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Abstract8

We present a new single-step retrosynthesis prediction method, viz. RetroTRAE, using fragment-9

based tokenization and the Transformer architecture. RetroTRAE mimics chemical reasoning, and10

predicts reactant candidates by learning the changes of atom environments (AEs) associated with11

the chemical reaction. AEs are the ideal stand-alone chemically meaningful building blocks provid-12

ing a high-resolution molecular representation. Describing a molecule with a set of AEs establishes13

a clear relationship between translated product-reactant pairs due to the conservation of atoms in14

the reactions. Our model achieved a top-1 accuracy of 58.3% on the USPTO test dataset. When15

highly similar analogs were considered the accuracy increased to 61.6%. These results outperform16

other state-of-the-art neural machine translation-based methods. Besides yielding a high level of17

overall accuracy, the proposed method does not suffer from the SMILES-based translation issues18

such as invalid SMILES. Additionally, the attention matrices of RetroTRAE are shown to capture19

chemical changes around reaction sites successfully. Through careful inspection of reactant candi-20

dates, we demonstrated that AEs are promising descriptors for studying reaction route prediction21

and discovery, which has been underexplored yet. Our methodology offers a novel way of devising22

a retrosynthetic planning model using fragmental and topological descriptors as natural inputs for23

chemical translation tasks, and opens new possibilities for developing other sequence-based machine-24

learning methods in chemistry.25

1 Introduction26

Planning the reaction pathways of organic molecules is a central component of organic synthesis. The27

idea of reducing the complexity of a desired organic molecule by considering all logical disconnections28

forms the basis of the retrosynthetic approach [1–3]. Therefore, the aim of the retrosynthetic approach is29

to suggest a logical synthetic route to generate a target molecule from a set of available reaction building30

blocks. A conventional retrosynthetic approach acts recursively on a target molecule until chemically31

reasonable pathways are identified [4]. From a broader perspective, existing predictors for forward and32

backward reactions can be classified into those that rely on known reaction templates and those that are33

template-free, data-driven networks trained in an end-to-end fashion.34

Template-based approaches use reaction templates to predict reactants from a product. Reaction35

templates are extracted from data using algorithms or encoded manually. For manual encoding, deep36

chemical expertise and management of complex transformation rules are needed [5–8]. Data-driven37

approaches, however, enabled automated extraction of large reaction templates from reaction data [6, 9–38

14]. For retrosynthesis prediction, each template is applied to a product to find a match, subgraph39

isomorphism. If a proper isomorphism is found, a product is transformed depending on the template.40

This process continues until chemically reasonable pathways are identified [14].41

Template-free methods have emerged as an effective means to complement the following issues of42

template-based methods. Exploring the space of possible reaction templates is challenging because of43

the vast size of chemical space. If only a limited number of reaction templates are used, template-44

based methods may not be able to provide novel disconnections [6, 15]. On the contrary, if a large45

number of reaction templates are considered, computational burden to find a proper template increases46

significantly. Currently, templates are either hand-crafted by experts [7] or generated from reaction47
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databases with heuristic algorithms [9, 11]. Thus, the degree of template generality/specificity can lead1

to either low-quality or incomplete recommendations. Lastly, reaction templates are extracted based on2

atom mapping, which remains a challenging issue for all template-based methods [16]. Atom mapping3

quality also affects model performance.4

Template-free methods can be further subdivided according to the molecular representation protocol5

into: (i) graph-based methods [15, 17–19] and (ii) sequence-based methods [16, 20–22]. Sequence-based6

modeling recasts the problem of reaction pathway planning as a language translation problem using a7

string representations of molecules [23]. Most state-of-the-art forward- and backward-reaction predictors8

are built on the Transformer architecture [24]. Transformer is a neural machine translation (NMT) model9

that solely depends upon attention mechanism [24, 25]. Molecular Transformer was the first adaptation10

of Transformer with SMILES [26] for the forward-reaction prediction task [27, 28]. Further studies11

demonstrated the ability to make general predictions using different compound databases, including drug-12

like molecules [29] and carbohydrate reactions [30], to examine regioselectivity and stereoselectivity. This13

success has paved the way for developing retrosynthesis predictors using SMILES and Transformer [31–14

36].15

SMILES strings are typical inputs for retrosynthetic predictors using NMT models. Despite its16

widespread usage, SMILES easily leads to erroneous predictions because of its fragile and complex17

grammar. For instance, a single character change is often enough to invalidate an entire SMILES string.18

Thus, SMILES-based prediction methods tend to make many grammatically invalid predictions reducing19

their prediction efficiency. In a recent study, the top-10 invalidity error (SMILES parsing errors) was20

reported as much as 12.6% [33]. To solve this problem, SCROP [34] included a neural-network-based21

syntax corrector to decrease the invalidity rate. Similarly, other studies [32, 36] focused on determining22

the causes of invalid SMILES to improve the prediction accuracy. In addition, grammatically valid23

SMILES are not guaranteed to be semantically valid due to, i.e., explicit valence and kekulization errors.24

To circumvent these problems, alternative syntaxes such as DeepSMILES [37] and SELFIES [38] were25

developed. In our previous study [39], we demonstrated that representing molecules as the sets of26

fragments is an effective solution to the aforementioned problems.27

Considering the complexity of retrosynthetic analysis, an efficient representation of source-target data28

structure is critical for accurate predictions. In this study, we show that representing molecules using sets29

of atom environments (AE) is an efficient alternative approach to conventional SMILES-based approaches30

for devising a retrosynthetic prediction model. AEs are topological fragments centered on an atom with31

a preset radius [40], defined by the number of shortest topological distances between atoms via covalent32

bonds. Unlike SMILES tokens, each AE is chemically meaningful and easily interpretable. NMT models33

are designed to translate between pairs of words from different languages, whereas SMILES-to-SMILES34

translations require a model to learn chemical changes mostly via rearrangements of SMILES tokens35

due to the conservation of atom types in an ideal reaction dataset. On the other hand, AEs in close36

vicinity of reaction center encapsulate the chemical change. The chemical change becomes observable in37

associated tokens, fragments, and thus can be captured by the model.38

In this study, we propose a direct translation approach for a single-step retrosynthetic prediction39

by associating the AEs of the reactants with the products. Throughout the study, AEs are regarded40

as the basis of molecules and employed in our prediction workflow. Our design enables us to capture41

chemical changes by focusing on fragments related to the reaction centers. To accurately generate the42

reactant candidates for a target molecule, we used the Transformer architecture [24]. We showed that43

our model achieves a top-1 exact matching accuracy of 58.3%. The overall accuracy increased to 61.6%44

by adding extremely similar predictions. These results are better than those of the existing methods,45

without suffering from problems associated with the SMILES representation.46

2 Method47

2.1 Model overview48

Transformer connects the encoder and decoder units to translate between sequences by effectively em-49

ploying a multi-head attention mechanism on each unit. Input and output sequences for our Transformer50

model are the lists of AEs. We tested several different schemes to convert molecules into a list of frag-51

ments, such as MACCS keys [41], the bit vectors of extended circular fingerprint (ECFP) [42], and52

AEs [40]. AEs are fragments consisting of a central atom and its covalently bonded neighbors with a53

predefined radius. They can be considered the basis of constructing molecules, in a similar manner to54

the pieces of a jigsaw puzzle. Each AE is described by a SMARTS pattern [43].55
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Figure 1: (a) A schematic of RetroTRAE including the input-output structure. (b) String representations
of benzene are presented in the form of SMILES, SELFIES, and as a combination of SMARTS patterns
generated by the Morgan fingerprint. In AEs renderings, the central atom is highlighted in blue whereas
aromatic and aliphatic ring atoms are highlighted in yellow and gray, respectively. A wildcard [*] is used
to represent any atom.

An overview of our Transformer-based model, viz. RetroTRAE, is provided in Figure 1a. First, a1

product molecule is decomposed into a set of unique AEs. Each AE, a SMART pattern, is associated2

with a unique integer value. Lists of AEs are provided as input sequences for RetroTRAE. RetroTRAE3

was trained to predict the AE sequences of the true reactants.4

In Figure 1b, the string representation of benzene is given as common SMILES and SMARTS patterns5

representing the AEs generated by the ECFP fingerprint, along with the recently developed SELFIES [38]6

description. SMARTS and SELFIES are similar with respect to the level of information they display.7
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The text sections of the SMARTS description contain two levels of detail: the first level represents the1

aromaticity and H count of the element, and the second level includes the number of neighboring heavy2

atoms and ring information (represented by ”D” and “R”, respectively). By definition, AEs with radius3

r = 0 only include the atoms of the central atom type. We denote the set of all AEs with r = 0 as AE0.4

AEs with r = 1 contain the central atom, all atoms adjacent to the central atom (nearest neighbors),5

and all the bonds between these atoms. The set of all AEs with r = 1 is denoted as AE2.6

2.2 Atom Environments7

We employed the concept of circular AEs to represent the molecules in the reaction dataset. Circular8

environments are defined as topological neighborhood fragments of varying ‘radii ’ containing all bonds9

between the included atoms [40]. They are centered on a particular atom, called the central atom. The10

‘radius’ refers to the maximum allowed topological distance between the central atom and all covalently11

bonded atoms. The topological distance between two atoms was measured as the number of bonds on12

the shortest path between them. Thus, an AE of radius “r” contains all the atoms in a molecule with a13

topological distance r or smaller from the central atom, and all bonds between them.14

To construct the AEs, we used the ECFPs of varying radii implemented in RDKit. We extracted all15

unique fragments that were folded into the bits of ECFPs. AEs generated by the ECFP algorithm are16

invariant to rotation and translation and are easily interpretable as SMARTS patterns [44–46]. The AE17

representation does not record any connectivity information. Thus, there is no one-to-one correspondence18

between molecular structure and the set of AEs. In our analysis, we considered AEs as the pieces of19

a molecular jigsaw puzzle. Larger pieces (higher radii fragments) encompass small pieces (smaller radii20

fragments). A proper fingerprint radius ensures that a fragment isomorphic to the molecular structure21

can be found (Supplementary Figure 2). However, as discussed in section 3, the optimum AE radius for22

a neural translation task is equal to 1.23

We focused on two fragmentation schemes: AEs and ECFPs. A word-based tokenization scheme was24

applied to both AEs and the indices of the ECFP bit vectors. An ECFP bit vector corresponds to a25

one-hot encoded vector in fingerprint space, such as a sentence, which is one-hot encoded in vocabulary26

space. In this study, the following representations encoded as bit indices and SMARTS were tested:27

• AE0 and AE2 corresponding to AEs of radius 0 and 1,28

• ECFP0, ECFP2, and ECFP4 [42] corresponding to the Morgan fingerprints of radius 0, 1, and 2,29

hashed into a dimension of 1024.30

AEs of radius 2 (AE4) result in millions of distinct fragments. Because of the vast vocabulary size31

of AE4, they are not suitable for translation purposes. Thus, only the hashed version of the Morgan32

fingerprint was selected for a radius of 2.33

2.3 Dataset34

To evaluate and compare our model with the current state-of-the-arts, we used the subset of the filtered35

US patent reaction dataset, USPTO-Full, obtained with a text-mining approach [47, 48]. This sub-36

set [15] contains 480K atom-mapped reactions after removing duplicates and erroneous reactions from37

USPTO-Full. Preprocessing steps to remove reagents from reactants are described in refs [16, 22], which38

were based on a ”>” token in reaction SMILES. By following this procedure, Zheng et al. provided39

canonicalized reactant and product SMILES [34]. In addition, there was no reaction class information40

available in this dataset.41

We used Zheng’s version of USPTO and carefully curated the product-reactant pairs. We limited42

ourselves to single product reactions, corresponding to 97% (465K) of all the available reactions. We then43

omitted multi-component reactions primarily because they occupy less than 1.65% of the whole dataset.44

We set an upper length limit for sequences up to 100 fragments. In this study, we have not used any atom-45

to-atom mapping algorithm. With forward reactions, we ended up two distinct curated datasets based46

on the number of reactants, consisting of unimolecular (R −→ P) and bimolecular (R1 +R2 −→ P) type47

reactions, with a combined size of 414K. Since retrosynthesis implies an abstract backward direction,48

we named our datasets unimolecular and bimolecular reactions. Additionally, we used the PubChem49

compound database including 111 million molecules and the ChEMBL database to recover molecules50

from a list of AEs and compare the space of AEs [49, 50].51
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2.4 Training Details1

Our curated datasets were randomly split into a 9:1 ratio to generate the training and testing sets.2

The validation set was randomly sampled from the training set (10%) prior to training and used only3

for optimizing the hyperparameters. We used the Adam optimizer [51] to train model parameters in4

combination with a negative log-likelihood (NLL) loss function. The best hyperparameters were chosen5

according to their performance on the validating set. With these hyperparameters, the average training6

speed was approximately 12 minutes per epoch with a batch size of 300 on a single Quadro RTX 80007

card. We applied dropout with a rate of 0.1 [52].8

The open-source RDKit [44] module version 2020.03.1 was utilized to generate ECFPs and AEs. The9

PyTorch [53] machine learning library was used for constructing and training the model. The model10

was configured similarly to the original Transformer paper, except the normalization layer was applied11

prior to self-attention, multi-head attention and feed-forward operations, respectively. The outputs12

of the encoder and decoder were also normalized. Word-wise tokenization was applied by using the13

SentencePiece tokenizer [54]. The details of our key hyperparameters and hyperparameter space are14

described in Supplementary Table 1.15

2.5 Evaluation procedure16

To evaluate the performance of our translation model, a suitable metric was required to measure the17

similarity between predictions and the true reactants. The Tanimoto (Tc) and the Sørrensen-Dice coeffi-18

cient (S) as two of the special cases of the Tversky index were the similarity metrics used in this study.19

The exact form of the Tversky index is as follows:20

S(X,Y ) =
|X ∩ Y |

|X ∩ Y |+ α|X − Y |+ β|Y −X|
(1)

Here, α, β ≥ 0 are the parameters of the Tversky index. Setting α = β = 1 leads to the Tanimoto21

coefficient; setting α = β = 0.5 leads to the Sørrensen-Dice coefficient. The Tanimoto and Dice coeffi-22

cients measured between two molecules range between 0 and 1. The value of zero represents the total23

dissimilarity, whereas a value of 1 represents the exact match. We used the ccbmlib Python package [55]24

to generate the similarity value distributions of the fingerprints and assess the statistical significance of25

the Tanimoto coefficients. This implementation also allowed for a quantitative comparison of similarity26

values between various fingerprint designs.27

Unlike SMILES-based methods, small prediction errors of the AE representation do not yield invalid28

predictions. Thus, multiple degrees of accuracy can be calculated due to the native design of our model.29

The results were computed with four different cutoffs, which can be categorized as: (a) hard thresholds,30

and (b) soft thresholds. We define hard thresholds as the discrepancies of one or two fragments. We call31

arbitrary thresholds based on the Tanimoto coefficient soft thresholds such as Tc ≥ 0.85. These measures32

are conventionally used to screen similar molecules. For example, molecules having Tc ≥ 0.85 tend to33

exhibit similar biological activities [56–64]. This assumption has been tested in multiple studies with34

different datasets and fingerprints [62, 64–67].35

Hard thresholds offer the following advantages over soft thresholds. First, hard thresholds do not36

depend on sequence length (Supplementary Table 3). Second, contrary to soft thresholds, they allowed37

us to easily find the type and number of fragments that deviated from the ground truth. Finally, by using38

hard thresholds, we can avoid any risk of losing high-quality reactant candidates that could be excluded39

with soft thresholds. The structural complexity of a molecule is closely associated with a fingerprint40

length. This suggests that high-quality predictions with low and medium complexity, relatively smaller41

molecules, have a higher chance of being excluded by soft thresholds. For example, a high-quality42

double mutated prediction with medium complexity represented with 13 AEs could be overlooked by a43

bioactively similar threshold (Tc ≥ .85).44

In this study, we used top-1 predictions as the best recommendations to report the performance45

of model, as well as for molecular search and retrieval. Since there are many ways to decompose a46

molecule, retrosynthetic prediction tools can procure many different possible synthetic routes. However,47

the analyses showed that only 6% of the USPTO dataset has at least two sets of reactants [47, 48, 68].48

Thus, using top-1 accuracy is a legitimate measure to assess a single-step retrosynthesis predictor trained49

on the USPTO dataset. Top-N accuracy for evaluating retrosynthesis prediction has recently been50

disputed because, with each prediction, a model tends to find the next frequently observed answer51

among reactions in a dataset rather than making a chemically more meaningful prediction [28, 68]. A52

few alternative metrics were newly suggested, such as Round-trip [28], and MaxFrag [35].53
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3 Results and Discussion1

3.1 Comparing fragmentation schemes2

We evaluated the retrosynthetic predictor performance using the selected fingerprint variants to deter-3

mine the best fragment representation using the unimolecular dataset (Table 1). We compared Trans-4

former results with previously developed sequence-to-sequence fragment-based retrosynthetic predictor5

[39]. The Transformer-based models coupled with the ECFP representation demonstrated major im-6

provements over previous biLSTM-based methods in terms of the exact match accuracy. This enhance-7

ment represented a substantial overall performance gain of 17-19%. The Transformer model representing8

molecules with the union of AE0 and AE2 outperformed all other models, achieving an exactly matching9

accuracy of 55.4%. The addition of bioactively similar predictions increased the accuracy by 12.7% over10

the exact matches, resulting in an overall model accuracy of 68.1%.11

Table 1: Performance summary of various Transformer-based models trained with different fragmentation
schemes in unimolecular test set and a comparison with the BiLSTM-based models. Success rates (%)
are given with respect to exact and bioactively similar matches (Tc ≥ .85) and the mean Tanimoto
coefficients of all predictions are listed.

BiLSTM-based Transformer-based

MACCS ECFP2 ECFP4 MACCS ECFP2 ECFP4 AE2 AE0 ∪ AE2

Tc = 1.0 29.9 35.6 9.1 30.1 54.9 26.0 50.9 55.4

Tc ≥ .85 57.7 50.7 28.4 57.5 67.6 50.1 59.9 68.1

Tc 0.84 0.80 0.66 0.85 0.88 0.73 0.84 0.88

When we used MACCS keys for fragmentation, the number of exact and bioactively similar matches12

were similar to that of the biLSTM-based model. This suggests that MACCS keys have low resolution13

power than AEs. In contrast, AE2 describes the chemical space more precisely, and provides 60 times14

higher resolution power than MACCS keys (Supplementary Table 2). The model using ECFP2 also15

performed well and showed slightly worse performance than using AEs. Hereafter, we refer to the model16

with the union of AE0 and AE2 as RetroTRAE.17

3.2 Optimal fragments for single-step retrosynthesis predictions18

Another interesting observation is the poor performance of ECFP4. The number of exact matches19

dropped to nearly a half of that of ECFP2. This poor performance may be due to a high collision rate of20

ECFP4 (Figure 2). We investigated the number of unique AEs of radii 0, 1, and 2 that were associated21

with the activated bits of hashed ECFPs for the unimolecular reactions. With a radii of 0 and 1, each22

ECFP bit contained fewer than 10 and 20 unique AEs, respectively. However, with a radius of 2, most23

bits corresponded to many unique AEs, ranging from 100 to 160. In other words, ECFP4 has a much24

higher bit collision rate than ECFP2 or ECFP0. The presence of higher-density bits complicates the25

relationships between the fragments of a product and the true reactants, deteriorating the prediction26

power of the model. Therefore, these results show that finding an optimal set of fragments representing a27

molecular structure most accurately is a critical factor in improving the predictive power of retrosynthesis28

planning.29

3.3 Performance of RetroTRAE30

Prediction performance, as a function of different similarity thresholds for RetroTRAE is shown in31

Table 2. RetroTRAE has reached top-1 exact match accuracies of 56.4% and 60.1% trained with 10 times32

augmented uni- and bi-molecular datasets. Augmentation slightly improved the results and stabilized33

the model’s learning since more data and randomness were added to the network [35]. Although the AE34

representation is permutation invariant, the models with positional encoding perform better than those35

trained on without using positional information (Supplementary Table 6). This is consistent with the36

observation by Jaegle et al. [69].37
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Figure 2: The number of Morgan bits according to the number of unique SMARTS patterns from AE0
(blue), AE2 (cyan), and AE4 (red).

One of the advantages of using AEs over SMILES is that a few errors do not lead to invalid predictions.1

Thus, we investigated how much the success rate can be improved by easing the threshold without losing2

functionality of the retrosynthetic framework. When single mutations (SM) were allowed, the success3

rates of uni-molecular and bi-molecular reactions increased to 58.1% and 60.9%, respectively. The4

corresponding numbers for double mutations (DM) were 60.5% and 62.7%. To quantify how low the5

probability of finding such extremely close neighbors of molecules is in a large database, we performed6

extensive analysis by using AEs as presented in Supplementary Table 4. Considering the cumulative7

distribution function of AEs obtained with 1.3 million molecules in the USPTO database, only 13 pairs8

were found to have a Tc value of 0.76 or higher. With a threshold of 0.9 or higher, most molecules in a9

typical database would be singletons with no near neighbors.10

Table 2: The prediction accuracy (%) of RetroTRAE using x10 augmented uni- and bi- molecular
reactions.

Datasets Tc = 1.0 SM DM Tc ≥ .85 Tc ≥ .80 Tc S

Unimolecular 56.4 58.1 60.5 68.2 72.5 0.88 0.94

Bimolecular 60.1 60.9 62.7 64.3 66.7 0.79 0.88

RetroTRAE (Total) 58.3 59.5 61.6 66.3 69.6 0.84 0.91

The mean Tc of all predictions of the uni-molecular test set was found to be 0.88, which is highly11

statistically significant with a p-value < 10−5 (Table 2). This indicates that even non-exact predictions12

made by RetroTRAE are still highly similar to the ground truth. Figure 1 in Supplementary Information13

shows the statistical significance of the selected similarity thresholds above which the quality of non-14

exact predictions is assessed in chemical terms. The inset of the figures shows the regime where Tc15

values having a p-value of 0.1 (e.g., corresponds to a similarity value of 0.25 for ECFP2), whereas our16

lowest similarity threshold value (Tc > 0.8) had a p-value of 1e-04 or lower. Therefore, the predictions17

satisfying Tc > 0.8 occur in the high similarity regime.18
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3.4 Investigation of AEs-similarity relationship1

AE formalism offers a higher resolution power than other fingerprints. This feature is particularly2

useful in terms of the context of fingerprint dependency of soft thresholds, Tanimoto coefficient. To3

demonstrate, we generated the similarity value distributions of various structural fingerprints available4

in RDKit using 1.3 million molecules in the USPTO dataset (Supplementary Figure 3). For instance,5

within a region where a p-value is greater than 0.01 (equivalent to Tc <= 0.32 with unified AEs), Avalon,6

MACCS keys, RDKit and Atom pairs fingerprints all yielded higher Tc values. Topological torsion was7

the only exception and yielded slightly lower similarity values than AEs. These results indicate that8

chosen cutoffs based on AEs lie at a lower similarity level and statistically more significant than other9

fingerprints.10

To quantify the resolution power of AE in high similarity region, two of the commonly used substruc-11

tural fingerprints, MACCS and RDKit fingerprint, were compared against AEs (Supplementary Table 5).12

We randomly selected 10 singly and 10 doubly mutated predictions and compared the mean pair-wise13

similarities with respect to ground truth and the number of equivalent representations. The mean Tc14

for AEs was 0.91, while almost none of the mutations were detected by MACCS keys. Seventeen out of15

20 pairs were structurally equivalent. The RDKit fingerprint yielded a mean pair-wise similarity of 0.97.16

These show that the predictions obtained by hard thresholds, SM and DM, are at an exceptional level.17

3.5 Model interpretability18

It is often difficult to attribute meaning to the outcomes of deep learning methodologies. We inves-19

tigated attention weights to uncover what our model actually learns. We identified that our model20

successfully learned the changes in chemical environments around reaction centers. In contrast to our21

work, in SMILES-to-SMILES translations chemical changes mostly occur via rearrangements of SMILES22

tokens rather than actual transformations of chemically meaningful tokens, which hampers chemical in-23

terpretability and explainability. To address this issue, Kovács et al. proposed a framework to interpret24

the results of Molecular Transformer [70].25

The attention weight matrices and the fragments with the highest attention values of two example26

reactions are visualized in Figure 3. The AE that undergoes a change during the reaction has the highest27

attention value with its changed counterpart. Likewise, the AEs that remain intact tend to have highest28

attention with itself. The column-wise summations of attention weights indicate the mostly attended AEs29

of a product by RetroTRAE. To show this, we highlighted the AEs in products that changed during the30

reactions and their attentions in the reactant side. Indeed, the model pays more attention to altered AEs31

near the reaction centers as exemplified with ring opening and dissociation reactions. These examples32

clearly show that AE tokens are chemically meaningful and fully interpretable by themselves as opposed33

to SMILES tokens.34

RetroTRAE operates at the level of AEs predicting transformations from products to reactants in35

a single-step similar to previous studies [28, 33, 35]. The main reason for focusing single-step reactions36

is that the mechanistic descriptions of reactions are not provided in the USPTO database. However,37

there is no intrinsic limitation for the model to predict multi-step synthetic routes. The model would be38

able to predict multi-step synthetic routes, when it is combined with a proper search algorithm, such as39

Monte-Carlo tree search [13, 14]. In its current form, RetroTRAE can be used in any single-step of a40

multi-step retrosynthesis [13].41

3.6 Examples of retrosynthesis predictions42

In addition to exact predictions, we investigated how much singly and doubly mutated predictions are43

similar to the ground truth. The first example illustrates an exact prediction (shown in Figure 4a).44

RetroTRAE predicted 58.1% of the reactions in the test set accurately. The single and double fragment45

mutations together account for 3.3% of the total predictions. In single mutation cases, atom and con-46

nectivity types must be preserved, therefore only two types of structural changes are possible. First,47

a new environment may appear (or an existing environment may disappear) due to a misplaced single48

environment (e.g., at the ortho/para/meta position). With this change, all connected atom types must49

be preserved (Figure 4b). Second, a single existing AE can be added or subtracted at terminal sites.50

Double mutations are characterized by a misplaced branching AE or a single atom substitution (Fig-51

ure 4c). If a mutation happens in the middle of a molecule, the AE centered at the mutated site and its52

direct neighbors are highly likely to be changed, leading to at least three AE mutations.53
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Figure 3: Visualisation of decoder attention and interpretability of RetroTRAE are exemplified in (up-
per) uni-molecular and (lower) bi-molecular reactions. (Left) Attention weight matrices and column-wise
attention sums are displayed. Product AEs with high attention values correspond to the reaction cen-
ters of the products. (Right) Highly correlated AE pairs between reactant and product sequences are
visualized. The widths of connections are proportional to attention values. The AE pairs with highest
attention values correspond to the reaction centers and disconnection sites. The altered AEs surrounding
the reaction center with high attention scores are highlighted.

As indicated in the similarity maps of hard thresholds, none of the atoms of the reactant candidates1

negatively contributed (red) to the similarity value. With the AE representation, the length of simple2

aliphatic chains might be incorrectly predicted, because the length of an aliphatic chain cannot be3

accurately described using a set of unique fragments. Based on this observation, SM and DM predictions4

are much more similar to a ground truth than conventional structural analogs implying differences in5

certain substructures, functional groups, or several atom types. We believe that these small discrepancies6

are easily amendable through a visual comparison with a product. When soft thresholds are used, several7

AEs can be altered, making the generalization of errors highly difficult. After inspecting the bioactively8
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Figure 4: Representative examples of (a) exact predictions, (b) predictions with a single and (c) double
fragment mutations are shown. RetroTRAE predicted 58.3% of test set exactly. Considering highly sim-
ilar predictions with single and double mutations increased the success rate by 3.3%. Distinct fragments
are given as SMARTS patterns. Predictions are drawn as similarity maps using the Morgan fingerprints.
For hard thresholds, the first reactant is predicted correctly and the qualities of the second reactants
are evaluated. The fragments only belonging to the prediction or its true counterpart are given as set
notation differences, which allows us to describe the chemical change more concretely. Colors indicate
atom-level contributions to the overall similarity (green: increases in similarity score, red: decreases in
similarity score, uncolored: has no effect).
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similar predictions (see Supplementary Figure 4), we concluded that the most significant aspects of1

retrosynthetic analysis, such as bond disconnections, reactive functional groups, and core structures,2

were correctly predicted. Nevertheless, we were unable to generalize the characteristics of the predictions3

beyond DMs, albeit within the bounds of bioactive similarity space.4

3.7 Comparison with existing retrosynthesis planning methods5

Table 3 presents a performance comparison of RetroTRAE with the existing retrosynthesis models trained6

without reaction class information. For a fair comparison, we compared RetroTRAE with the models that7

were trained and tested with the USPTO based datasets [15, 47, 48]. Our approach achieved an average8

top-1 exact matching accuracy of 58.3%, outperforming existing NMT-based template-free models. The9

inclusion of single and double fragment mutations, corresponding to 3.3% of the predictions, increased10

the overall performance of our model to 61.6%, exceeding all current state-of-the-art performance levels.11

This clearly demonstrates that AEs are useful and informative representation of a molecule.12

Performance differences in the SMILES-based Transformer models are attributed to improvements13

in data augmentation (with non-canonical SMILES) [35, 71], tokenization scheme (character or atom14

level) [31, 33], and postprocessing (by rectifying invalid SMILES) [32, 34]. The better prediction accu-15

racy of our model appears to be due to better reaction representation beyond the standard SMILES.16

For a comparison with top performing template-based models, we listed the top-1 accuracy of AiZyn-17

thfinder [14]. The accuracy was reported as a range of 43-72% on the filtered USPTO dataset depending18

on the sizes of template libraries that were used to train template prioritization models [68]. Segler and19

Waller reported a top-1 accuracy of 50.1% using Reaxys [13]. It should be noted that each template-20

based model used different training/test datasets and template extraction methods, which affect model’s21

performance.22

Table 3: A comparison of reported top-1 accuracies of retrosynthesis prediction models without ad-
ditional reaction classes. The results are based on either filtered MIT-full [47, 48] or MIT-fully atom
mapped [15] reaction datasets.

Model top-1 accuracy (%)

Non-Transformer

Coley et al., similarity-based, 2017 [72] 32.8

Segler et al.,–rep. by Lin, Neuralsym†, 2020 [6, 33, 73] 47.8

Dai et al., Graph Logic Network†, 2019 [73] 39.3

Liu et al.,–rep. by Lin, LSTM-based, 2020 [16, 33] 46.9

Genheden et al., AiZynthfinder, ANN + MCTS†, 2020 [14, 68] 43-72

Transformer-based

Zheng et al., SCROP, 2020 [34] 41.5

Wang et al., RetroPrime, 2021 [71] 44.1

Tetko et al., Augmented Transformer, 2020 [35] 46.2

Lin et al., AutoSynRoute, Transformer + MCTS, 2020 [33] 54.1

RetroTRAE 58.3

RetroTRAE (with SM and DM) 61.6

† Reaction templates were used.

3.8 Covering chemical space with atom environments.23

Because AEs can be considered the basis of molecules, we investigated the number of AEs are required to24

represent chemical space properly. We generated the AE0 and AE2 sets using all compounds in PubChem25
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(111M), ChEMBL (2.08M), and the USPTO 500K (1.3M) dataset and visualized their diversity and1

coverage (Figure 5). Coverage was defined as the chemical space spanned by these unique AEs. The2

area-proportional Euler graph demonstrates that the AEs of the reactants in the USPTO dataset is not3

enough to describe diverse molecules and do not span a broad range of chemical space. This indicates4

that the current USPTO reaction dataset is not large enough to train a truly general retrosynthesis5

predictors. We believe that our model would perform more accurately, if we have more diverse reaction6

datasets.7

The USPTO reaction dataset contains 275 and 15,982 unique AE0 and AE2 tokens, respectively.8

ChEMBL and PubChem contain unique 386 AE0, 39,149 AE2, and 3450 AE0, 533,276 tokens, respec-9

tively. Although there are large differences in favor of PubChem, a significant portion of these unique10

AEs occurs only once in the whole set, which we refer to as singletons. The percentages of singletons11

were 38.5% and 35.2% for the AE0 and AE2 sets generated from PubChem. The cardinality of each set12

of unique AEs was supplied as supplementary information together with their intersections.13

Figure 5: Area-proportional Euler graph representing the space of atomic environments for the following
databases: PubChem 110M, ChEMBL 2.08M (ChEMBL v28, as of May 2021), and USPTO-Fully atom-
mapped 500K reactions (∼ 1.3M molecules). AE0 is upscaled by 20 times for better visual interpretation.

3.9 Retrieving reactant candidates via atom environments14

After predictions are made by RetroTRAE, the chemical structures of the predicted reactants, the set15

of AEs, can be retrieved through a database search. We investigated the success rate of retrieving a16

reactant candidate with 1000 USPTO test molecules using PubChem. The retrieval test results showed17

that more than half the predictions (55.7%) could be retrieved accurately (Figure 6). Allowing SM18

increased the retrieval rate by ∼ 30%. When DM were allowed, all the test molecules could be retrieved19

successfully. In other words, the predictions of RetroTRAE can be restored to real molecules exactly20

or highly similar molecules with a discrepancy of two AEs at most. As mentioned previously, molecules21

with SM and DM generally have differences in stereochemistry, the length of their aliphatic chains, and22

the location of their peripheral functional groups, such as ortho/meta/para positions (Figure 4). These23

results suggest that representing and predicting molecules with AEs is a viable and practical approach.24

Finally, it is worth mentioning that AEs are less degenerate, i.e., have fewer reactant candidates cor-25

responding to a prediction, than ECFP fingerprints during the retrieval process. Using ECFP bit indices26

for database searches retrieve 1.7 times more reactant candidates on average. The difference is mainly27
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due to bit collisions that occur during truncation to the bit vector and the absence of stereochemical1

information in our dataset.2

Figure 6: Retrieval of reactant candidates via a large PubChem compound search database. SM and
DM represent single mutation and double mutations.

4 Conclusion3

We developed a new template-free retrosynthesis prediction model, namely RetroTRAE, using the Trans-4

former architecture and the AE representation. RetroTRAE provides fast and reliable retrosynthetic5

route planning for substances whose fragmentation patterns are revealed. We demonstrated that AEs6

are promising descriptors for developing other generative and sequence-based architectures in addition7

to conventional SMILES-based approaches. Using AEs has advantages compared with conventional8

SMILES-based models. First, it need not learn complex grammar of SMILES. Second, each token is an9

actual substructure of a molecule making a model more interpretable in a chemical sense. Third, no10

atom mapping procedure is necessary, which can be computationally expensive and introduce additional11

errors to input data. Detailed analysis of predictions including attention values suggests that models12

trained with AEs are fully interpretable and AEs with high attention values reveal reaction centers.13

RetroTRAE showed comparable or improved performance compared to other state-of-the-art models.14

We critically assessed the retrieval process that converts a set of fragments into a molecule with respect15

to coverage, degeneracy, and resolution. RetroTRAE predicted reactant candidates with an exact match16

accuracy of 58.3%. In addition to the exact match accuracy, highly similar reactant candidates with single17

and double mutations were exceptionally similar to ground truth with a p-value < 10−7. The overall18

accuracy with singly and doubly mutated predictions was 61.6%, outperforming current state-of-the-art19

methods.20

Our approach introduces a novel scheme for fragmental and topological descriptors to be used as21

natural inputs for retrosynthetic prediction tasks. We emphasize that this comprehensive study outlines22

our novel retrosynthesis prediction model based on AEs and addresses the major limitation of structural23

fingerprints, which precludes their implementations in NLP models. We believe that our findings will24

open new possibilities for the development of NMT models for chemistry using sequential data, not only25

for retrosynthetic prediction but also for reaction and property predictions.26
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5 Availability of data and materials1

The datasets and the codes supporting the conclusions of this article are available via https://github.com/knu-2

lcbc/Transformer RetroTRAE repository.3
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[22] Schwaller, P., Gaudin, T., Lányi, D., Bekas, C. & Laino, T. ”Found in Translation”: predicting out-3

comes of complex organic chemistry reactions using neural sequence-to-sequence models. Chem. Sci.4

9, 6091–6098 (2018).5

[23] Cadeddu, A., Wylie, E. K., Jurczak, J., Wampler-Doty, M. & Grzybowski, B. A. Organic chemistry6

as a language and the implications of chemical linguistics for structural and retrosynthetic analyses.7

Angew. Chem. Int. Ed. 53, 8108–8112 (2014).8

[24] Vaswani, A. et al. Attention is all you need. Advances in Neural Information Processing Systems9

2017-Decem, 5999–6009 (2017).10

[25] Bahdanau, D., Cho, K. H. & Bengio, Y. Neural machine translation by jointly learning to align and11

translate. 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc. 1–15 (2015).12

[26] Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology13

and encoding rules. J. Chem. Inf. Comp. Sci. 28, 31–36 (1988).14

[27] Schwaller, P. et al. Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction15

Prediction. ACS Cent. Sci. 5, 1572–1583 (2019).16

[28] Schwaller, P. et al. Predicting retrosynthetic pathways using transformer-based models and a hyper-17

graph exploration strategy. Chem. Sci. 11, 3316–3325 (2020).18

[29] Lee, A. A. et al. Molecular transformer unifies reaction prediction and retrosynthesis across pharma19

chemical space. ChemComm 55, 12152–12155 (2019).20

[30] Pesciullesi, G., Schwaller, P., Laino, T. & Reymond, J. L. Transfer learning enables the molecular21

transformer to predict regio- and stereoselective reactions on carbohydrates. Nat. Commun. 11, 1–822

(2020).23

[31] Karpov, P., Godin, G. & Tetko, I. V. A transformer model for retrosynthesis. In24

Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions,25

817–830 (Springer International Publishing, Cham, 2019).26

[32] Duan, H., Wang, L., Zhang, C., Guo, L. & Li, J. Retrosynthesis with attention-based NMT model27

and chemical analysis of ”wrong” predictions. RSC Advances 10, 1371–1378 (2020).28

[33] Lin, K., Xu, Y., Pei, J. & Lai, L. Automatic retrosynthetic route planning using template-free29

models. Chem. Sci. 11, 3355–3364 (2020).30

[34] Zheng, S., Rao, J., Zhang, Z., Xu, J. & Yang, Y. Predicting Retrosynthetic Reactions Using Self-31

Corrected Transformer Neural Networks. J. Chem. Inf. Model. 60, 47–55 (2020).32

[35] Tetko, I. V., Karpov, P., Van Deursen, R. & Godin, G. State-of-the-art augmented NLP transformer33

models for direct and single-step retrosynthesis. Nat. Commun. 11, 1–11 (2020).34

[36] Kim, E., Lee, D., Kwon, Y., Park, M. S. & Choi, Y. S. Valid, Plausible, and Diverse Retrosynthesis35

Using Tied Two-Way Transformers with Latent Variables. J. Chem. Inf. Model. 61, 123–133 (2021).36

[37] O’Boyle, N. M. & Dalke, A. DeepSMILES: An adaptation of SMILES for use in machine-learning37

of chemical structures. ChemRxiv 1–9 (2018).38
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