5
N(B)

N(C)

) [5][N
(C)] (23c) 

where we see that the coefficient on the first term in the upper index (e.g. the “
2

5
” in 

2

5
Nu.c. of Equation 

23c) of each binomial coefficient represents the maximum coverage up to which adsorbates can 
occupy only X sites. This term arises from the total number of unit cells that an adsorbate effectively 
occupies. In the case of A and B sites, an adsorbate occupies the equivalent of one unit cell, but in 
the case of C sites, adsorbates occupy 2.5 unit cells. We can consider this fractional number of unit 
cells as an effective footprint for that site. The remaining sites are then assessed against this maximum 
coverage, i.e., by determining the fractional amount of these ‘footprints’ that are blocked by occupation 
of the other site types. In the case of site C, whose own footprint has 5 C sites in it, an occupied A site 
blocks 4 of these C sites from mutual occupation. Thus, 4/5 of the C site footprint is blocked per 
adsorbate occupying A sites. Likewise, occupying a B site blocks 2/5 of the C site footprint. The upper 
index is modified to reflect this blocking scheme as seen in Equation 23c, and the same 
arguments/analyses apply to the other two sites, giving Equations 23a and 23b.  
 The final terms in square brackets in Equations 23a – 23c account for the freedom of movement 
each adsorbate has within its own footprint. The binomial coefficients effectively count the number of 

configurations that N(X) adsorbates can take amongst all available X-site footprints as opposed to sites. 
However, since an adsorbate blocks its own sites, these sites are always available for occupation by 
that adsorbate, see Figure 4C. Since movement to one of these sites simply produces an identical 
footprint with exactly the same number of sites/footprints blocked, the binomial coefficient is 
unchanged, and these “always available” sites must therefore be counted separately. In the case of A 
sites, there is only 1 A site per footprint, and so there are no new configurations to account for. 
However, both B and C sites have extra sites that are always available within their own footprints: 4 
sites per occupied B site and 5 sites per occupied C site. As a result, the number of new configurations 
is given (per adsorbate occupying an X site) by the product of always available sites within each 

footprint: [b(X)]
N(X)

, where b(X) is the total number of X sites blocked by occupation of an X site.  

 Application of Sterling’s Approximation to the binomial coefficients in Equations 23a – 23c gives 
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Ω(A) = [
(1 − θ(B) − 2θ(C))

(1−θ(B)−2θ(C))

(θ(A))(θ(A))(1 − θ − θ(C))(1−θ−θ(C))
]

Nu.c.

 (24a) 

Ω(B) = [
(1 − θ(A) − θ(C))

(1−θ(B)−θ(C))

(θ(B))(θ(B))(1 − θ)(1−θ)
4[θ(B)]]

Nu.c.

 (24b) 

Ω(C) =

[
 
 
 
 
 

(

 
 (1 − 2θ(A) − θ(B))

(1−2θ(A)−θ(B))

(
5
2θ(C))

(
5
2θ(C))

(1 − 2θ(A) − θ(B) −
5
2θ(C))

(1−2θ(A)−θ(B)−
5
2θ(C))

5[
5
2θ(C)]

)

 
 

2
5

]
 
 
 
 
 
Nu.c.

 (24c) 

where the terms in large square brackets represent ω(A), ω(B), and ω(C), respectively; which can be 
inserted into Equation 6 to fully define the free energy and entropy of the entire surface; or 
differentiated with respect to each site coverage and inserted into Equation 13 to yield the chemical 
potential and chemical activity of each occupied site.  

  

 
Figure 5. Resulting nonthermal entropy (kB ln(ω(X)), specifically) for each site type, A (red curves), B (blue curves), 

and C (green curves) for co-adsorption site-blocking (A) Case 0, (B) Case I, (C) Case II, (D) Case III, and (E) Case IV 
in units of kB. Here, both site coverages for non-variable sites are fixed at 0.1 ML. Because of the small domain and 

range of the entropy expressions under Case I and II, a zoomed in view is provided inset each panel.   
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 Derivation of Cases II – IV is similar to that of Case I and shown in Section S3 of the SI. The 
resultant nonthermal entropy (second term in Equation 5b) for each case—including that of a 2D free 
translator, Case 0—are compared in Figure 5. The thermal entropy contribution from each site that 
comes from the site partition functions (first term in Equation 5b) is not included here because it is 
system dependent. Additionally, it is from the nonthermal entropy that the chemical activity of each 
site is derived, while the thermal entropy is typically subsumed into the preexponential factor. Because 
the extent of the surface is explicitly accounted for, the allowed coverages are bounded on both ends 
by zero and the upper index of the associated combinatoric. Case 0, on the other hand, is only 
bounded at zero and is otherwise unbounded—toward negative infinity—as coverage increases, which 
is an aphysical prediction for a finite surface or volume. This unbounded entropy occurs because 2D 
free translators behave as an ideal gas having access to the entire surface regardless of how many 
adsorbates are present: there is no limit to the number of adsorbates that can fit into the system. The 
entropy trends toward negative infinity because 2D free translators are indistinguishable, and the 
number of degenerate energy states increases exponentially (more accurately: factorially) with the 
number of indistinguishable adsorbates, causing an unbounded decline in the number of unique 
configurations responsible for the adsorbates’ entropies according to the ideal gas model. Additionally, 
while Case 0 has a maximum in its entropy contribution at an intermediate value (like for Cases I – 
IV), its maximum is at 1 ML, which would often correspond to saturation coverage in many systems. 
In fact, because there is no way to entropically set an upper bound in Case 0, this result cannot change 
regardless of what the system is or the active site it represents. If we artificially bound the coverage to 
1 ML, Case 0 acts qualitatively like the other, more physical cases, which possibly explains why this 
approximation has been used as successfully as it has in the literature.   

 
3. Results and Discussion 
3.1 Demonstrated Thermodynamic Self-Consistency 
 We will now construct example MF-MKMs for a simple adsorption/desorption process of a 
monatomic gas to/from a surface with three site types: A, B, and C. Each MF-MKM system will be 
exposed to a single reservoir chemical potential so that steady state total coverage and site fractions 
correspond to their equilibrium values. These can then be compared against those predicted via 
minimization of the system’s free energy, allowing us to assess the error in models that might stem 
from a lack of thermodynamic self-consistency, while showing the ease of congruence when one uses 
the expressions derived here. We will look at two scenarios. The first scenario is one in which the 
adsorbates are treated as non-interacting 2D translators, where a model consistent with the diffusion 
and adsorption/desorption rates derived here (Equations 11 and 18) can be compared against a 
version where individual desorption rates are used instead (as opposed to a single desorption rate as 
defined in Equation 18a). To avoid convoluting effects, this scenario is contrived to exhibit 
thermodynamic self-consistency. The second scenario is one in which adsorbates are treated more 
realistically, with one model accounting for realistic site blocking to produce coverage dependence 
(i.e., chemical activity) and another assuming the chemical activity of each site is equivalent to its 
coverage as the law of mass action would typically suggest.  

By defining the free energy of the system explicitly (via Equation 5), we can determine the 
equilibrium coverage and distribution amongst site types by minimizing the systems’ free energy and 
comparing them to what the microkinetic models predict. The total free energy of the entire system is 
defined as 

Ftotal = Fsurf + Fres (25a) 

where Fsurf is the free energy of the surface + adsorbates, and Fres is the free energy of the gas 
reservoir. Without lateral/molecular interaction, adsorption will be Langmuirian, resulting only in 
saturation coverage. So, a 2-body lateral interaction term will be applied equally to all sites to provide 
some variation in equilibrium coverages, giving  

Fsurf = Nu.c. [V
(A)θ(A) + V(B)θ(B) + V(C)θ(C) +

c

2
Vintθ

2 − θ(A)kBT ln(q(A))

− θ(B)kBT ln(q(B)) − θ(C)kBT ln(q(C)) − kbT ln(ω(A)ω(B)ω(C)) ] 
(25b) 
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where V(A), V(B), and V(C) are the “zero coverage” adsorption energies of the adsorbate occupying the 
A, B, and C sites, respectively; c is the coordination number of the surface; and Vint is the lateral 

interaction energy (i.e., Vlat =
c

2
Vintθ

2). We could define Fres as Nμres, but to have the 

adsorption/desorption rate expressions resemble those typically encountered, we choose to define the 
free energy explicitly as that of an ideal (3D) gas: 

Fres = Fres
0 + kBTN ln (

kBT

λth
3 Pres

) (25c) 

where Fres
0  is the free energy of a molecule in the reservoir prior to adsorption, which is treated as the 

reference energy for the entire system and is thus equal to 0 here; and Pres is the (partial) pressure of 
the molecule in the reservoir. As written, Equation 25 is extensive, dependent on the size of the 

system, Nu.c.; but chemical potentials and the minimization of Ftotal are not. We will thus divide by Nu.c. 
to produce the analogous intensive variable, which will be the value reported when free energies are 
shown. Note that holding pressure constant in Equation 25c makes all free energies specifically Gibbs 
free energies. 

 
SCENARIO 1 

To make these models (which we will denote as model  and ) as similar to those usually used in 
microkinetic modeling as possible, the adsorbates are treated as ideal 2D translators in the first 
scenario. This means in any given configuration, an adsorbate occupying site A, site B, or site C will 
experience the same unhindered translational movement. This movement will be restricted only to 
sites of the same type, however, to inject some physicality back into the model. The molecular partition 
functions for all other degrees of freedom will be set to unity for simplicity. Thus,  

q(A) =
aS
(A)

λth
2  (26a) 

q(B) =
aS
(B)

λth
2  (26b) 

q(C) =
aS
(C)

λth
2  (26c) 

where aS
(A)

, aS
(B)

, and aS
(C)

 are the areas of site A, B, and C, respectively. For our purposes here, we 

will define as the fraction of the unit cell covered in those sites, i.e., aS
(X)

=
n(X)

n(A)+n(B)+n(C) au.c.. This then 

allows the additional entropy gained from movement between unit cells to be captured in the ω(A) an 

ω(B) terms. From Equation 22c, these are 

ω(A) = (
𝑒

θ(A)
)
N(A)

 (26d) 

ω(B) = (
𝑒

θ(B)
)
N(B)

 
(26e) 

ω(C) = (
𝑒

θ(C)
)
N(C)

 
(26f) 

 After inserting Equations 26a – 26e into Equation 25, the chemical potentials of an adsorbate 

occupying site A and site B are found by differentiating Fsurf with respect to N(A), N(B), and N(C) (shown 
in Equation 12) to give 

μ(A) = V(A) + cVintθ − kBT ln [
aS
(A)

λth
2 ] + kBT ln[θ(A)] (27a) 

μ(B) = V(B) + cVintθ − kBT ln [
aS
(B)

λth
2

] + kBT ln[θ(B)] (27b) 
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μ(C) = V(C) + cVintθ − kBT ln [
aS
(C)

λth
2 ] + kBT ln[θ(C)] 

(27c) 

The chemical potential of the reservoir is found by differentiating Fres with respect to N, but because 
N is the number of adsorbates removed from the reservoir, we must also reverse the sign to yield 

μres = −kBT ln (
kBT

λth
3 Pres

) (27d) 

Since we are interested in comparing equilibrium values and general trends, we will define the 
chemical potential of any activated complex based only on the partition function of the degree of 
freedom corresponding to the reaction coordinate. Thus, 

μAB
‡ = −kBT ln[qr.c.

‡ ] (28a) 

which, due to the presence of qr.c.
‡

 in the denominator of Equation 1, is equivalent to assuming the 
transition state has zero degrees of freedom perpendicular to the reaction coordinate and is otherwise 
at the energetic zero of the system. The transition state for adsorption/desorption is, as usually done, 

assumed to belong to an ideal gas molecule moving along a reaction coordinate of arbitrary length, 𝛿, 
confined to a volume equal to this length multiplied by the area of a unit cell. This gives that  

μsurf−res
‡ = −kBT ln (

𝛿au.c.

λth
3 ) (28b) 

or, for desorption from a single site type 

μX−res
‡ = −kBT ln (

𝛿aS
(X)

λth
3 ) (28c) 

which will be used in Model . Note that the adsorption/desorption transition state is also at the 
energetic zero of the system since we assume adsorption to be unactivated. This means that in this 
scenario, the activation barriers for diffusion and desorption will be similar in magnitude. 

For adsorption/desorption, qr.c.
‡

 must be defined explicitly. It is the partition function at the transition 
state projected along the reaction coordinate, which in this case, is simply an ideal 1D gas confined to 
𝛿, namely 

qr.c.
‡ =

𝛿

λth
 (28d) 

 Substituting Equations 26 – 28 into Equations 12 and 19 
 produces the rate expressions to be used in our microkinetic model: 
 

MODEL  

rA→B = rA→C =
kBT

h
 eβ[μ(A)] =

kBT

h
[n(A) + n(B) + n(C)] [

λth
2

au.c.
] [

θ(A)

n(A)
] eβ[V(A)+𝑐Vintθ] (29a) 

rB→A = rB→C =
kBT

h
 eβ[μ(B)] =

kBT

h
[n(A) + n(B) + n(C)] [

λth
2

au.c.
] [

θ(B)

n(B)
] eβ[V(B)+𝑐Vintθ] (29b) 

rC→A = rC→B =
kBT

h
 eβ[μ(C)] =

kBT

h
[n(A) + n(B) + n(C)] [

λth
2

au.c.
] [

θ(C)

n(C)
] eβ[V(C)+𝑐Vintθ] (29c) 

rsurf→res = 𝑆0(1 − θ)
kBT

h

au.c.

λth
2 eβ[y(A)μ(A)+y(B)μ(B)+y(C)μ(C)] 

= S0(1 − θ)
kBT

h
[n(A) + n(B) + n(C)] [

θ(A)

n(A)]

y(A)

[
θ(B)

n(B)]

y(B)

[
θ(C)

n(C)]

y(C)

eβ[y(A)(V(A)+cVintθ)+y(B)(V(B)+cVintθ)+y(C)(V(C)+cVintθ)] 

(29d) 

rres→surf = S0(1 − θ)
Presau.c.

√2πmkBT
 (29e) 

where one can now note the importance of the number of site types per supercell, n(X), as they appear 
explicitly in each expression except for the adsorption rate (Equation 29e). Note that we have 

appended a direct sticking coefficients, S0(1 − θ), which accounts for the (in)efficiency of energy 
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transfer to and from the surface when an adsorbate impinges on it. To ensure detail balance, the 
sticking coefficient must also affect the desorption rate. Its presence does not affect thermodynamic 
self-consistency; it is a purely kinetic term. Note however that this is the simplest sticking scheme as 
it does not subsume the effect of lateral interactions between the adspecies. 

We will compare this to a more common version of the rate expressions where individual 
adsorption/desorption rates are provided for individual site types. The diffusion rates will be 
unchanged. This gives: 

 

MODEL  

rA→res = S0(1 − θ(A))
kBT

h

1

qr.c.
‡ e−β[μA−res

‡ −μ(A)] = S0(1 − θ(A))
kBT

h

aS
(A)

λth
2 eβ[V(A)+𝑐Vlatθ]θ(A)  (30a) 

rres→A = S0(1 − θ(A))
PresaS

(A)

√2πmkBT
 (30b) 

rB→res = S0(1 − θ(B))
kBT

h

1

qr.c.
‡ e−β[μB−res

‡ −μ(B)] = S0(1 − θ(B))
kBT

h

aS
(B)

λth
2 eβ[V(B)+𝑐Vlatθ]θ(B)  (30c) 

rres→B = S0(1 − θ(B))
PresaS

(B)

√2πmkBT
 (30d) 

rC→res = S0(1 − θ(C))
kBT

h

1

qr.c.
‡ e−β[μC−res

‡ −μ(C)] = S0(1 − θ(C))
kBT

h

aS
(C)

λth
2 eβ[V(C)+𝑐Vlatθ]θ(C)  (30e) 

rres→C = S0(1 − θ(C))
PresaS

(C)

√2πmkBT
 (30f) 

where supposed sticking coefficients have again been added according to the rate being defined.  

We can now show how Model  is setup in the only way that satisfies thermodynamic self-
consistency using individual desorption rates, which can be generalized as: 

rres→surf = fArA→res + fBrB→res + fCrC→res = ∑ fXrX→res

site types

X

 (31a) 

where  

∑ fX
site types

X
= 1 (31b) 

and is only valid if and only if  

rA→res = rB→res = rC→res (31c) 

which is the case at equilibrium where μ(A) = μ(B) = μ(C) but is otherwise violated when the system is 

outside equilibrium conditions. Thus, Model  is thermodynamic self-consistent because (1) diffusion 
rates are properly defined according to Equation 12 so that Equation 31c is satisfied at equilibrium, 
and (2) because we have defined transition state chemical potentials for each desorption/adsorption 
rate (Equation 28b and 28c) that are proportional to the fraction of the surface covered in X sites, 
which satisfies Equation 31b so that  

∑ qX→res 
‡

site types

X

= qres→surf 
‡  (31c) 

where qX→res 
‡ = e−βμX→res

‡
= fX and qres→surf 

‡ = e−βμres→surf
‡

= ∑ qres→X 
‡site types

X . It will become clear how 

the coincidental validity of Model  nonetheless produces aphysical behavior in the kinetics.   
The rate expression in Equations 29 and 30 allow us to define the system of ordinary 

differential equations (ODEs) that comprises each microkinetic model, which is established via mole 
balance around each site type and the surface/reservoir. These are 
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 MODEL  

𝑑θ(A)

𝑑𝑡
= −rA→B − rA→C + rB→A + rC→A + y(A) [

𝑑θ

𝑑𝑡
]  (32a) 

𝑑θ(B)

𝑑𝑡
= −rB→A − rB→C + rA→B + rC→B + y(B) [

𝑑θ

𝑑𝑡
] (32b) 

𝑑θ(C)

𝑑𝑡
= −rC→A − rC→B + rA→C + rB→C + y(C) [

𝑑θ

𝑑𝑡
] (32c) 

𝑑θ

𝑑𝑡
= −rsurf→res + rres→surf  (32d) 

 
MODEL   

𝑑θ(A)

𝑑𝑡
= −rA→B − rA→C + rB→A + rC→A − rA→res + rres→A   (33a) 

𝑑θ(B)

𝑑𝑡
= −rB→A − rB→C + rA→B + rC→B − rB→res + rres→B  (33b) 

𝑑θ(C)

𝑑𝑡
= −rC→A − rC→B + rA→C + rB→C − rC→res + rres→C  (33c) 

𝑑θ

𝑑𝑡
= −rA→res − rB→res − rC→res + rres→A + rres→B + rres→C  (33d) 

 

It is desirable to recast these into the identified independent variables of θ and y(X): 

𝑑θ(X)

𝑑𝑡
= θ

𝑑y(X)

𝑑𝑡
+ y(X) 𝑑θ

𝑑𝑡
  (34) 

Substituting Equation 34 into Equations 32 – 33  and rearranging produces 
 

MODEL  

𝑑y(A)

𝑑𝑡
=

−rA→B − rA→C + rB→A + rC→A

θ
  (35a) 

𝑑y(B)

𝑑𝑡
=

−rB→A − rB→C + rA→B + rC→B

θ
 (35b) 

𝑑y(C)

𝑑𝑡
=

−rC→A − rC→B + rA→C + rB→C

θ
 (35c) 

𝑑θ

𝑑𝑡
= −rsurf→res + rres→surf  (35d) 

 
MODEL   

𝑑y(A)

𝑑𝑡
=

−rA→B − rA→C + rB→A + rC→A − rA→res + rres→A − y(A) [
𝑑θ
𝑑𝑡

]

θ
  (36a) 

𝑑y(B)

𝑑𝑡
=

−rB→A − rB→C + rA→B + rC→B − rB→res + rres→B − y(B) [
𝑑θ
𝑑𝑡

]

θ
 

(36b) 

𝑑y(C)

𝑑𝑡
=

−rC→A − rC→B + rA→C + rB→C − rC→res + rres→C − y(C) [
𝑑θ
𝑑𝑡

]

θ
 

(36c) 

𝑑θ

𝑑𝑡
= −rA→res − rB→res − rC→res + rres→A + rres→B + rres→C  (36d) 

 
where model  is well simplified (upon division by θ, the ODEs in Equation 35a – 35c simplify yet 

further), and model  is made much less simple, hinting at its inappropriateness. In practice, we will 
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use a molar balance to define the full set of equations needed for all models (replacing one of the 
ODEs); but in principle, this is optional. The parameters used in Equation 25 are shown along with 
the initial values of each variable are shown in Table 2.  

 
Table 2. Parameters and initial values used in MF-MKMs of Model  and  for Scenario 1.  

Parameter Value 

T 300 K 
Pres 1 bar 

m 30 g/mol 

au.c. 25 Å2 

V(A) -1.00 eV 

V(B) -0.90 eV 

V(C) -0.85 eV 

n(A) 1 

n(B) 3 

n(C) 6 

Vint 0.20 eV 

initial value: θ 0.001 

initial value: y(A) 1/3 

initial value: y(B) 1/3 

initial value: y(C) 1/3 

 
Having access to the free energy (per unit cell) of this system as a function of total coverage 

and site fractions (Equation 25), we are able plot this and the corresponding chemical potentials of 
each site type, as well, which allows us to further characterize the physicality of the models. The results 

for Model  and Model  are shown in Figure 6.   
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Figure 6.  Solution of the (A-C) Model  and (D-F) Model  MF-MKMs for Scenario 1, showing (A,D) the integrated 

value of the total coverage (θ, solid black line) and site fractions A, B, and C (y(X), solid red, blue, and green lines, 

respectively); (B,E) the site coverages (θ(X), solid red, blue, and green lines, respectively) alongside the total coverage 
again (θ, solid black line) for comparison; and (C,F) the corresponding plots of the system’s mean field thermodynamics: 

solid black lines are the effective desorption chemical potential (μsurf) given in Equation 19, solid red, blue, and green 

lines are site type chemical potentials (μ(X)), the solid purple lines are free energies on a unit cell basis. In (A – F), 
equilibrium values as determined from minimization of the free energy (Equation 25b) and are shown as same-color 
horizontal dashed lines. Note that the simulation time (x-axis) is shown on a log scale.  

 

 As seen in Figure 6A, integration of Model  produces values of θ and y(X) (solid lines) that match 
their predicted equilibrium values once steady state is reached around t = 102 ps—just as demanded 

by thermodynamic self-consistency. The corresponding values θ(X) are shown in Figure 6B, revealing 
the dynamic behavior of diffusion between site types. Sensibly, as coverage increases, diffusion 
increases toward sites that exhibit lower chemical potentials (A and B sites, see Figure 6C). However, 
we can see that the early kinetics are not dominated by diffusion but by adsorption, which greatly 
outpaces both desorption and diffusion until the coverage increases to ~0.57 ML around t = 1 ps, at 
which point rates become comparable and we see total coverage and site fractions move toward 
equilibrium in tandem—with clearly different kinetics involved as the rates abruptly change. 
Interestingly, ~0.57 ML is the total coverage for which the equilibrium site fractions are 1/3, 1/3, and 
1/3—the initial values used. This means that the system’s initial kinetics are driven by its attempt to 
minimize the free energy at the initial site fraction values used. As (initial) adsorption rates will almost 
always outpace diffusion rates, this suggests initial site fractions should in general be chosen as those 
that minimize the free energy at the chosen initial total coverage instead of arbitrary values unless 
there is good reason to believe the surface starts off in an unequilibrated state. Overall, however, the 

kinetic behavior of Model  is sensible and does not display any aphysicality beyond perhaps that 
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caused by initializing the system in an arbitrary manner. It takes ~1.3 ps to reach the kinetic change 
over from adsorption dominated to diffusion dominated at ~0.57 ML, and another ~100 ps to reach 
equilibrium from there. Given that transition states were set at a very high value of 0.0 eV, the diffusion 
barriers are very large (on the order of ~1.0 eV), and slow diffusion kinetics between site types are 
thus expected.   

 Compared to Model , the integration of Model , shown in Figure 6D and Figure 6E, is markedly 
aphysical in that the highest chemical potential site (site C see Figure 6F) is initially preferentially 
occupied over the other lower chemical potential sites, with the lowest chemical potential site (site A) 
even being preferentially depleted. This is a result of defining individual adsorption rates (Equations 

30b, 30d, and 30f) with transitions states that are proportional to the site type area, aS
(X)

, and thus to 

n(X), which is largest for site C (n(C) = 6). This makes the site C adsorption rate largest regardless of 
its binding strength (i.e., chemical potential). In the extreme, this suggests that a nominally inert 
support (e.g. SiO2) would experience preferential adsorbate binding to it over its supported active 
nanoparticles simply because the support constitutes the majority of the surface area. Arbitrary 
corrections could be added to correct for this, but this fact itself makes it clear that such rate 
expressions are flawed—supporting the validity of Equation 19. As seen in Figure 6F, this is despite 

the underlying thermodynamics of Model  appearing to behave qualitatively similarly to Model . 

While a clear kinetic changeover occurs around t = 0.9 ps, similar to that seen in Model , this point 
does not correspond to the minimization of the free energy at the initial site fractions or those reached 
at t = ~0.9 ps. Instead, the change in kinetics is merely the result of C site adsorption coming to 
equilibrium with the reservoir (where its individual desorption and adsorption rates reach the same 
value), leaving the next highest surface area site, site B, to dominate adsorption until it comes to 

equilibrium with the reservoir, as well. We see a maximum in θ(C) and θ(B) (solid green and blue lines 
in Figure 6E, respectively) where adsorption/desorption equilibrium is reached for each site type. This 
suggests that only at these points, where net adsorption reaches zero, can diffusion work to “fix” the 

site fractions (since diffusion rates are properly defined in Model  still). This also leads to the awkward 
result that once C sites reach their equilibrium value, the desorption rate (now balanced by the 
adsorption rate) becomes greater than the adsorption rate of either A or B sites, making the existence 
of multiple adsorption/desorption rates even more specious. Overall, the results of Scenario 1 show 
the kinetic behavior of each model is significantly different despite both models exhibiting 

thermodynamic self-consistency (which is contrived in Model ).  

 
SCENARIO 2 
 In this scenario, we will treat adsorbates more realistically and compare to a model MF-MKM that 
treats the adsorbates according to the law of mass action, assuming reactant chemical activity to be 
proportional to coverage/concentration of adsorbates and empty sites. While the molecular partition 
function of the adsorbate occupying a certain site type would typically be that of a harmonic oscillator, 
we will neglect this term in both models since large differences in vibrational frequencies would be 
required to significantly affect the sites’ energetics and is outside the scope of what we wish to 
demonstrate here anyway. To be clear, these partition functions are important to the thermodynamics 
and kinetics of real systems and cannot be neglected outside this academic exercise.  

Model  in Scenario 2 will mimic Model  in Scenario 1 but with the adsorbates treated as 
lattice gases, using a simplified mutually exclusive co-adsorption scheme for the configurational 

entropy term (Ω(X)) so that the effects of site blocking can be included. Note that including site blocking 
restricts the maximum total or site coverages to 1 ML, which is the tacit assumption when expressing 
the sticking coefficient as S0(1 − θ): the leading “1” is the maximum coverage. Depending on the 
adsorbate in question, such an assumed maximum coverage may be more or less realistic, but we will 

assume a general case here. Model  in Scenario 2, on the other hand, will treat adsorbates according 

to the law of mass action, as stated previously. As opposed to that used in Model  of Scenario 1, 

Model  of Scenario 2 will exhibit a single desorption rate similar to Model , but without the entropy 

contributions of Ω(X) since the activity will be expressed via the law of mass action.  
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We will take the initial site fractions to be their equilibrium values at the initial total coverage of 

0.001 ML, as the results of Model  in Scenario 1 suggests we should. Unsurprisingly, at such a low 
coverage, primarily the low chemical potential A sites are populated—a much more physical prediction 

than that of Model  in Scenario 1. To show how lateral interactions can lead to a significant change 
in these site fractions, we will now also include specific repulsions between occupied sites of the same 

type (we designate these interactions as V(XX) to represent the average 2-body interaction between 
an occupied X site and other occupied X sites) such that the stronger the zero-coverage binding 

energy (V(X)) is, the more repulsions it experiences. This will drive the site fractions to change more 
significantly as total coverage increases. 
 

MODEL  

 

Table 3. Site Blocking Scheme for Scenario 2, Model . 

Occupation 
of an… 

Blocks __ 
A sites 

Blocks __ 
B sites 

Blocks __ 
C sites 

A site 1 3 6 

B site 1 3 6 

C site 1 3 6 

 

 We define the free energy of the system again as in Equation 25, but with q(A) = q(B) = q(C) = 1 
and the lateral interactions modified as discussed above. This gives the free energy of the surface as 

Fsurf = Nu.c. [V
(A)θ(A) + V(B)θ(B) + V(C)θ(C) +

c

2
(V(AA)[θ(A)]

2
+ V(BB)[θ(B)]

2
+ V(CC)[θ(C)]

2
+ Vintθ

2) − kbT ln(ω(A)ω(B)ω(C)) ] (37) 

where ω(A), ω(B), and ω(C) are derived from a mutually exclusive site blocking scheme (Case I in 
Section 2.3) where each adsorbate blocks the equivalent of one unit cell and all sites found within; this 
makes the maximum site coverage of each site equal to 1 ML. The explicit site blocking scheme can 

be found in Table 3. For Ω(A), this produces 

Ω(A) = (
Nu.c. − N(B) − N(C)

N(A)
) [n(A)]

[N(A)]
 (38a) 

which, after Sterling’s approximation, gives 

Ω(A) =

[
 
 
 
 
(1 − θ(B) − θ(C))

(1−θ(B)−θ(C))

(
θ(A)

n(A))
θ(A)

(1 − θ)(1−θ)
]
 
 
 
 
Nu.c.

 (38b) 

with ω(A) being the term in square brackets. After differentiation of the free energy thus defined, the 
site type A chemical potential is 

μ(A) = V(A) + c[V(AA)θ(A) + Vintθ] + kBT ln [
θ(A)(1 − θ(A) − θ(C))(1 − θ(A) − θ(B))

n(A)(1 − θ)3
] (39) 

which is a significant deviation from an ideal 2D gas chemical potential where the final term in 

Equation 39 would simply be kBT ln[θ(A)]). Note that the form of this expression prevents the total 

coverage, or any individual site type’s coverage, from exceeding their common maximum coverage of 
1 ML due to negative logarithmic arguments outside this bound. In this way, we have introduced the 
saturation coverage of individual adsorbates as a thermodynamically and thus kinetically important 
physical quantity. An analogous set of expressions can be obtained for the other two site types. 

To make diffusion kinetics in Scenario 2 slightly more realistic than in Scenario 1, we will also 

include a common nonzero transition state chemical potential, 𝜇‡, which will be inserted into each site 
type’s diffusion rate expression. The rates of diffusion from, e.g., A sites and adsorption/desorption 
from the entire surface are then 

rA→B = rA→C =
kBT

h
eβ[μ(A)] =

kBT

h
[
θ(A)(1 − θ(A) − θ(C))(1 − θ(A) − θ(B))

n(A)(1 − θ)3
] e−β[𝜇‡−(V(A)+c[V(AA)θ(A)+Vintθ])] (40) 
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rsurf→res = S0(1 − θ)
kBT

h

au.c.

λth
2 eβ[y(A)μ(A)+y(B)μ(B)+y(C)μ(C)] (41a) 

rres→surf = S0(1 − θ)
Presau.c.

√2πmkBT
 (41b) 

where 𝜇‡ will be defined as a single energy located at -0.50 eV (which produces barriers of ~0.50 eV). 
We see in Equation 40 that diffusion rates are still proportional to their site type coverage (i.e., 

concentration), which is θ(A) above, as the law of mass action would suggest. However, it is also 
directly proportional to the number of empty B and C sites here. This is due to site blocking: when the 

adsorbate leaves the A site, it also increases the availability (and therefore entropy) of B and C sites, 

and so this effect is reflected in the global entropy and thus the rates. The presence of (1 − θ)3 in the 
denominator is not due to site blocking and instead reflects the entropy gained by all 3 sites associated 
with simply making the surface emptier. Clearly, in the diffusion rates, this term cancels out at 
equilibrium, but removing it would distort the underlying difference in chemical potentials driving 
diffusion as this is a real feature of the entropy of the system. Inserting Equation 40-41 into Equation 

35 produces the system of ODEs for Model  of Scenario 2.  
 

MODEL  

 The model that will be compared against Model  is based on the law of mass action, which 
suggests that the rate should be directly proportional to the concentration of species leaving and also 
proportional to the concentration of empty sites of the site type that the adsorbate is diffusing toward. 
To decouple effects, we will use a single desorption rate in the spirit of Equation 19 but with chemical 

activity determined on the basis of mass action rather than on Ω(X). Using the site blocking scheme 
shown in Table 3, we therefore produce 

rA→B =
kBT

h
(e−β[𝜇‡−(V(A)+c[V(AA)θ(A)+Vintθ])]) θ(A)(1 − θ(A) − θ(C)) (42a) 

rB→A =
kBT

h
(e−β[𝜇‡−(V(B)+c[V(BB)θ(B)+Vintθ])]) θ(B)(1 − θ(B) − θ(C)) (42b) 

rA→C =
kBT

h
(e−β[𝜇‡−(V(A)+c[V(AA)θ(A)+Vintθ])]) θ(A)(1 − θ(A) − θ(B)) (42c) 

rC→A =
kBT

h
(e−β[𝜇‡−(V(C)+c[V(CC)θ(C)+Vintθ])]) θ(C)(1 − θ(B) − θ(C)) (42d) 

rB→C =
kBT

h
(e−β[𝜇‡−(V(B)+c[V(BB)θ(B)+Vintθ])]) θ(B)(1 − θ(A) − θ(B)) (42e) 

rC→B =
kBT

h
(e−β[𝜇‡−(V(C)+c[V(CC)θ(C)+Vintθ])]) θ(C)(1 − θ(A) − θ(C)) (42f) 

rsurf→res = S0(1 − θ)
kBT

h

au.c.

λth
2 (eβ[∑ y(X)(V(X)+c[V(XX)θ(X)+Vintθ])𝑋 ]) θ (42g) 

rres→surf = S0(1 − θ)
Presau.c.

√2πmkBT
 (42h) 

which can be inserted into Equation 36 to yield the system of ODEs for Model . The remaining 

parameters of Model  and Model  of this scenario can be found in Table 4. 
 

Just as with Model  in Scenario 1, we can see in Figure 7A-7C that Model  in Scenario 2 exhibits 
thermodynamic self-consistency, reproducing equilibrium values as determined by minimization of the 

system’s total free energy. Model  of Scenario 2 (Figure 7D-7F), on the other hand is not 
thermodynamically self-consistent despite the free energy being minimized to nearly the same value 
(see solid purple lines in Figure 7C and Figure 7F). However, the correct ordering of site fractions 
and nearly the same total steady state coverage is achieved, showing that the law of mass action can 
produce qualitatively similar results despite predicting the wrong absolute values at steady 
state/equilibrium (provided that a single adsorption/desorption rate pair is also used, which is the case 
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here). We also now see a single kinetic regime in both models, in contrast to Scenario 1, demonstrating 
the important effect of starting from an equilibrated surface when initializing the system. Looking at 
Figure 7B and Figure 7E, we see both models exhibit a transient local maximum in the site A coverage 
as total coverage increases and changes the system from favoring A site occupation to C site 
occupation, which is caused by the stronger repulsions between occupied A sites, eventually negating 
its stronger binding energy. However, since the entropic effects of site blocking are not imbedded in 

Model , the final C site coverage (θ(C)) is only ~28% greater than the final A site coverage (θ(A)) when 

Model  predicts it should be ~72% greater. While site coverages might not seem to be very different 
in absolute terms, such a discrepancy can have significant effects on surface chemistries that involve 
one site type but not the other. This demonstrates that great care must be taken in choosing a site 
blocking scheme (and free energy) that accurately reflects the physics of the real system under 
investigation. Overall, the results of Scenario 2 highlight the importance of site blocking and entropy 
and suggests that the law of mass action is not an entirely appropriate basis for diffusion rates in MF-
MKMs of reactive surfaces exhibiting multiple types of sites or states. 
 
Table 4. Parameters and initial values used in MF-MKMs of Model  and  of Scenario 2.  

Parameter Value 

T 300 K 
Pres 1 bar 

m 30 g/mol 
au.c. 25 Å2 

V(A) -1.00 eV 

V(B) -0.90 eV 

V(C) -0.85 eV 

n(A) 1 

n(B) 3 

n(C) 6 

V(AA) 0.20 eV 

V(BB) 0.10 eV 

V(CC) 0.05 eV 

Vint 0.10 eV 

μXY
‡

 -0.50 eV 

initial value: θ 0.001 

initial value: y(A) 0.9224a 

initial value: y(B) 0.0602a 

initial value: y(C) 0.0174a 
a) Site Fractions that minimize the free 
energy at the initial total coverage, 
θ=0.001. 
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Figure 7. Solution of the (A) Model  and (B) Model  MF-MKMs for Scenario 2: solid black lines are integrated values 

of the total coverage (θ), and solid red, blue, and green lines are the integrated values of site fractions A, B, and C, 
respectively. (C/D) The corresponding plots of the mean field thermodynamics: solid black lines are the effective 
desorption chemical potential given in Equation 19, solid red, blue, and green lines are site type chemical potentials, 
the solid purple lines are free energies on a unit cell basis. In (A – D), equilibrium values as determine from the free 
energy (Equation 37) and are shown as same-color horizontal dashed lines and denoted with same-color “eq”. Note 
that the free energy is plotted on the same axis here. The simulation time (x-axis) is shown on a log scale and note that 
the range is different from that used in Figure 6.  

 
 
3.2 Response to Thermal Excitation 
 We will now demonstrate the fully range of the dynamic nature of multi-site MF-MKM kinetics using 

Model  from Scenario 2. As seen in Figure 8, starting from its equilibrium solution at 300 K, the 
temperature of the total system is abruptly changed (thermally excited) to 1070 K. This causes the 
system to desorb nearly all its adsorbates, returning the surface to a practically clean state (θ = ~0.001 
ML, see Figure 8A). The abrupt change in temperature causes the chemical potentials of each site 
type to come out of equilibrium (see Figure 8B) with a different chemical potential induced in each 
site type. At 1070 K at the initial coverage, site C has the lowest chemical potential and site A has the 
highest, and so diffusion proceeds to increase C site occupation. Once equilibrium between site types 

is reestablished, around t = 0.01 fs, diffusion proceeds toward its final equilibrium value and y(C) thus 

goes through a maximum (and y(A) goes through a minimum), eventually arriving at their steady-state 
equilibrium values. Once steady state is established, this procedure is then repeated, abruptly 
changing temperature to those shown above the panels in Figure 8, allowing the system to come to 
steady state again before the next temperature change is applied. The system is ultimately brought 
back to 300 K to complete the cycle and show that the same equilibrium is reestablished. Note that 
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surface sites equilibrate with each other (i.e., take on the same chemical potential) much prior to the 
coming to equilibrium with the new reservoir chemical potential. This suggests that it could be 
justifiable to treat diffusion between different site types as instantaneously quasi-equilibrated in certain 
real systems. 

The transient behavior in each temperature subsection of Figure 8 exhibits the same features 
mentioned above except at 100 K. At such a low temperature and low starting coverage, diffusion 
kinetics are slowed to such a degree that they can no longer respond to the disparity of chemical 
potentials until adsorption raises the total coverage enough for lateral interactions to force diffusion to 
C sites. This is the case at low temperatures in general: the increased coverage results in greater 
lateral interactions that switch favorability from A sites to C sites at equilibrium. At higher temperatures, 
the greater entropy of C sites (there are six times more C sites than A sites in this model) also switches 
favorability from A sites to C sites at equilibrium. Thus, amongst the temperatures used here, only at 
800 K is the total coverage and C site entropy low enough to maintain A site dominance at equilibrium. 
This also demonstrates that “meta stable” sites can dominate the reactive adlayer even though they 
are weaker binding at low coverages entirely due to the inclusion of global entropy and realistic 
coverage effects. Overall, these are very sensible results given the parameters used and substantiate 
the appropriateness of the rate expressions established here for multiple site types. It is outside the 
scope of this current work to explore the variations one might see by changing binding strengths, 
lateral interactions, number of sites, and site blocking schemes, but it should be clear that a very rich 
and physically meaningful kinetic space can be described using these rate expressions. 

 
Figure 8. (A) Continuous solution of the Model  MF-MKM of Scenario 2 along with (B) the corresponding site type 

chemical potentials, μ(X). The reservoir chemical potential at each temperature used to thermally excite the system is 
shown as a horizontal dashed line in (B). The adsorbate partial pressure is set to 1 bar throughout. The x-axis of each 
temperature subsection is on its own log scale to aid the eye. Corresponding site coverages are shown in Section S4 
of the SI. 

 
4. Discussion 
 We have derived the desorption rate of a single species with multiple binding sites or states as 

rsurf→res =
kBT

h

1

qr.c.
‡

e−β[μsurf−res
‡ −∑ y(X)μ(X)site types

X ]     (43) 

This definition leads to an intriguing inference concerning the single transition state, μsurf−res
‡

, 

connecting the surface to the reservoir. From the point of view of thermodynamic self-consistency, 

μsurf−res
‡

 is inconsequential as it appears as a factor on both sides of any rate pair, but its effect on 

kinetics is significant. If desorption from each type of site is unactivated, one can imagine a common 
transition state occurring at the “boundary” between the reservoir and the point above the surface 
where the adsorbate just starts feeling the influence of the surface. Equation 43 would be consistent 
with such a model, having a single transition state chemical potential.  However, for activated 
desorption, such a transition state is unacceptably aphysical. Thus, by analogy to Equation 19, we 
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assert that the correct definition for this transition state is also a weighted sum of individual transition 
state chemical potentials, that is, 

μsurf−res
‡ =  ∑ y(X)μX−res

‡

site types

X

  (44) 

where μX−res
‡

 is, as defined in Equation 1b, the chemical potential of the transition state associated 

with desorption from individual site X. Such a definition means that the desorption rate from a multi-
site/state MF-MKM is in fact based on a weighted sum of activation free energies, giving 

rsurf→res =
kBT

h

1

qr.c.
‡

e−β[∑ y(X)Δμact
(X)site types

X ]     (45a) 

where  

Δμact
(X)

= μX−res
‡ − μ(X) (45b) 

which is a much more satisfying result from an interpretation point of view. Note that in order to ensure 

thermodynamic self-consistency, μ(X) must still be properly defined.  
However, it is still perhaps counterintuitive that the desorption rate from a surface (or any 

system) having more than one populated adsorption site (or state) should be a single rate at all and 
not a sum of multiple desorption rates, one for each site. This can be rationalized by considering the 
entire surface as one entity, which is in essence what the mean field assumption represents. When 
molecules of the same species enter or leave this entity, we do not have spatial resolution and so 
cannot assign to those molecules any specific sites directly—they must be inferred. Once the 
molecules enter the reservoir, molecules of the same species are identical and do not carry with them 
knowledge of where they came from. This of course does not mean that the rate of desorption is not 
physically made up of individual desorption events from individual sites. Rather, what this work 
demonstrates is that when a very large number of such desorption events occur, it is the average 
chemical potential that determines the resulting desorption rate, because again, the surface is one 
entity and must therefore exhibit only one chemical potential. This should not be a cause for alarm 
since this is all one can experimentally measure anyway. Once enough desorbing molecules reach 
the detector to be measurable, so many such desorption events (on the order of 1023) have occurred 
that any rate measured can only ever be an average. From this perspective, mean field models are 
ideal, and now that we know what is being measured (the mean chemical potential of each molecular 
specie’s adlayer), experiments can potentially be devised to uncover the site-specific nature of the 
adlayers with the help of this theory and the models built around it.  

Finally, we should note that a single desorption rate based on an average chemical potential 
is analogous to the Widom insertion method50 often used in Monte Carlo simulated desorption. When 
determining the desorption rate from a spatially resolved lattice, a probe molecule of the species in 
question is inserted into all of its available binding sites/configurations and it is the average free energy 
change associated with every insertion of that molecule that is used to define a single chemical 
potential that is inserted into a single rate expression for desorption. In this sense, the desorption rate 
derived here can be seen as an extension of this method to mean field microkinetics. 

 
5. Conclusions 
  We have rigorously constructed a theoretical framework for the development of mean field 
microkinetic models (MF-MKMs) where adsorbates have access to more than one adsorption motif or 
binding site. Specifically, rate expressions have been derived from the first principles of statistical 
thermodynamics and a principle we refer to as “thermodynamic self-consistency”, which requires that 
equilibrium coverages of each site, as determined by minimization of the systems total free energy, 
be reproduced by the MF-MKM of the same system. By comparing solutions of MF-MKMs built using 
these rate expressions against those built using more commonly assumed forms, we conclusively 
show (1) that the measured rate of desorption from a surface where multiple adsorption sites are 
populated cannot be a simple summation of individual desorption rates, but rather must be a single 
rate based on the average chemical potential of the surface adlayer, (2) that this chemical potential is 
dependent on the relative distribution of the available site types as well as their occupation; and (3) 
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that the law of mass action is an improper basis for determining the chemical activity/coverage 
dependence of diffusion rates from one site to another. This latter point was touched on by Árnadóttir 
and co-workers,51 though in a different context. We expect that this work will provide both experimental 
and computational researchers the tools needed to uncover the kinetic role of multiple active sites or 
states in catalytic systems. 
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	where we see that the coefficient on the first term in the upper index (e.g. the “,2-5.” in ,2-5.,N-u.c.. of Equation 23c) of each binomial coefficient represents the maximum coverage up to which adsorbates can occupy only X sites. This term arises fr...
	The final terms in square brackets in Equations 23a – 23c account for the freedom of movement each adsorbate has within its own footprint. The binomial coefficients effectively count the number of configurations that ,N-,X.. adsorbates can take among...
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