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The Oriented and Flux-Weighted Current Density Stagnation Graph
of LiH†

Raphael J. F. Berger∗a and Maria Dimitrovab

A scheme is introduced to quantitatively analyze the magnetically
induced molecular current density vector field J. After determining
the set of zero points of J, which is called its stagnation graph
(SG), the line integrals Φ`i = −

1
µ0

∫
`i

Bind · dl along all edges `i of
the connected subset of the SG are determined. The edges `i are
oriented such that all Φ`i are non-negative and they are weighted
with Φ`i . An oriented flux-weighted (current density) stagnation
graph (OFW-SG) is obtained. Since J is in the exact theoretical
limit divergence free and due to the topological characteristics of
such vector fields the flux of all separate vortices and neighbouring
vortex combinations can be determined by adding the weights of
cyclic subsets of edges of the OFW-SG. The procedure is exempli-
fied by the case of LiH for a perpendicular and weak homogeneous
external magnetic field B.

1 Introduction
Any physical changes in molecules are ultimately triggered by the
electromagnetic force. Molecules, hence, are restricted to inter-
act with their environment via (not necessarily small) electronic
or magnetic perturbations. Therefore, the study of the molecular
magnetic response is of high relevance. In molecular magnetic
response theory, the induced electronic current density J is a key
quantity from which all other magnetic response properties can
be calculated in a quasi-classical fashion by evaluating expecta-
tion value integral-like expressions. Hirschfelder has coined the
term subobservable for such quantities.1 A series of reviews on
the current state of the research on this subject is available.2–4

One branch of this research field is concerned with a topological
and quantitative characterization of J, an undertaking that can be
seen in analogy to the topological characterization of the electron
density.5,6
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We have recently reported some progress on the quantitative
characterization of J7 which is, for example, often used in ar-
guments about the possible aromatic or antiaromatic nature of a
compound. For the quantification of the molecular current one
is typically interested in the flux Φ through a particular surface
S that is chosen by chemical intuition or according to other de-
mands or model ideas, such as the “ring-current” model for (an-
nelated) ring systems2. The idea underlying our recent work7

was to use instead of the surface integral of J over S the line in-
tegral of the corresponding induced magnetic field Bind over the
boundary line ∂S of the surface S , that is, to apply the integral
variant of the Ampère-Maxwell law,

Φ∂S =
∫∫

S
J ·ds =

1
µ0

∮
∂S

Bind ·dl. (1)

Below we employ the simple example of the lithium hydride (LiH)
molecule to show how this method can be naturally extended
by applying it to the so called stagnation graph (i.e. the set of
zero points) of J, such that the quantification of separate current
vortices becomes simple and possible to automate.

2 Discussion
The topology (principle shape) of the magnetically induced cur-
rent density J field of LiH has been discussed previously already
in great detail by Stevens and Lipscomb (1964)8, Keith and Bader
(1993)6 and later by Pelloni, Lazzeretti and Zanasi (2009)9, so
we will only give a summary here.∗ Placing B parallel to the z axis
and perpendicular to the Li−H bond (placed in y direction) re-
sults in a J field that is composed of exactly two separate current
vortices, each of them possessing a central stagnation line (see
Fig. 1). Both vortices are separated from each other by a single
closed surface K of the exact topology and the approximate ge-
ometry of a sphere. The spherical vortex domain (inner vortex) is

∗General procedures to compute stagnation points and stagnation lines have been
published, as well, and are freely available. 10,11
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completely enclosed in the other domain which extends over the
remaining full molecular space (outer vortex). The outer vortex

Fig. 1 The magnetically induced current density field J of LiH in an
external magnetic field B perpendicular to the bond, contains a set of
stagnation points ( = zero points): the vortex critical lines `1, `2,p, `2,d
(in green or red) of (Jacobian) characteristics (2,0), the branching points
p+, p− of characteristics (3,1) and (3,−1) respectively (in orange), and
the two isolated torus or source- and sink-critical points p0 and p′0 (in
cyan). Streamlines that are closely passing the torus critical points are
embedded in a topological and geometrical approximate spherical surface
K , which separates the main molecular diatropic vortex around `1 from
the toroidal vortex around `2 = `2,p ∪ `2,d ∪{p0, p′0}. The flux Φ`1 in the
main vortex amounts to 3.8 nA/T while the toroidal vortex flux Φ`2 =

4.3(= 3.2+ 1.4) nA/T. The current density flux flowing away from the
viewer is illustrated in red, while the opposite flow is shown in blue.

has an open stagnation line `1 extending from z=−∞ to z=∞ and
lying in the y,z plane. `1 is passing the H atom at a short distance
of a fraction of an atomic unit and is bending towards it. Above
and below the x,y plane `1 is bending slightly towards the center
of the LiH molecule but straightens out at larger ±z heights. The
current vortex around this stagnation line `1 is diatropic, thus,
according to the convention we use, clockwise oriented if the ex-
ternal field B is pointing upwards (= z direction). The approxi-
mately spherical inner vortex domain can be imagined as inserted
in between the streamlines of the outer vortex which are bypass-
ing this domain similarly to how a laminar-flowing fluid would
pass near a ball submerged into it. This results in two isolated
“toroidal” stagnation points p+, p− on K where the outer flow
diverges/converges in/from all directions on the sphere K .

The inner domain is enclosing the Li atom but not the H atom.
However the Li atom is geometrically not centered in K but
shifted by a significant distance towards the H atom. The topol-
ogy of the inner current vortex is that of a toroidal flow, like the
water flow of a waterspout fountain with an inner reflux tube.
The inner reflux stream is closely passing the Li atom and roughly
directed perpendicular to both B and the Li−H bond, it is in the
x,y plane and double-s shaped and it contains a single separatrix

line which connects the (3,1) (i.e. a source critical point†) point
p+ with the (3,−1) (i.e. a sink critical point) point p− also inside
K .

The doughnut shaped dry region of the waterspout fountain
corresponds to the central stagnation line `2 of the inner vortex.
This stagnation line is a topological circle in case of the J field
and geometrically approximately D-shaped. Remarkably, the de-
scribed toroidal current flow is aligned in the y,z plane which
means that the main direction of the inner flow (the reflux tube in
the fountain metaphor) and the direction of the counter-directed
outer flow (water pouring down) is x (or −x) such that also `2 lies
in the y,z plane. Consequently, `2 is composed of two branches –
one diatropic stagnation line `2,d and one paratropic stagnation
line `2,p. They branch and recombine in so-called (0,0) critical
points p0 and p′0 with all three eigenvalues of ∇J equal to 0. This
type of toroidal current vortex obviously is neither diatropic nor
paratropic over its whole domain.

Since no currents can pass from one vortex (domain) into or
out of another one, a total current flux can be assigned to each
separate vortex. As we have shown previously7 and since Bind is
vanishing at infinity in z and y direction, the total current flux of
the outer vortex can be obtained from the line integral

Φ`1 =−
1
µ0

∫
`1

Bind ·dl. (2)

Here we choose the direction of the line `1 such that I`1 becomes
positive. In this way, every current-density stagnation graph can
be uniquely oriented to yield a directed graph. Furthermore, to
each “edge” (line segment) of a stagnation graph, the flux integral
can be assigned such that an oriented edge-weighted graph with
strictly positive weights is obtained.

To obtain the current flux of the toroidal current inside K , one
can make use of the notion that the full flux is passing through the
D-shaped closed stagnation line `2 (composed of `2,d and `2,p),
thus:

Φ`2 =−
1
µ0

∮
`2

Bind ·dl (3)

=− 1
µ0

(∫
`2,d

Bind ·dl+
∫
`2,p

Bind ·dl
)

(4)

= Φ`2,d +Φ`2,p (5)

where again for each integral an orientation for each of `2,d

and `2,p is obtained. A simple numerical integration scheme has
been applied (see SI for details), and we have thereby obtained
Φ`1 = 3.8 nA/T, Φ`2,d = 3.2 nA/T and Φ`2,d = 1.4 nA/T. The cor-
responding surface integrals of J over the y,z plane in the region
left of `1 and over the surface enclosed by `2 yielded 4.0, and 4.6
nA/T, respectively, both in very good agreement with the corre-
sponding values of the line integrals (3.8 nA/T and 3.2+1.4 = 4.6

†Stagnation points can be further characterized by the pair (rank, trace) of their
Jacobian matrix. 2
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nA/T). The details of these computations ate given in the SI.

We conjecture that any field J partitioned‡ into vortices sepa-
rated by surfaces of separatrices has a connected or disconnected
set of stagnation graphs (together with a set of isolated stagnation
points). Then also for every such vortex, a cyclic subgraph defin-
ing the vortex, like the pair of stagnation lines in the example of
the toroidal vortex in LiH, exists. Setting this cyclic subgraph to
∂S in the line integral in equation (1) then gives the current flux
in this vortex.

3 Conclusion and Outlook

Fig. 2 An oriented flux-weighted current density stagnation graph (OFW-
SG) of LiH, with two connected subsets (`1 and `2d ∪ `2p ∪{p0, p′0}) and
two isolated stagnation points (p+, p−). Vortex current density weights
obtained by integration of the Ampère law expression are given in units
of nA/T).

The presented approach effectively gives a complete magneti-
cally induced current flux analysis of a given molecule. It can
be achieved by evaluating the line integral from Eq. (1) for each
“edge” of the stagnation graph (and thereby, orienting all edges).
The results of a OFW-SG can be condensed into a schematic di-
gram like it is shown in Fig. 2 and the strategy is completely gen-
eralisable to non-planar and non-cyclic molecules, and can be car-
ried out for any molecule with a non-trivial connected stagnation
graph. It has been described in the literature that large molecules
without symmetry elements may not posses a non-trivial stag-
nation graph, meaning that J cannot be partitioned into smaller
non-trivial simple vortices, or at least only barely so. This is usu-
ally the case if there are significant current contributions parallel
to the external field B which cause the vortices to show a helical
component, necessarily leading to non-zero current transfer in
between otherwise separate vortices. For such cases, instead of J,
a pseudo-J field can be investigated where the parallel component
is projected out. One then obtains a pseudostagnation graph12,13

for which the same procedure as above can be applied. We are
currently investigating this possibility.

‡ i. e. decomposable into pairwise disjunct sets and where the union is the complete
set
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Graphical abstract

Oriented flux-weighted current density stagnation graph of LiH, in the
external magnetic field B. Flux weights are given in nA/T.
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